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Abstract

This supplement contains: i) the description of the procedure for selection and

evaluation of the influential empirical RD papers; ii) the proofs of Theorem 1, 3, and 4;

iii) the Monte Carlo results for standard and weak-identification-robust confidence sets;

and iv) the additional tables from the empirical application.

1 Influential applied papers sample procedure

We start with thirty applied papers that were cited by Lee and Lemieux (2010). Of the

thirty papers, sixteen did not report enough information to perform the F -test. Of the

remaining papers, more than half had specifications which would be suspect according to

the test. We reach similar conclusions when only focusing on the ten most cited paper

in the list (Pitt and Khandker (1998); Hoxby (2000); Angrist (1990); (Van der Klaauw,

2002); Thistlethwaite and Campbell (1960); Greenstone and Gallagher (2008); Jacob and

Lefgren (2004); (Oreopoulos, 2006); Card et al. (2009); and (Kane, 2003)). These papers

had between 203 and 888 Google Scholar citations. Four of the ten papers do not report
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enough information to compute the test, but four of the remaining six papers presented

some specifications that failed the test.

2 Proofs of Theorem 1, 3 and 4

Proof of Theorem 1. In what follows, the population parameters should be viewed as

drifting sequences indexed by n. Let d∗n,1 = (fz(z0)/k)1/2(nhn)1/2∆x/σx, so that dn,1 =

|d∗n,1|, and re-write (6) as
σx
σy
β̂n =

(∆Yn/σy) + dn,3d
∗
n,1

(∆Xn/σx) + d∗n,1
.

Since ∆y = β∆x, we can re-write (5) as

Tn(β) =

√
f̂z,n(z0)

fz(z0)

(∆Yn/σy)− (σx/σy)β(∆Xn/σx)√
σ̂2
y,n

σ2
y

+
σ̂2
x,n

σ2
x

(
σx
σy
β̂n

)2
− 2

σ̂xy,n
σxσy

(
σx
σy
β̂n

) × sign
(
(∆Xn/σx) + d∗n,1

)
.

In addition to dn,1, dn,2, dn,3, the finite-sample distribution of Tn(β) can also be indexed by

dn,4 = fz(z0), where dn,4 takes values in a compact set by Assumption 2(b)(i). However, by

usual results for kernel estimators and under Assumption 2(a) and part (i) of Assumption

2(b), (Ef̂z,n(z0) − fz(z0))/fz(z0) → 0 and V ar(f̂z,n(z0)/fz(z0)) → 0 (Li and Racine, 2007,

Chapter 1), since fz is bounded away from zero around z0. It follows that f̂z,n(z0)/dn,4 →p 1

as n→∞, and therefore for any subsequence {pn} of {n}, f̂z,pn(z0)/dpn,4 →p 1. Hence, dn,4

does not affect AsySz of Tn(β). Next, let dn,5 = σy and dn,6 = σx. By Assumption 2(b)(iii),

they take values in compact sets, and σ̂x,n/dn,6 →p 1, σ̂y,n/dn,5 →p 1, and σ̂xy,n/(dn,5dn,6)−

dn,2 →p 0. Thus,

Tn(β) =
((∆Yn/dn,5)− dn,3(∆Xn/dn,6)) sign

(
(∆Xn/dn,6) + d∗n,1

)√
1 +

(
(∆Yn/dn,5)+dn,3d∗n,1

(∆Xn/dn,6)+d∗n,1

)2
− 2dn,2

(∆Yn/dn,5)+dn,3d∗n,1

(∆Xn/dn,6)+d∗n,1

+ op(1).

Suppose now that for any subsequence {pn} of {n},

(∆Ypn/dpn,5,∆Xpn/dpn,6)→d (Y,X ) . (S.1)
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Note that dn,5 and dn,6 do not affect AsySz. Suppose further that d∗pn,1 → d∗1 for some

|d∗1| <∞, dpn,2 → d2 ∈ [−ρ̄, ρ̄], and dpn,3 → d3 for some |d3| <∞. In this case,

Tpn(β)→d
Y − d3X√

1 +
(
Y+d3d∗1
X+d∗1

)2
− 2d2

Y+d3d∗1
X+d∗1

× sign(X + d∗1).

If d∗1 < 0, one can multiply Y + d3d
∗
1, X + d∗1, and Y − d3X each by −1, and re-define Y

and X as their negatives without changing the resulting asymptotic distribution. Hence, in

this case Tpn(β) →d Td1,d2,d3 . Note also that the distribution of |Td1,d2,d3 | is the same as

that of |Td1,−d2,−d3 |, and therefore, without loss of generality, one can restrict d2 to [0, ρ̄] for

two-sided testing.

Suppose now that |d∗1| <∞, d2 ∈ [−ρ̄, ρ̄], and d3 = ±∞. In this case,

Tn(β) =
((∆Yn/dn,5dn,3)− (∆Xn/dn,6)) sign

(
(∆Xn/dn,6) + d∗n,1

)√
1

d2n,3
+
(

(∆Yn/dn,5dn,3)+d∗n,1

(∆Xn/dn,6)+d∗n,1

)2
− 2dn,2

dn,3

(∆Yn/dn,5dn,3)+d∗n,1

(∆Xn/dn,6)+d∗n,1

+ op(1). (S.2)

Therefore, Tpn(β)→d −X (X + d1)/d1 =d Td1,d2,±∞ for any d2 ∈ [−ρ̄, ρ̄].

Next, suppose that |d∗1| =∞, d2 ∈ [−ρ̄, ρ̄], and |d3| <∞. We have

Tn(β) =
((∆Yn/dn,5)− dn,3(∆Xn/dn,6)) sign

(
(∆Xn/dn,6) + d∗n,1

)√
1 +

(
(∆Yn/dn,5d∗n,1)+dn,3

(∆Xn/dn,6d∗n,1)+1

)2
− 2dn,2

(∆Yn/dn,5d∗n,1)+dn,3

(∆Xn/dn,6d∗n,1)+1

+ op(1),

and, therefore, Tpn(β) converges in distribution to (Y−d3X )/(1+d2
3−2d2d3)1/2×sign(d∗1) =d

T∞,d2,d3 ∼ N(0, 1) for any d2 ∈ [−ρ̄, ρ̄]. The case of |d∗1| =∞ and |d3| =∞ can be handled

similarly to the previous to cases with Tpn(β)→d T∞,d2,±∞ ∼ N(0, 1) for any d2 ∈ [−ρ̄, ρ̄].

The results of the theorem now follow from Lemma 1 provided that (S.1) holds. To show

(S.1), consider ŷ+
n first. As in Hahn et al. (1999, Lemma 2), write

√
nhn

 ŷ+
n − y+

hn(ŷ
(1),+
n − y(1),+)

 =

(
1

nhn

n∑
i=1

ZiZ
′
iKi

)−1
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×

(
1√
nhn

n∑
i=1

ξni +
√
nhnEy

∗
i ZiKi

)
, (S.3)

where y(1),+ = lime↓0 dE(yi|zi = z0 + e)/dzi, ŷ
(1),+
n denotes the estimator of y(1),+, Z ′i =

(1, (zi − z0)/hn), Ki = K((zi − z0)/hn)1{zi ≥ z0}, and y∗i = yi − y+ − y(1),+(zi − z0)/hn,

and

ξni = y∗i ZiKi − Ey∗i ZiKi.

Hahn et al. (1999) show that Ey∗i ZiKi = h2
nfz(z0)(lime↓0 d

2E(yi|zi = z0 + e)/dz2
i ) × (k1 +

o(1)), where k1 is a vector of constants depending only on K(·). Since fz(z) and the second

derivative of E(yi|zi = z) are bounded in the neighborhood of z0 by Assumption 2(b)(i)-(ii),

it follows from Assumption 2(c) that
√
pnhpnEy

∗
i ZiKi → 0 for all subsequences {pn} of {n}.

Similarly, since the variances are bounded from below by Assumption 2(b)(iii),

(
V ar

(
1√
pnhpn

n∑
i=1

ξpni

))−1/2√
pnhpnEy

∗
i ZiKi → 0. (S.4)

By Lyapounov’s CLT (see for example, Lehmann and Romano, 2005, Corollary 11.2.1, p.

427) and the Cramér-Wold device (Davidson, 1994, Theorem 25.5, p. 405),

(
V ar

(
1√
pnhpn

n∑
i=1

ξpni

))−1/2
1√
pnhn

n∑
i=1

ξpni →d N(0, 1), (S.5)

where Lyapounov’s condition can be verified by Theorem 23.12 on p. 373 in Davidson (1994)

using Assumption 2(b)(iv). Uniform positive definiteness of the variance-covariance matrix,

which is needed to apply the Cramér-Wold device, holds because σ2
y(zi) is bounded away

from zero around z0 by Assumption 2(b)(iii), and by Lemma 4 in Hahn et al. (1999). Let

Ωn =

(
1

nhn

n∑
i=1

ZiZ
′
iKi

)−1

V ar

(
1√
nhn

n∑
i=1

ξni

)(
1

nhn

n∑
i=1

ZiZ
′
iKi

)−1

.
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By (S.3)-(S.5),

Ω−1/2
pn

√
pnhpn

 ŷ+
pn − y

+

hpn(ŷ
(1),+
pn − y(1),+)

→d N(0, 1).

Now, by Lemmas 1 and 4 in Hahn et al. (1999) and in view of Assumption 2, we conclude

that
√
pnhpn(ŷ+

pn − y
+)/(σ+

y

√
k/fz(z0))→d N(0, 1), where σ+

y = lime↓0 σy(z0 + e).

Let dn,7 = σ+
y , dn,8 = σ−y = lime↓0 σy(z0 − e), ∆Y +

n =
√
nhn/(k/fz(z0))(ŷ+

n − y+), and

let ∆Y −n be defined similarly with the plus-terms replaced with the minus-terms. Using the

same arguments as above and applying the Cramér-Wold device, we can show that

(∆Y +
pn/dpn,7,∆Y

−
pn/dpn,8)→d

(
Y+,Y−

)
. (S.6)

where Y+,Y− are independent standard normal random variables. Next,

∆Ypn
dpn,5

=
∆Y +

pn

dpn,7

dpn,7
dpn,5

+
∆Y −pn
dpn,8

dpn,8
dpn,5

.

Now, ∆Ypn/dpn,5 →d Y in (S.1) can be argued using (S.6), Assumption 2(b)(iii), and Lemma

1.

Lastly, the joint convergence in (S.1) can be shown using the same arguments as above

in combination with the Cramér-Wold device applied to y- and x-terms. Note that since

|ρxy| is bounded away from one by Assumption 2(b)(iii), the variance-covariance matrices

will be positive definite, which ensures that the Cramér-Wold device can be applied. �

Proof of Theorem 3. Again, the population parameters should be viewed as drifting

sequences indexed by n. First, note that under H0, the rejection probability is largest when

β = β0. Next, as in the proof of Theorem 1, we can write

TRn (β) =
((∆Yn/dn,5)− dn,3(∆Xn/dn,6)) sign

(
(∆Xn/dn,6) + d∗n,1

)√
1 + d2

n,3 − 2dn,2dn,3
+ op(1). (S.7)

Suppose that d∗pn,1 → ±∞, and dpn,3 → d3, where |d3| < ∞. By (S.1) we have that
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TRpn(β)→d N(0, 1). Next, similarly to (S.7),

Q̂n(β) =
∆Xn

dn,6
+ d∗n,1 −

(dn,2 − dn,3) ((∆Yn/dn,5)− dn,3(∆Xn/dn,6))

1 + d2
n,3 − 2dn,2dn,3

+ op(1),

T̂ Rn,m(β, Q̂n(β)) = Sm × sign

Q̂n(β) +
dn,2 − dn,3√

1 + d2
n,3 − 2dn,2dn,3

Sm

+ op(1). (S.8)

We have that Q̂pn(β) diverges to ±∞, and T̂ Rpn,m(β, Q̂pn(β)) →d N(0, 1). Hence, it follows

that for all subsequences {pn} of {n}, ĉvpn,1−α(β0, Q̂pn(β))→p z1−α, and

P (TRpn(β) > ĉvpn,1−α(β0, Q̂pn(β)))→ α. (S.9)

Suppose now that d∗pn,1 → d∗1, where |d∗1| <∞, and dpn,3 → d3, where |d3| <∞. We can

re-write (S.7) as

TRn (β) =
(∆Yn/dn,5)− dn,3(∆Xn/dn,6)√

1 + d2
n,3 − 2dn,2dn,3

× sign

(
Q̂n(β) +

(dn,2 − dn,3) ((∆Yn/dn,5)− dn,3(∆Xn/dn,6))

1 + d2
n,3 − 2dn,2dn,3

)
+ op(1).

By (S.1),

(∆Ypn/dpn,5)− dpn,3(∆Xpn/dpn,6)√
1 + d2

pn,3
− 2dpn,2dpn,3

→d S =
Y − d3X√

1 + d2
3 − 2d2

,

Q̂pn(β)→d Q+ d∗1, where

Q = X − d2 − d3√
1 + d2

3 − 2d2

S.

Note that the two limiting distributions represented by S and Q are independent, and

S ∼ N(0, 1). Hence

TRpn(β)→d S × sign

(
Q+ d∗1 +

d2 − d3√
1 + d2

3 − 2d2

S

)
. (S.10)
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By (S.8), we have

T̂ Rpn,m(β, Q̂pn(β))→d Sm × sign

(
Q+ d∗1 +

d2 − d3√
1 + d2

3 − 2d2d3

Sm

)
, (S.11)

where Sm ∼ N(0, 1) and is independent from Q by construction. The results in (S.10) and

(S.11) imply that (S.9) holds also for |d∗1| <∞.

Equation (S.9) remains true in the case of dpn,3 → ±∞, which can be handled as in the

proof of Theorem 1, equation (S.2). The result of the theorem now follows by Lemma 1. �

Proof of Theorem 4. The result in part (a) holds since the concentration parameter does

not affect the asymptotic distribution of Gn(β). To prove part (b), let

G∗n(β0) =

J∗∑
j=1

njhnj

(
β̂n(w̄j)− β0

)2

kσ̂2
n(β0, w̄j)/(f̂z,n(z0|w̄j)(∆̂xn(w̄j))2)

≤ Gn(β0).

In the proof below, we allow for G∗n(b) to be minimized at a set of points or infinity. Let

∆x(w̄j) = x+(w̄j)− x−(w̄j), σ2(b, w̄j) = σ2
y(w̄

j) + b2σ2
x(w̄j)− 2σxy(w̄

j), and

G∗(b) =
J∗∑
j=1

pj
(β(w̄j)− b)2(∆x(w̄j))2

σ2(b, w̄j)

fz(z0|w̄j)
k

.

Since under the theorem’s assumptions infb∈RG
∗(b) > 0, it suffices to show that

| inf
b∈R

G∗n(b)/(nhn)− inf
b∈R

G∗(b)| →p 0, (S.12)

as (S.12) implies that P (infb∈RG
∗
n(b) > a) → 1 for all a ∈ R as n → ∞. However, the last

equation can be shown to establishing that

sup
b∈R
|G∗n(b)/(nhn)−G∗(b)| →p 0. (S.13)

Since (β(w̄j)−b)2 and σ2(b, (w̄j)) are continuous for all b ∈ R, and the asymptotic variance-

covariance matrix composed of σ2
y(w̄

j), σ2
x(w̄j), and σxy(w̄j) is positive definite, it follows
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that the function (β(w̄j) − b)2/σ2(b, w̄j) is continuous for all b ∈ R and bounded. By the

same arguments,

sup
b∈R

(
β̂n(w̄j)− b

)2

σ̂2
n(b, w̄j)

= Op(1). (S.14)

By triangle inequality,

|G∗n(b)/(nhn)−G∗(b)| ≤
J∗∑
j=1

pj(∆x(w̄j))2

×

∣∣∣∣∣∣∣
(
β̂n(w̄j)− b

)2

σ̂2
n(b, w̄j)k/f̂z(z0|w̄j)

− (β(w̄j)− b)2

σ2(b, w̄j)k/fz(z0|w̄j)

∣∣∣∣∣∣∣+
J∗∑
j=1

Rj,n(b), (S.15)

where |Rj,n(b)| is bounded by

(∣∣∣∣njhnj

nhn
− pj

∣∣∣∣ (∆x(w̄j))2 +
∣∣∣(∆̂xn(w̄j))2 − (∆x(w̄j))2

∣∣∣ pj)
∣∣∣∣∣∣∣

(
β̂n(w̄j)− b

)2

σ̂2
n(b, w̄j)k/f̂z(z0|w̄j)

∣∣∣∣∣∣∣ .
Since njhnj/nhn → pj , it follows from (S.14) that for j = 1, . . . , J∗, supb∈R |Rj,n(b)| = op(1).

Similarly, one can show that, for all j = 1, . . . , J∗,

sup
b∈R

∣∣∣∣∣∣∣
(
β̂n(w̄j)− b

)2

σ̂2
n(b, w̄j)k/f̂z(z0|w̄j)

− (β(w̄j)− b)2

σ2(b, w̄j)k/fz(z0|w̄j)

∣∣∣∣∣∣∣ = op(1). (S.16)

The last result holds since it is assumed that there is strong or semi-strong identification for

j = 1, . . . , J∗. It also establishes (S.15), which now implies (S.13). �

3 Monte Carlo results for standard and weak-identification-

robust confidence sets for FRD designs

In this section, we discuss the performance of standard and robust confidence sets for FRD

in Monte Carlo experiments. The model is as in Section 2.1 of the main paper, and specific
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parametrizations that we use for our simulations are described below. Standard confidence

intervals are based on the usual t-statistic for FRD (Tn(β0)) and standard normal critical

values. Thus, standard two-sided symmetric confidence intervals with asymptotic coverage

probability of 1 − α are constructed as estimator±z1−α/2 × std.err, where zτ denotes the

τ -th quantile of N(0, 1) distribution, and they correspond to testing H0 : β = β0 against

H1 : β 6= β0. Standard one-sided confidence intervals are constructed as (−∞, estimator −

zα× std.err] = (−∞, estimator+ z1−α× std.err], and they correspond to testing H0 : β ≥ β0

against H0 : β < β0. Robust confidence sets are constructed as discussed in Section 2.4 of

the main paper using robust t-statistic TRn (β0). Robust two-sided confidence sets consist of

all values β0 such that |TRn (β0)| < z1−α/2, and are computed analytically by solving (11) in

the main paper.

Robust one-sided confidence sets consist of all values β0 that satisfy the inequality

TRn (β0) > ĉvn,1−α(β0, Q̂n(β0)), where ĉvn,1−α(β0, Q̂n(β0)) denotes data-dependent critical

values discussed in Section 2.4 of the main paper. In practice one-sided robust confidence

sets can be computed numerically by checking the above inequality over a grid of values for

β0. However, to evaluate their coverage probabilities in a Monte Carlo experiment, one can

simply compute the relative frequency of occurrence of the event TRn (β) > ĉvn,1−α(β, Q̂n(β)),

where β is the true value used to generate data.

3.1 Data generating process (DGP)

The outcome variable yi is generated according to the following model with a constant RD

effect:

yi = y0i + xiβ,

y0i = gy(uyi, vi),

xi = gx(zi, uxi, c),

9



where uyi and uxi are bivariate normal with correlation parameter κ:

 uyi

uxi

 ∼ N

 0

0

 ,

 1 κ

κ 1


 ,

the assignment variable xi follows a normal distribution,

zi ∼ N(0, σ2
z),

and vi follows a χ2-distribution with 3 degrees of freedom,

vi ∼ χ2
3.

Note also that (uyi, uxi)
′, zi, and vi are jointly independent. In our setup, y0i captures the

outcome in the absence of treatment, and the function gy(·, ·) takes one of the following

three forms:

gy(uyi, vi) =


uyi, y0i ∼ N(0, 1),

exp(uyi), y0i ∼ Log-normal,

uyi/vi, y0i ∼ t3.

Thus, the marginal distribution of the outcome without treatment is either standard normal,

log-normal, or a t-distribution with 3 degrees of freedom. Log-normal and t- distributions

are used to evaluate the effect of deviations from normality: asymmetries in the first case

and heavier tails in the second case.

The function gx(·, ·, ·) controls when and what kind of treatment is received, and it can

take one of the two following forms. In the first case,

gx(zi, uxi, c) = ui × 1{zi ≤ 0}+ (ui + c)× 1{zi > 0}.
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This is a DGP with continuous treatment variables (thus, there are treatments of different

intensity). In this case, x+ − x− = c, and the concentration parameter (equations (7) and

(8) in the main paper) is given by
nhnc

2

2k
√

2πσ2
z

,

since z0 = 0, fz(0) = 1/
√

2πσ2
z , V ar(xi|zi) = 1, so σ2

x = 2. Thus, weaker designs can

be generated by reducing the value of |c| or by increasing the value of σ2
z . Alternatively,

treatment assignment can be generated using

gx(zi, uxi, c) = 1{ui ≤ 0} × 1{zi ≤ 0}+ 1{ui ≤ c} × 1{zi > 0}.

With this DGP, the treatment variable is binary. Let Φ (·) denote the standard normal

CDF. Then, x+ − x− = Φ (c) − Φ (0), and σ2
x = Φ(0)(1 − Φ(0)) + Φ(c)(1 − Φ(c)). Hence,

the concentration parameter is given by

nhn(Φ(c)− Φ(0))2

2k
√

2πσ2
z (Φ(0)(1− Φ(0)) + Φ(c)(1− Φ(c)))

.

Similarly to the continuous case DGP, the concentration parameter is increasing in c, how-

ever, it is now bounded from above for fixed nhn and σ2
z , since limc→∞Φ(c) = 1.

In our DGP, uxi determines whether the treatment is received, and therefore the param-

eter κ captures the degree of endogeneity of treatment.

Observations are simulated to be independent across i’s. The number of Monte Carlo

replications is set to 10,000. Our sample size is set to n = 1, 000. Our base bandwidth

value has been chosen as hn = n−1/4 ≈ 0.1778. We also explore sensitivity of the results

to bandwidth choices by also using hn = 0.0889 and 0.8891. We use the uniform kernel

function K(z) = 1/2× 1{−1 ≤ z ≤ 1}, which corresponds to k = 4.

We use the following parameter values:

β = 0,
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σz = 1, 5,

κ = 0.5, 0.99,

c = 2, 0.5, 0.1

where with c = 2 identification is considered to be relatively strong, and it becomes weak

as c decreases. The values for our endogeneity parameter (κ) are the same as those used in

the weak IV literature (Staiger and Stock, 1997). However, since our DGP is non-linear, κ

is different from the asymptotic correlation between estimation errors ρxy (see Section 2.1

of the main paper), where ρxy is typically smaller in absolute value than κ. Note that ρxy

directly affects asymptotic rejection probabilities.

3.2 Results

First, we consider the effect of weak identification on the distribution of the usual t-statistic

Tn(β). Figure S.1 shows the densities of Tn(β) estimated by kernel smoothing for binary xi,

normal y0i, and σz = 1. As a comparison, we also plot the standard normal density. From

panels (a) and (b) constructed using κ = 0.50 or κ = 0.99 and c = 2 (strong identification),

it is apparent that the standard normal distribution is a very good approximation to the

distribution of Tn(β). When κ = 0.99, the distribution of Tn(β) is slightly skewed to the left.

However, the normal approximation should still work reasonably well (as we show below),

because there are no substantial deviations of the extreme values of the distribution of Tn(β)

from those of the standard normal distribution.

Figures S.1 (c) and (d) show the density of Tn(β) under very weak identification (c = 0.1).

In this case, the distribution of Tn(β) is very different from normal. It is strongly skewed to

the left, although when κ = 0.50 it is also more concentrated around zero. A consequence

of concentration is that there will be no size distortions when identification is weak but

the degree of endogeneity is small. The picture changes drastically when κ = 0.99. The

distribution of Tn(β) is strongly skewed to the left and no longer concentrated as much

around zero. One can expect substantial size distortions in this case for two-sided tests or
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confidence intervals. Even more severe distortions can be expected for one-sided tests of

H0 : β ≥ β0 against H1 : β < β0. However, there will be no size distortions for tests of

H0 : β ≤ β0 against H1 : β > β0, since the probability mass is shifted to the left. Similarly,

one can expect that the coverage probability of one-sided confidence intervals of the form

(−∞, estimator+z1−α×std.err] will be below the nominal coverage of 1−α. The discrepancy

between the actual and nominal coverage for such intervals would be even larger than for

two-sided confidence intervals. At the same time, one can expect that the actual coverage

of one-sided confidence intervals of the form [estimator− z1−α × std.err,∞) will exceed the

nominal coverage.

Simulated coverage probabilities for different combinations of the model’s parameters

are reported in Table S.1. With moderate degree of endogeneity (κ = 0.5) and when

identification is relatively strong (the concentration parameter is around 35 or 7), the usual

confidence intervals, two-sided and one-sided, have coverage probabilities very close to the

nominal ones. Their coverage probabilities remain very close to nominal even when the

concentration parameter drops to very small values (0.09 and 0.02), as long as endogeneity

remains moderate.

When the degree of endogeneity is very high (κ = 0.99), the coverage probabilities of the

standard confidence intervals deviate from the nominal levels. Even with a large value of the

concentration parameter of 35, the simulated coverage of one-sided intervals can be below the

nominal level by 5% (while two-sided intervals remain quite accurate). For a concentration

parameter around 7, distortions can be up to 10% for one-sided intervals and 5% for two-

sided intervals. The situation becomes substantially worse when identification is very weak

(c = 0.1 and the corresponding values of the concentration parameter below 0.1). In this

case we observe severe size distortions for one-sided and two-sided interval. For example,

the actual coverage probabilities of the 90%, 95% and 99% two-sided confidence intervals are

approximately 51%, 55%, and 62%, respectively when the concentration parameter is around

0.09. More substantial size distortions were observed with the concentration parameter equal

to 0.009: the actual coverages of the 90%, 95% and 99% two-sided confidence intervals were
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32%, 35%, and 41%, respectively.

As expected, the performance of one-sided intervals was even worse due to the skewness

of the distribution of Tn(β) in the case of weak identification and strong endogeneity (Figure

S.1(d)). For example, when c = 0.1 and κ = 0.99, the actual coverage of the 90% one-sided

confidence intervals does not exceed 46%, and it goes as low as 28% in the case of the

concentration parameter equal to 0.009.

The last rows of Table S.1 show coverage when identification is still weak, but less so

(c = 0.5), which results in the concentration parameter values of 2.22, 0.44, or 0.22 depending

on σz and the bandwidth. Still, distortions remain serious when κ is large. For example, the

actual coverage for two-sided intervals, when nominal coverage is set to 90%, ranges from

83% when the concentration parameter is 2.22, to 55% when it is 0.22.

Table S.1 makes clear that, as long as the concentration parameter is similar, coverage

will be similar even if some of the primitive parameters such as the bandwidth and σz differ.

For example, compare the seventh row of Table S.1 with the tenth row. In the seventh row,

the bandwidth is 0.1778, and σz is equal to one, which corresponds to the concentration

parameter of approximately 0.09. In the tenth row, σz is five, but the bandwidth has been

increased five times leaving the concentration parameter unchanged. The actual coverage

probabilities of the standard confidence intervals are equal in both cases.1

Table S.1 also clearly demonstrates how the magnitude of the concentration parameter

relates to the degree of distortions observed. When the concentration parameter is relatively

large as in the first and fifth rows of Table S.1, the coverage probabilities are close to the

nominal ones. On the other hand, the closer to zero the concentration parameter is, the

more severe the distortions. It is important to note, however, that the degree of endogeneity

is kept the same. Even with equivalent concentration parameters, if there is a higher degree

of endogeneity then distortions will be more severe. We can see this by comparing the third

and seventh rows.

We have also computed the simulated coverage probabilities of the weak identification
1Note that in each experiment (i.e. for each combination of parameters), we used the same sequence of

primitive random variables by controlling the random numbers generator.
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robust confidence sets. We find that regardless of the strength of identification and degree

of endogeneity, the simulated coverage probabilities of two-sided and one-sided robust confi-

dence sets are uniformly very close to the nominal coverage probabilities. This supports our

claim that the inference based on the null-restricted statistic TRn (β0) does not suffer from

size distortions.

Table S.2 repeats the exercises presented in Table S.1 when the treatment variable is

binary rather than continuous. The distortions observed in this case are less severe under

all specifications. The reason is that κ does not map exactly to the asymptotic correlation

between the estimation errors ρxy, which controls directly asymptotic rejection probabilities

(see Section 2.2 of the main paper). This is due to the non-linear nature of the DGP. For

example, when κ = 0.99 and σz = 5, the implied correlation between ∆̂yn and ∆̂xn is

approximately 0.80. Under our standard choice of bandwidth, the coverage probabilities of

the 90%, 95%, and 99% confidence sets are 78.7%, 84.9%, and 92.2%, respectively.

Table S.3 presents the results for non-normal DGPs. Again, the distortions appear

less severe than those in Table S.1 due to the non-linear mapping of κ to the degree of

endogeneity. We report the implied value of ρxy in Table S.3. Nevertheless, the table

demonstrates that even when the endogeneity is not as severe and the system is non-normal,

size distortions are still present.

In the main body of the paper, we have discussed the possibility that the robust con-

fidence sets may cover the entire real line or be the union of two half-lines. Table S.4

demonstrates the likelihood of this possibility under different scenarios. When identification

is relatively strong (c = 2), the form of the robust confidence sets complies to the standard

one. By contrast, the shape of weak-identification-robust confidence sets is non-standard

when identification becomes weaker. As reported in Table S.4, in the case of a relatively

strong FRD (c = 2), the probabilities that the robust confidence sets are unbounded are very

small regardless of the value of κ, and even negligible in the case of continuous treatment.

For binary treatment, the probability of seeing unbounded confidence sets when c = 2 varies

between 0.0007 and 0.11 depending on the nominal coverage and the value of κ. On the
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other hand, in the case of a weak FRD (c = 0.1 or c = 0.5), unbounded robust confidence

sets are obtained with very high probabilities. For example, in the case of continuous treat-

ment and when c = 0.1 and κ = 0.99, the entire real line is obtained with probabilities 23%,

35% and 60% and the union of two half lines with probabilities 65%, 60% and 39% for the

confidence sets with nominal coverage of 90%, 95% and 99% respectively.

4 Monte Carlo results for the test of constancy of the RD

effect

In this section, we present the simulated size and power of the standard and weak-identification-

robust constancy tests. As discussed in Section 3 of the main paper, it is assumed that in

addition to yi, xi, zi, the econometrician observes the covariate variable wi that takes values

in W = {w̄1, . . . , w̄J}. The econometrician is interested in testing the null hypothesis that

the RD effect is independent of wi. We maintain the same basic design as in Section 3

with normally distributed outcomes in the absence of treatment and continuous treatment

variables. However, we now consider three population sub-groups (J = 3) with nj = 1, 000

for all j = 1, 2, 3. We use the uniform kernel for all sub-groups, select the bandwidth ac-

cording to hnj = n
−1/4
j , and use σz = 1 and κ = 0.99 in all simulations for all categories

of wi. Under H0 of constancy, we generate data with βj = 0 for all j = 1, 2, 3. Under the

alternative of heterogenous treatment effects, we generate data with β1 = 0, β2 = −1 and

β3 = 1, or β2 = −3 and β3 = 3.

The standard constancy test can be constructed along the lines of the ANOVA F -test.

See for example, Casella and Berger (2002, Chapter 11). Using the notation of Section 3 of

the main paper, let

CBn =
J∑
j=1

(
β̂n(w̄j)− β̄n

)2
/V̂n(w̄j), where

β̄n =

∑J
j=1 β̂n(w̄j)/V̂n(w̄j)∑J

j=1 1/V̂n(w̄j)
, and
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V̂n(w̄j) =
1

njhnj

kσ̂2
n(β0, w̄

j)

f̂z,n(z0|w̄j)(∆̂xn(w̄j))2
.

Under H0 of constancy of the RD effect across the covariate’s values and under strong

identification for all J categories, CBn →d χ
2
J−1. Thus, the standard test of constancy

will reject H0 whenCBn > χ2
J−1,1−α. Since the standard test relies on the asymptotic

normal approximation for the FRD estimator, one can expect that it will be distorted when

identification is weak.

Weak-identification-robust constancy test is proposed in Section 3 of the main paper.

The robust statistic Gn(β0) is evaluated over a grid of values for β0 that covers the interval

[−10, 10]. The null hypothesis of constancy is rejected by the robust test if the smallest

value of Gn(β0) obtained on the grid exceeds χ2
J,1−α. Our theoretical results predict that

the robust test has accurate size regardless of the strength of identification, and good power

if at least two categories with different RD effects have sufficiently strong identification.

Table S.5 reports simulated rejection probabilities for the standard and robust tests when

the treatment effect is strongly identified for all sub-groups and when it is weakly identified

for some sub-groups. As one can see from the first row of Table S.5, which reports the

results under H0, the standard test is under-sized when identification is relatively strong for

all three categories, while the robust test has rejection probabilities very close to the desired

significance level.

When the treatment effect for one of the groups is only weakly identified as shown in

the second row of Table S.5, the standard test over-rejects the null hypothesis of equality:

the simulated rejection probabilities of the standard test are equal to 43%, 38%, and 31%

for the significance levels of 10%, 5%, and 1% respectively. The rejection probabilities for

the robust test remain very close to the corresponding significance levels.

When the treatment effect differs between the groups, rows three and four of Table

S.5 demonstrate that the robust test has reasonable power to reject the null hypothesis of

constancy even when the treatment effect is weakly identified for one or more groups. For

example, when the treatment effect is 0, -1, and 1 from groups 1, 2 and 3 respectively, the
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robust test rejects the null hypothesis 80%, 70% and 47% of the time for a 10%, 5% and 1%

test. When the difference in the treatment effect between the groups is greater, 0, -3 and 3

for example, the robust test rejects the null hypothesis of equality nearly 100% of the time.

Rows five and six of Table S.5 demonstrate that similar results hold when weak identification

is a problem for more than one of the sub-groups. The last row of the table shows that,

when identification is strong for all groups, the two tests have comparable power.
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Figure S.1: Kernel estimated density of the usual T statistic (solid line) under strong (c =
2) and weak (c = 0.1) identification for different values of the endogeneity parameter against
the standard normal PDF (dashed line)

(a) Strong identification, κ = 0.50 (b) Strong identification, κ = 0.99

(c) Weak identification, κ = 0.50 (d) Weak identification, κ = 0.99
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Table S.1: (Continuous xi & normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence
sets for different values of the standard deviation of the assignment variable (σz), size of discontinuity in treatment assignment
(c), degree of endogeneity (κ), and bandwidth (hn).

Simulated Coverage
Concentration Nominal Two-sided One-sided

σz c κ Parameter hn Coverage Standard Robust Standard Robust

1 2 0.50 35.48 0.1778
0.90
0.95
0.99

0.9180
0.9583
0.9885

0.9051
0.9522
0.9931

0.8784
0.9320
0.9793

0.8970
0.9505
0.9907

5 2 0.50 7.10 0.1778
0.90
0.95
0.99

0.9262
0.9604
0.9896

0.9157
0.9693
0.9984

0.8713
0.9273
0.9820

0.9025
0.9585
0.9969

1 0.1 0.50 0.09 0.1778
0.90
0.95
0.99

0.9600
0.9815
0.9969

0.9051
0.9522
0.9931

0.9073
0.9600
0.9938

0.8970
0.9505
0.9907

5 0.1 0.50 0.02 0.1778
0.90
0.95
0.99

0.9403
0.9659
0.9892

0.9157
0.9693
0.9984

0.8824
0.9404
0.9831

0.9025
0.9585
0.9969

1 2 0.99 35.48 0.1778
0.90
0.95
0.99

0.9072
0.9393
0.9722

0.9051
0.9522
0.9931

0.8580
0.9072
0.9629

0.8970
0.9505
0.9907

5 2 0.99 7.10 0.1778
0.90
0.95
0.99

0.8676
0.9011
0.9443

0.9157
0.9693
0.9984

0.8189
0.8676
0.9299

0.9025
0.9585
0.9969

1 0.1 0.99 0.09 0.1778
0.90
0.95
0.99

0.5165
0.5573
0.6203

0.9051
0.9522
0.9931

0.4625
0.5165
0.5949

0.8970
0.9505
0.9907

5 0.1 0.99 0.02 0.1778
0.90
0.95
0.99

0.3741
0.4113
0.4718

0.9157
0.9693
0.9984

0.3264
0.3741
0.4475

0.9025
0.9585
0.9969

5 0.1 0.99 0.009 0.0889
0.90
0.95
0.99

0.3203
0.3521
0.4139

0.9289
0.9670
0.9847

0.2829
0.3203
0.3902

0.8999
0.9569
0.9845

5 0.1 0.99 0.09 0.8891
0.90
0.95
0.99

0.5165
0.5573
0.6203

0.9051
0.9522
0.9931

0.4625
0.5165
0.5949

0.8970
0.9505
0.9907
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Table S.1: (Continued)

Simulated Coverage
Concentration Nominal Two-sided One-sided

σz c κ Parameter hn Coverage Standard Robust Standard Robust

1 0.5 0.50 2.22 0.1778
0.90
0.95
0.99

0.9367
0.9656
0.9917

0.9051
0.9522
0.9931

0.8828
0.9367
0.9845

0.8970
0.9505
0.9907

5 0.5 0.50 0.44 0.1778
0.90
0.95
0.99

0.9362
0.9646
0.9895

0.9157
0.9693
0.9984

0.8780
0.9365
0.9823

0.9025
0.9585
0.9969

1 0.5 0.99 2.22 0.1778
0.90
0.95
0.99

0.8287
0.8617
0.9066

0.9051
0.9522
0.9931

0.7843
0.8287
0.8908

0.8970
0.9505
0.9907

5 0.5 0.99 0.44 0.1778
0.90
0.95
0.99

0.6783
0.7195
0.7812

0.9157
0.9693
0.9984

0.6183
0.6783
0.7585

0.9025
0.9585
0.9969

5 0.5 0.99 0.22 0.0889
0.90
0.95
0.99

0.5535
0.5946
0.6579

0.9289
0.9670
0.9847

0.4983
0.5535
0.6347

0.8999
0.9569
0.9845

5 0.5 0.99 2.22 0.8891
0.90
0.95
0.99

0.8287
0.8617
0.9066

0.9051
0.9522
0.9931

0.7843
0.8287
0.8908

0.8970
0.9505
0.9907
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Table S.2: (Binary xi & normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence sets
for different values of the standard deviation of the assignment variable (σz), size of discontinuity in treatment assignment (c),
degree of endogeneity (κ), and bandwidth (hn).

Simulated Coverage
Concentration Nominal Two-sided One-sided

σz c κ Parameter hn Coverage Standard Robust Standard Robust

1 2 0.50 7.42 0.1778
0.90
0.95
0.99

0.9376
0.9745
0.9961

0.9051
0.9522
0.9931

0.8925
0.9472
0.9912

0.8970
0.9505
0.9907

5 2 0.50 1.48 0.1778
0.90
0.95
0.99

0.9606
0.9838
0.9966

0.9157
0.9693
0.9984

0.9120
0.9625
0.9932

0.9025
0.9585
0.9969

1 0.1 0.50 0.03 0.1778
0.90
0.95
0.99

0.9783
0.9913
0.9987

0.9051
0.9522
0.9931

0.9394
0.9783
0.9972

0.8970
0.9505
0.9907

5 0.1 0.50 0.006 0.1778
0.90
0.95
0.99

0.9627
0.9816
0.9942

0.9157
0.9693
0.9984

0.9184
0.9628
0.9913

0.9025
0.9585
0.9969

1 2 0.99 7.42 0.1778
0.90
0.95
0.99

0.9206
0.9546
0.9857

0.9051
0.9522
0.9931

0.8704
0.9211
0.9758

0.8970
0.9505
0.9907

5 2 0.99 1.48 0.1778
0.90
0.95
0.99

0.9141
0.9493
0.9839

0.9157
0.9693
0.9984

0.8514
0.9141
0.9750

0.9025
0.9585
0.9969

1 0.1 0.99 0.03 0.1778
0.90
0.95
0.99

0.8201
0.8732
0.9448

0.9051
0.9522
0.9931

0.7382
0.8201
0.9204

0.8970
0.9505
0.9907

5 0.1 0.99 0.006 0.1778
0.90
0.95
0.99

0.7872
0.8495
0.9226

0.9157
0.9693
0.9984

0.7057
0.7872
0.8976

0.9025
0.9585
0.9969

5 0.1 0.99 0.003 0.0889
0.90
0.95
0.99

0.7325
0.7868
0.8654

0.9287
0.9668
0.9845

0.6487
0.7327
0.8385

0.8997
0.9567
0.9843

5 0.1 0.99 0.03 0.8891
0.90
0.95
0.99

0.8201
0.8732
0.9448

0.9051
0.9522
0.9931

0.7382
0.8201
0.9204

0.8970
0.9505
0.9907
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Table S.3: (Non-normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence sets for dif-
ferent values of the standard deviation of the assignment variable (σz), size of discontinuity in treatment assignment (c), degree
of endogeneity (κ), correlation between estimation errors for y and x (ρxy), and different distributions of the outcome without
treatment (y0i). Bandwidth is equal to 0.1778.

Simulated Coverage
Distribution Concentration Nominal Two-sided One-sided

σz c of y0i κ ρxy Parameter Coverage Standard Robust Standard Robust

continuous treatment xi

5 0.1 Log-normal 0.99 0.85 0.02
0.90
0.95
0.99

0.7189
0.7788
0.8643

0.9207
0.9769
0.9996

0.6359
0.7189
0.8321

0.9025
0.9609
0.9989

5 0.1 t3 0.99 0.64 0.02
0.90
0.95
0.99

0.8774
0.9194
0.9663

0.9267
0.9785
0.9991

0.8067
0.8774
0.9521

0.9015
0.9638
0.9987

5 0.5 Log-normal 0.99 0.85 0.44
0.90
0.95
0.99

0.7701
0.8193
0.8995

0.9207
0.9769
0.9996

0.6949
0.7701
0.8725

0.9025
0.9609
0.9989

5 0.5 t3 0.99 0.64 0.44
0.90
0.95
0.99

0.8837
0.9245
0.9686

0.9290
0.9814
0.9992

0.8166
0.8840
0.9556

0.9057
0.9636
0.9985

binary treatment xi

5 0.1 Log-normal 0.99 -0.6435 0.006
0.90
0.95
0.99

0.8861
0.9255
0.9716

0.9207
0.9769
0.9996

0.8106
0.8861
0.9575

0.9025
0.9609
0.9989

5 0.1 t3 0.99 -0.5327 0.006
0.90
0.95
0.99

0.9327
0.9627
0.9877

0.9320
0.9812
0.9992

0.8735
0.9327
0.9801

0.9051
0.9652
0.9978
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Table S.4: Simulated probabilities for weak-identification-robust confidence sets to be un-
bounded for different values of the discontinuity parameter (c), different degrees of endo-
geneity (κ), and different types of treatment variable xi. The bandwidth is set to 0.1778,
assignment variable is standard normal, and the outcome without treatment is normal.

c κ nominal coverage entire real line two half-lines

continuous treatment xi

2 0.50 0.90
0.95
0.99

0
0
0

0.0002
0.0002
0.0020

2 0.99 0.90
0.95
0.99

0
0
0

0.0001
0.0001
0.0008

0.1 0.50 0.90
0.95
0.99

0.7282
0.8494
0.9681

0.1614
0.0973
0.0221

0.1 0.99 0.90
0.95
0.99

0.2354
0.3534
0.5972

0.6544
0.5909
0.3908

0.5 0.50 0.90
0.95
0.99

0.3572
0.4894
0.7348

0.2148
0.1980
0.1324

0.5 0.99 0.90
0.95
0.99

0
0
0

0.5637
0.6847
0.8626

binary treatment xi

2 0.50 0.90
0.95
0.99

0.0061
0.0183
0.0630

0.0139
0.0222
0.0551

2 0.99 0.90
0.95
0.99

0.0007
0.0021
0.0134

0.0196
0.0402
0.1103

0.1 0.50 0.90
0.95
0.99

0.7348
0.8532
0.9689

0.1592
0.0945
0.0217

0.1 0.99 0.90
0.95
0.99

0.7218
0.8385
0.9619

0.1745
0.1077
0.0282
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Table S.5: Simulated size and power of the standard and weak-identification-robust tests
for constancy of the RD effect across covariates. There are three groups with RD effects βj
and discontinuities in treatment assignments cj .

Size of Discontinuity Treatment Effect Nominal Rejection probabilities
c1 c2 c3 β1 β2 β3 Size Standard Robust

2 2 2 0 0 0
0.10
0.05
0.01

0.0309
0.0070

0

0.0858
0.0372
0.0060

2 2 0.1 0 0 0
0.10
0.05
0.01

0.4310
0.3864
0.3171

0.0745
0.0335
0.0047

2 2 0.1 0 -1 1
0.10
0.05
0.01

0.9739
0.9615
0.9238

0.7961
0.6978
0.4660

2 2 0.1 0 -3 3
0.10
0.05
0.01

1
1
1

0.9840
0.9684
0.8946

2 0.1 0.1 0 0 0
0.10
0.05
0.01

0.6581
0.6104
0.5009

0.0676
0.0312
0.0043

2 0.1 0.1 0 -1 1
0.10
0.05
0.01

0.6068
0.5794
0.5188

0.4059
0.2709
0.0932

2 2 2 0 -1 1
0.10
0.05
0.01

0.9531
0.9239
0.8251

0.9958
0.9921
0.9656
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5 Empirical Applications: Additional Tables

Table S.6: Angrist and Lavy (1999): Test of equality of RD effect across groups at 5%
significance level for different values of the bandwidth

reject H0 of equality?
bandwidth estimated effect robust standard

religious secular
6 −0.0524 −0.1131 no no
8 −0.0540 −0.0985 no no
10 −0.0381 −0.0756 no no
12 −0.0170 −0.0364 no no
14 −0.0274 −0.0363 no no
16 −0.0035 −0.0382 no no
18 0.0052 −0.0505 yes no
20 0.0107 −0.0523 yes no

<= 10% disadvantaged > 10% disadvantaged
6 −0.0390 −0.0909 no no
8 −0.0626 −0.0469 no no
10 −0.0387 −0.0488 no no
12 −0.0259 −0.0192 no no
14 −0.0343 −0.0226 no no
16 −0.0290 −0.0079 no no
18 −0.0368 −0.0037 no no
20 −0.0360 −0.0008 yes no
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Table S.7: Urquiola and Verhoogen (2009): Estimated discontinuity in the treatment vari-
able for the first cutoff and F -statistics for testing for potential size distortions for various
values of the bandwidth

bandwidth discontinuity estimates F -statistic

6 1.388 0.8226
8 −0.387 0.0812
10 −3.107 6.8069
12 −4.779 20.684
14 −6.092 41.037
16 −7.870 84.236
18 −8.934 129.80
20 −9.968 188.43

Note: Silverman’s normal rule-of-thumb is only 8.59 and the optimal bandwidth suggested by Imbens
and Kalyanaraman (2012) is 9.67. The scores are given in terms of standard deviations from the
mean.
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