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Abstract

In fuzzy regression discontinuity (FRD) designs, the treatment effect is iden-

tified through a discontinuity in the conditional probability of treatment assign-

ment. We show that when identification is weak (i.e. when the discontinuity

is of a small magnitude) the usual t-test based on the FRD estimator and its

standard error suffers from asymptotic size distortions as in a standard instru-

mental variables setting. This problem can be especially severe in the FRD

setting since only observations close to the discontinuity are useful for esti-

mating the treatment effect. To eliminate those size distortions, we propose

a modified t-statistic that uses a null-restricted version of the standard error

of the FRD estimator. Simple and asymptotically valid confidence sets for the
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treatment effect can be also constructed using this null-restricted standard er-

ror. An extension to testing for constancy of the regression discontinuity effect

across covariates is also discussed.

JEL Classification: C12; C13; C14

Keywords: Nonparametric inference; regression discontinuity design; treatment
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1 Introduction

Since the late 1990s regression discontinuity (RD) and fuzzy regression discontinuity

(FRD) designs have been of growing importance in applied economics.1 Hundreds of

recent applied papers have used RD, and in many cases FRD designs.2 Around the

same time, the seminal works of Bound et al. (1995) and Staiger and Stock (1997)

made weak identification in an instrumental variables (IV) context an important

consideration in applied work (see, Stock et al. (2002) and Andrews and Stock (2007)

for surveys of the literature). However, despite the close parallel between an IV

setting and the FRD design (see Hahn et al. (2001)) there has been no theoretical or

practical attempt to deal with weak identification in the FRD design more broadly.

To get a sense of the practical importance of weak identification in the FRD

design, we have examined a sample of influential applied papers that use the design.

We then apply the F -statistic standards discussed below to see how many of these
1There is extensive theoretical work on RD and FRD designs. A few examples include Hahn

et al. (1999, 2001); Porter (2003); Buddelmeyer and Skoufias (2004); McCrary (2008); Frölich (2007);
Frölich and Melly (2008); Otsu et al. (forthcoming); Imbens and Kalyanaraman (2012); Calonico
et al. (2014); Arai and Ichimura (2013); Papay et al. (2011); Imbens and Zajonc (2011); Dong and
Lewbel (2010); Fe (2012). See Van der Klaauw (2008) and Lee and Lemieux (2010) for a review of
much of this literature.

2For example, as of July 18th, 2013 Imbens and Lemieux (2008) review of RD and FRD best
practices was cited in 990 articles according to Google Scholar, with 372 of these articles explicitly
considering FRD.
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papers may suffer from a weak identification problem. We find that in about half of

the papers where enough information is reported to compute the F -statistic, weak

identification appears to be a problem in at least one of the empirical specifications.3

We take this as evidence that weak identification is a serious concern in the applied

FRD design literature. Since it is a matter of practical importance, we examine weak

identification in the context of the FRD design, demonstrate the problems that arise,

and propose uniformly valid testing procedures for treatment (RD) effects.

In this paper, we show that the local-to-zero analytical framework common in the

weak instruments literature can be adapted to FRD, and when identification is weak,

we show that the usual t-test based on the FRD estimator and its standard error

suffers from asymptotic size distortions. The usual confidence intervals constructed

as estimate ± constant ⇥ standard error are also invalid because their asymptotic

coverage probability can be below the assumed nominal coverage when identification

is weak. We rely on novel techniques recently developed in the literature on uniform

size properties of tests and confidence sets (Andrews et al., 2011) to formally justify

our local-to-zero framework. Unlike the framework used in the weak IV literature,

ours depends not only on the sample size but also on a smoothing parameter (the

bandwidth).

We suggest a simple modification to the t-test that eliminates the asymptotic size

distortions caused by weak identification. Unlike the usual t-statistic, the modified

t-statistic uses a null-restricted version of the standard error of the FRD estimator.

The modified statistic can be used with standard normal critical values for two-sided

testing. For two-sided testing, the proposed test is equivalent to the Anderson-Rubin

test (Anderson and Rubin, 1949) adopted in the weak IV literature (Staiger and
3For the procedure followed to obtain the sample of papers, see the online Supplement, Section

1.
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Stock, 1997). For one-sided testing, the modified t-statistic has to be used with non-

standard critical values that must be simulated on a case-by-case basis following the

approach of Moreira (2001, 2003).

We discuss how to evaluate the magnitude of potential size distortions in practice

following the approach of Stock and Yogo (2005). The strength of identification is

measured by the concentration parameter, which in the case of FRD depends on

the magnitude of the discontinuity in the treatment variable and on the density of

the assignment variable (the variable that determines treatment assignment). The

magnitude of potential size distortions can be tested by testing hypotheses about

the concentration parameter with non-central �2
1 critical values using the F -statistic,

which is an analogue of the first-stage F -statistic in IV regression. Surprisingly, we

find critical values that are much higher than would be required in a simple IV setting.

When the F -statistic is only around 10, which is often used as a threshold value for

weak/strong identification in the IV literature, a two-sided test with nominal size of

5% is in fact a 13.6% test, and a 5% one-sided test is in fact a 16.9% test. Nearly

zero (under 0.5%) size distortions of a 5% two-sided test correspond to the values of

the F -statistic above 93.

Asymptotically valid confidence sets for the treatment effect can be obtained by

inverting tests based on the modified t-statistic. Since the FRD is an exactly iden-

tified model, these confidence sets are easy to compute, as their construction only

involves solving a quadratic equation.4 These confidence sets are expected to be as
4Most of the literature on weak instruments deals with the case of over identified models (see,

e.g., Andrews and Stock (2007)). In exactly identified models, the approach suggested by Anderson
and Rubin (1949) results in efficient inference if instruments turn out to be strong and remains valid
if instruments are weak. However, in over identified models, Anderson and Rubin’s tests are no
longer efficient even when instruments are strong. Several papers (Kleibergen, 2002; Moreira, 2003;
Andrews et al., 2006) proposed modifications to Anderson and Rubin’s basic procedure to gain back
efficiency in over identified models. Since the FRD design is an exactly identified model, we can
adapt Anderson and Rubin’s approach without any loss of power.
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informative as the standard ones, when identification is strong. However, unlike the

usual confidence intervals, the confidence sets we propose can be unbounded with

positive probability. This property is expected from valid confidence sets in the situ-

ations with local identification failure and an unbounded parameter space (see Dufour

(1997)).5

We also discuss testing whether the RD effect is homogeneous over differing values

of some covariates. The proposed testing approach is designed to remain asymptot-

ically valid when identification is weak. This is achieved by building a robust con-

fidence set for a common RD effect across covariates. The null hypothesis of the

common RD effect is rejected when that confidence set is empty.

To illustrate how our proposed confidences sets may differ from the standard ones

in practice, we compare the results of applying the standard confidence sets and the

proposed confidence sets in two separate applications that use the FRD design to

estimate the effect of class size on student achievement. Our main finding is that, as

weak identification becomes more likely, the standard confidence sets and the weak

identification robust confidence sets become increasingly divergent. Interestingly, in

a number of cases the robust confidence sets provide more informative answers than

the standard ones. More generally, the empirical applications, along with a Monte

Carlo study reported in an online supplement, suggest that our simple and robust

procedure for computing confidence sets performs well when identification is either

strong or weak.

The rest of the paper proceeds as follows. In Section 2 we describe the FRD model,
5In a recent paper, Otsu et al. (forthcoming), propose empirical likelihood based inference for

the RD effect. Using the profile empirical likelihood function, they propose confidence sets for
the RD effect, which are expected to be robust against weak identification. However, they do
not provide a formal analysis of the weak identification. While their method does not involve
variances estimation and for that reason can enjoy better higher-order properties than our approach,
it requires computation of the empirical likelihood function numerically and is computationally more
demanding.
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derive the uniform asymptotic size of usual t-tests for FRD, discuss size distortions and

testing for potential size distortions, and describe weak-identification-robust inference

for FRD. Section 3 discusses robust testing for constancy of the RD effect across

covariates. We present our empirical applications in Section 4. The online Supplement

(Feir et al., 2015) contains additional materials including the proofs and the Monte

Carlo results.

2 Theoretical results

2.1 The model, estimation, and standard inference approach

In RD designs, the observed outcome variable y
i

is modeled as y
i

= y0i + x
i

�
i

, where

x
i

is the treatment indicator variable, y0i is the outcome without treatment, and �
i

is

the random treatment effect for observation i.6 The treatment assignment depends

on another observable assignment variable, z
i

through E(x
i

|z
i

= z). The main feature

in this framework is that E (x
i

|z
i

= z) is discontinuous at some known cutoff point

z0, while E (y0i|zi) is assumed to be continuous at z0.

Assumption 1. (a) lim
z#z0 E (x

i

|z
i

= z) 6= lim
z"z0 E (x

i

|z
i

= z).

(b) lim
z#z0 E (y0i|zi = z) = lim

z"z0 E (y0i|zi = z).

For binary x
i

, when |lim
z"z0 E(x

i

|z
i

= z)� lim
z#z0 E(x

i

|z
i

= z)| = 1 we have a

sharp RD design, and a fuzzy design otherwise. When x
i

is a continuous treatment

variable, the design is sharp if x
i

is a deterministic function of z
i

, and fuzzy otherwise.

The focus of this paper is fuzzy designs, and the main object of interest is the RD
6If xi is binary, it takes on value one if the treatment is received and zero otherwise. When there

are treatments of different intensity, xi may be non-binary.
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effect:

� = (y+ � y�)/(x+ � x�), (1)

where y+ = lim
z#z0 E (y

i

|z
i

= z), y� = lim
z"z0 E (y

i

|z
i

= z), and x+ and x� are de-

fined similarly with y
i

replaced by x
i

. The exact interpretation of � depends on the

assumptions that the econometrician is willing to make in addition to Assumption

1. As discussed in Hahn et al. (2001), if �
i

and x
i

are assumed to be independent

conditional on z
i

, then � captures the average treatment effect (ATE) at z
i

= z0:

� = E (�
i

|z
i

= z0). When x
i

is binary and under an alternative set of conditions,

which allow for dependence between x
i

and �
i

, Hahn et al. (2001) show that the RD

effect captures the local ATE (LATE) or ATE for compliers at z0, where compliers

are observations for which x
i

switches its value from zero to one when z
i

changes from

z0 � e to z0 + e for all small e > 0.7

Regardless of its interpretation, the RD effect is estimated by replacing the un-

known population objects in (1) with their estimates. Following Hahn et al. (2001),

it is now a standard approach to estimate y+, y�, x+, and x� using local linear kernel

regression. Let K(·) and h
n

denote the kernel function and bandwidth respectively.

For estimation of y+, the local linear regression is

⇣
â
n

, b̂
n

⌘
= argmin

a,b

nX

i=1

(y
i

� a� (z
i

� z0) b)
2 K

✓
z
i

� z0
h
n

◆
1 {z

i

� z0} , (2)

and the local linear estimator of y+ is given by ŷ+
n

= â
n

. The local linear estimator

for y� can be constructed analogously by replacing 1{z
i

� z0} with 1{z
i

< z0} in (2).

Similarly, one can estimate x+ and x� by replacing y
i

with x
i

. Let ŷ�
n

, x̂+
n

, and x̂�
n

denote the local linear estimators of y�, x+, and x� respectively. The corresponding
7See the discussion on page 204 of their paper.
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estimator of � is given by

�̂
n

= (ŷ+
n

� ŷ�
n

)/(x̂+
n

� x̂�
n

).

The asymptotic properties of the local linear estimators and �̂
n

are discussed in

Hahn et al. (1999) and Imbens and Lemieux (2008). We assume that the following

conditions are satisfied.

Assumption 2. (a) K(·) is continuous, symmetric around zero, non-negative, and

compactly supported second-order kernel.

(b) {(y
i

, x
i

, z
i

)}n
i=1 are iid; y

i

, x
i

, z
i

have a joint distribution F such that:

(i) f
z

(·) (the marginal PDF of z
i

) exists and is bounded from above, bounded

away from zero, and twice continuously differentiable with bounded deriva-

tives on N
z0 (a small neighborhood of z0).

(ii) E(y
i

|z
i

) and E(x
i

|z
i

) are bounded on N
z0 and twice continuously differen-

tiable with bounded derivatives on N
z0\{z0}; lime#0

d

p

dz

pE(y
i

|z
i

= z0±e) and

lim
e#0

d

p

dz

pE(x
i

|z
i

= z0 ± e) exist for p = 0, 1, 2.

(iii) �2
y

(z
i

) = V ar(y
i

|z
i

) and �2
x

(z
i

) = V ar(x
i

|z
i

) are bounded from above and

bounded away from zero on N
z0; lim

e#0 �
2
y

(z0 ± e), lim
e#0 �

2
x

(z0 ± e), and

lim
e#0 �xy

(z0 ± e) exist, where �
xy

(z
i

) = Cov(x
i

, y
i

|z
i

); |⇢
xy

|  ⇢̄ for some

⇢̄ < 1, where ⇢
xy

= �
xy

/(�
x

�
y

), �
xy

= lim
e#0(�xy

(z0+e)+�
xy

(z0�e)), and

�2
x

and �2
y

defined similarly with the conditional covariance replaced by the

conditional variances of x
i

and y
i

respectively.

(iv) For some � > 0, E
�
|y

i

� E(y
i

|z
i

)|2+�

�� z
i

�
and E

�
|x

i

� E(x
i

|z
i

)|2+�

�� z
i

�

are bounded on N
z0 .
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(c) As n ! 1,
p
nh

n

h2
n

! 0 and nh3
n

! 1.

Remark. 1) The smoothness conditions imposed in Assumption 2(b) are standard

for kernel estimation except for the left/right limit conditions in parts (ii) and (iii),

which are due to the discontinuity design and have been used in Hahn et al. (1999). 2)

Asymptotic normality of the local linear estimators is established using Lyapounov’s

CLT, and part (iv) of Assumption 2(b) can be used to verify Lyapounov’s condition

(see Davidson, 1994, Theorem 23.12, p. 373). 3) With twice differentiable functions,

the bias of the local linear estimators is of order h2
n

even near the boundaries. The

condition
p
nh

n

h2
n

! 0 in Assumption 2(c) is an under-smoothing condition, which

makes the contribution of the bias term to the asymptotic distribution negligible.

The condition nh3
n

! 1 ensures that the variance of the local linear estimator tends

to zero. Assumption 2(c) is satisfied if the bandwidth is chosen according to the rule

h
n

= constant ⇥ n�r with 1/5 < r < 1/3.

It is convenient for our purposes to present the asymptotic properties of the local

linear estimators and the FRD estimator as follows. Define8

k =

´1
0

�´1
0 s2K (s) ds� u

´1
0 sK (s) ds

�2
K2 (u) du

⇣´1
0 u2K (u) du

´1
0 K (u) du�

�´1
0 uK (u) du

�2⌘2 .

For �y = y+�y�, c�y
n

= ŷ+
n

� ŷ�
n

, and similarly defined �x and c�x
n

, by Assumption

2 and Lyapounov’s CLT we have:

p
nh

n

0

B@
c�y

n

��y

c�x
n

��x

1

CA !
d

s
k

f
z

(z0)

0

B@
�
y

Y

�
x

X

1

CA ,

8The constant k is known as it depends only on the kernel function. In the case of asymmetric
kernels, we will have two different constants for the left and right estimators, with the bounds of
integration replaced by (�1, 0] for the left estimators.
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where Y and X are two bivariate normal variables with zero means, unit variances

and correlation coefficient ⇢
xy

. This in turn implies that under standard asymptotics,
p
nh

n

(�̂
n

��) !
d

N (0, k�2(�)/(f
z

(z0)(�x)2)) , where �2(b) = �2
y

+b2�2
x

�2b�
xy

. The

last result holds due to identification Assumption 1(a), i.e. only when �x 6= 0 and is

fixed.

The asymptotic variance �2
y

can be consistently estimated by

�̂2
y,n

=
1

f̂
z,n

(z0)

1

nh
n

nX

i=1

�
y
i

� ŷ+
n

1{z
i

� z0}� ŷ�
n

1{z
i

< z0}
�2

K

✓
z
i

� z0
h

◆
,

where f̂
z,n

(z0) is the kernel estimator of f
z

(z0): f̂
z,n

(z0) = (nh
n

)�1
P

n

i=1 K((z
i

�

z0)/hn

). Consistent estimators of �2
x

and �
xy

can be constructed similarly by replacing

(y
i

� ŷ+
n

1{z
i

� z0} � ŷ�
n

1{z
i

< z0})2 with (x
i

� x̂+
n

1{z
i

� z0} � x̂�
n

1{z
i

< z0})2 and

(x
i

� x̂+
n

1{z
i

� z0} � x̂�
n

1{z
i

< z0})(yi � ŷ+
n

1{z
i

� z0} � ŷ�
n

1{z
i

< z0}) respectively.

Hence, a consistent estimator of �2(b) can be constructed as

�̂2
n

(b) = �̂2
y,n

+ b�̂2
x,n

� 2b�̂
xy,n

. (3)

A common inference approach for the FRD effect is based on the usual t-statistic.

Thus, when testing H0 : � = �0 one typically computes

T
n

(�0) =
p

nh
n

⇣
�̂
n

� �0

⌘
/

q
k�̂2

n

(�̂
n

)/(f̂
z,n

(z0)(c�x
n

)2)

and compares it with standard normal critical values, as T
n

(�) !
d

N(0, 1), when

�x 6= 0 and is fixed. Confidence intervals for � are constructed by collecting all

values �0 for which H0 : � = �0 cannot be rejected using a test based on T
n

(�0).
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2.2 Weak identification in FRD

Weak identification is a finite-sample problem, which occurs when the noise due to

sampling errors is of the same magnitude or even dominates the signal in estimation

of a model’s parameters. In such cases, the asymptotic normality result T
n

(�) !
d

N(0, 1) provides a poor approximation to the actual distribution of the t-statistic,

and as a result inference may be distorted.

Assuming that H0 : � = �0, we can re-write the t-statistic as

T
n

(�) =

p
nh

n

⇣
c�y

n

� �c�x
n

⌘

q
k�̂2

n

(�̂
n

)/f̂
z,n

(z0)
⇥ sign

⇣
c�x

n

⌘
. (4)

When testing H0 against two-sided alternatives, one uses the absolute value of T
n

(�),

which eliminates the sign term. Since under standard (fixed distribution) asymptotics
p
nh

n

⇣
c�y

n

� �c�x
n

⌘
!

d

N(0, k�2(�)/f
z

(z0)), the usual t-test has no size distortions

as long as �̂
n

is consistent and �̂2
n

(�̂
n

) approximates �2(�0) very well. Define �Y
n

=

(f
z

(z0)/k)1/2(nhn

)1/2(c�y
n

� �y) and �X
n

= (f
z

(z0)/k)1/2(nhn

)1/2(c�x
n

� �x). We

can now write

�̂
n

� � =
�Y

n

� ��X
n

�X
n

+ (f
z

(z0)/k)1/2(nhn

)1/2�x
. (5)

Note that in the above expression, estimation errors �Y
n

and �X
n

represent the noise

components, while the signal component is given by (nh
n

)1/2�x. Since the noise terms

have bounded variances, the signal dominates the noise as long as (nh
n

)1/2�x ! 1.

In this case, �̂
n

!
p

�. If, however, lim
n!1 |(nh

n

)1/2�x| < 1, the signal and noise

are of the same magnitude, which results in inconsistency of the FRD estimator and

weak identification.

Thus, similarly to the weak IVs literature (Staiger and Stock, 1997), it is appropri-

ate to model weak identification by assuming that �x is inversely related to the square
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root of the sample size. However, the kernel estimation framework and presence of the

bandwidth, which is chosen by the econometrician, require some adjustments. Sup-

pose one models weak identification as �x ⇠ 1/(ng
n

)1/2, for some sequence g
n

! 0

as n ! 1. In this case, the econometrician can obtain consistency of �̂
n

and resolve

weak identification simply by choosing h
n

so that h
n

/g
n

! 1.9 Hence, the worst case

scenario, in which the econometrician cannot resolve weak identification by tweaking

the bandwidth, occurs when g
n

= h
n

, i.e. �x ⇠ 1/(nh
n

)1/2.

This idea can be formalized using the results obtained in the recent literature

on uniform size properties of tests and confidence sets: Andrews and Guggenberger

(2010), Andrews and Cheng (2012), and Andrews et al. (2011). The latter paper

provides a general framework of establishing uniform size properties of tests and

confidence sets. To describe this framework, let S
n

be a test statistic with exact finite-

sample distribution (in a sample of size n) determined by � 2 ⇤. Note that � may

include infinite dimensional components such as distribution functions. Let cr
n

(↵)

denote a possibly data-dependent critical region for nominal significance level ↵. The

test rejects a null hypothesis when S
n

2 cr
n

(↵), and the rejection probability is given

by RP
n

(�) = P
�

(S
n

2 cr
n

(↵)), where subscript � in P
�

indicates that the probability

is computed for a given value of � 2 ⇤. The exact size is defined as ExSz
n

=

sup
�2⇤ RP

n

(�). Note that ExSz
n

captures the maximum rejection probability for

any combination of parameters � (the worst case scenario). In large samples, the

exact size is approximated by asymptotic size AsySz = lim sup
n!1 sup

�2⇤ RP
n

(�).

Contrary to the usual point-wise asymptotic approach, AsySz is determined by taking

supremum over the parameter space before taking limit with respect to n. It has been

argued in many papers that controlling AsySz is crucial for ensuring reliable inference
9This situation resembles so-called nearly-weak or semi-strong identification, see Hahn and Kuer-

steiner (2002), Caner (2009), Antoine and Renault (2009, 2012), and Antoine and Lavergne (forth-
coming).
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when test statistics have discontinuous asymptotic distribution, i.e. when point-wise

asymptotic distribution is discontinuous in a parameter.10 In what follows, we rely

on the following result of Andrews et al. (2011):11

Lemma 3 (Andrews et al. (2011)). Let {d
n

(�) : n � 1} be a sequence of functions,

where d
n

: ⇤ ! RJ . Define D = {d 2 {R [ {±1}}J : d
pn(�pn) ! d for some

subsequence {p
n

} of {n} and some sequence {�
pn 2 ⇤}. Suppose that for any sub-

sequence {p
n

} of {n} and any sequence {�
pn 2 ⇤} for which d

pn(�pn) ! d 2 D, we

have that RP
pn(�pn) ! RP (d) for some function RP (d) 2 [0, 1]. Then, AsySz =

sup
d2D RP (d).

To apply Lemma 3, we define:

�1 =

✓
f
z

(z0)

k

◆1/2 |�x|
�
x

, �2 = ⇢
xy

, �3 = ��
x

/�
y

. (6)

We define �4 = F , where F is the joint distribution of x
i

, y
i

, z
i

and is such that, given

�1 2 R+, �2 2 [�⇢̄, ⇢̄], and �3 2 R, the three equations in (6) hold. Note that �4

is an infinite-dimensional parameter that depends on �1,�2, and �3. As explained

in Andrews et al. (2011, pp. 8-9), d
n

(�) is chosen so that when d
n

(�
n

) converges to

d 2 D for some sequence of parameters {�
n

2 � : n � 1}, the test statistic converges

to some limiting distribution, which might depend on d. In view of (4) and (5), we

therefore define:

d
n,1(�) =

p
nh

n

�1, d
n,2(�) = �2, d

n,3(�) = �3. (7)

While �4 = F affects the finite-sample distribution of the test statistic, it does not en-
10On the importance of uniform size, see for example Imbens and Manski (2004, p. 1848), Miku-

sheva (2007), and references in Andrews et al. (2011).
11Lemma 3 combines Assumption B and Theorems 2.1 and 2.2 in Andrews et al. (2011).
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ter its asymptotic distribution, and therefore can be dropped from d
n

(�) as discussed

in Andrews et al. (2011, p. 8). Hence, D = {R+ [ {+1}}⇥ [�⇢̄, ⇢̄]⇥ {R [ {±1}}.

Next, we describe the asymptotic size of tests for FRD based on the usual t-

statistic and standard normal critical value. Let z
⌫

denote the ⌫-th quantile of the

standard normal distribution.

Theorem 4. Suppose that Assumption 2 holds. Let X ,Y be two bivariate normal

variables with zero means, unit variances, and correlation d2. Define

T
d1,d2,d3 =

Y � d3Xr
1 +

⇣
Y+d3d1
X+d1

⌘2

� 2d2
Y+d3d1
X+d1

⇥ sign(X + d1).

(a) For tests that reject H0 : � = �0 in favor of H1 : � 6= �0 when |T
n

(�0)| > z1�↵/2,

AsySz = sup
d12R+[{+1},d22[0,⇢̄],d3=R[{±1} P (|T

d1,d2,d3 | > z1�↵/2).

(b) For tests that reject H0 : �  �0 in favor of H1 : � > �0 when T
n

(�0) > z1�↵

,

AsySz = sup
d12R+[{+1},d22[�⇢̄,⇢̄],d3=R[{±1} P (T

d1,d2,d3 > z1�↵

).

Remark. A commonly used measure of identification strength is the so-called concen-

tration parameter.12 In our framework, the concentration parameter is given by d2
n,1,

where d2
n,1 ! 1 corresponds to strong (or semi-strong) identification, and identifica-

tion is weak when the limit of d2
n,1 is finite. As it is apparent from the expressions for

�1 and d
n,1 in (6) and (7), the concentration parameter and, therefore, the strength

of identification depend not only on the size of discontinuity in treatment assignment

�x, but also on f
z

(z0), the PDF of the assignment variable at z0. Hence, smaller

values of f
z

(z0) would correspond to a more severe weak identification problem.
12On the importance of the concentration parameter in IV estimation, see for example, Stock and

Yogo (2005).
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For any permitted values of d2 and d3, when d1 = 1 we have T1,d2,d3 ⇠ N(0, 1).

Thus, the asymptotic size of tests based on T
n

(�0) is equal to nominal size ↵ under

strong or semi-strong identification. When d1 < 1, it is straightforward to compute

AsySz numerically. To compute asymptotic rejection probabilities given d1, d2, d3,

first using bivariate normal PDFs one integrates numerically 1(|T
d1,d2,d3 | > z1�↵/2) or

1(T
d1,d2,d3 > z1�↵

) calculated for different realized values of Y ,X . Rejection probabil-

ities then can be numerically maximized over d’s.

Table 1: Maximal asymptotic rejection probabilities for different values of the concen-
tration parameter (d21) of one- and two-sided t-tests for FRD with significance level
↵, and non-central �2

1 critical values for testing hypotheses about the concentration
parameter at significance level ⌧ .

maximal rejection prob. for FRD

one-sided two-sided non-central �

2
1(d

2
1) critical values

d

2
1 ↵ = 0.05 ↵ = 0.01 ↵ = 0.05 ↵ = 0.01 ⌧ = 0.05 ⌧ = 0.01

10�4
0.906 0.885 0.893 0.877 3.84 6.64

0.01 0.691 0.636 0.664 0.622 3.88 6.70

0.25 0.363 0.294 0.322 0.261 4.76 8.08

1.0 0.221 0.153 0.187 0.134 7.00 11.06

4.0 0.144 0.086 0.113 0.070 13.28 18.72

9.0 0.119 0.062 0.099 0.050 21.57 28.37

16.0 0.106 0.051 0.076 0.038 31.87 40.03

25.0 0.097 0.045 0.067 0.031 44.15 53.67

36.0 0.091 0.037 0.060 0.029 58.45 69.34

49.0 0.086 0.033 0.056 0.023 74.73 86.98

64.0 0.081 0.032 0.053 0.022 93.03 106.63

81.0 0.078 0.029 0.052 0.022 113.31 128.28

102 0.076 0.029 0.052 0.020 135.60 151.94

252 0.061 0.020 0.051 0.015 709.96 746.72

502 0.056 0.014 0.051 0.012 2667.17 2738.06

Table 1 reports maximal rejection probabilities of one- and two-sided tests based

on the usual t-statistic.13 It shows that AsySz approaches one as the concentration
13The rejection probabilities reported in Table 1 were computed by numerical integration using

quad2d function in Matlab. Integration bounds for normal variables were set to [�7, 7], and the
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parameter approaches zero. Size distortions decrease monotonically as the concentra-

tion parameter increases. In the case of two-sided testing, nearly zero size distortions

(under 0.5%) correspond to the concentration parameter of order d21 � 64 for asymp-

totic 5% tests, and d21 � 502 for asymptotic 1% tests. The table also shows that

one-sided tests suffer from more substantial size distortions than two-sided tests,

which is due to asymmetries in the distribution of T
d1,d2,d3 .

2.3 Testing for potential size distortions

Following the approach of Stock and Yogo (2005), Table 1 can be used for testing a null

hypothesis about the largest potential size distortion against an alternative hypothesis

under which the largest potential size distortion does not exceed a certain pre-specified

level. Suppose that the econometrician decides that identification is strong enough

if, in the case of 1% two-sided testing, the maximal rejection probability does not

exceed 5%. Thus, the econometrician effectively adopts tests with 5% significance

level, however uses the 1% standard normal critical value. According to the results

in Table 1, the corresponding null hypothesis and its alternative in this case can be

stated in terms of the concentration parameter d21 as HW

0 : d21  9 and HS

1 : d21 > 9

respectively. A test of HW

0 can be based on the estimator of discontinuity �x. Define

F
n

=
nh

n

(c�x
n

)2

�̂2
x,n

k/f̂
z,n

(z0)
= ((�X

n

/�
x

) + d
n,1)

2 + o
p

(1). (8)

As long as the concentration parameter is finite, F
n

!
d

�2
1(d

2
1), a non-central �2

1

distribution with non-centrality parameter d21. Let �2
1,1�⌧

(d21) denote the (1 � ⌧)-th

quantile of the �2
1(d

2
1) distribution. Since size distortions are monotonically decreasing

rejection probabilities were maximized over the following grids of values: from �0.99 to 0.99 at 0.01
intervals for d2, and from �1000 to 1000 at 0.5 intervals for d3.
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when the concentration parameter increases, an asymptotic size ⌧ test of HW

0 should

reject it when F
n

> �2
1,1�⌧

(d21).

Non-central �2
1 critical values are reported in the last two columns of Table 1

for selected values of the concentration parameter and ⌧ = 0.05, 0.01. For example,

HW

0 : d21  9 should be rejected in favor of HS

1 : d21 > 9 by a 5% test when F
n

> 21.57.

In the case of 5% two-sided testing of �, one needs the concentration parameter of at

least 64 to ensure that size distortions are under 0.5%. In that case, a 5% test should

reject the null hypothesis of weak identification if F
n

> 93.03.

Note that the critical values in Table 1 substantially exceed the rule-of-thumb of

10, which is often used in the literature as a threshold value for weak IVs. According

to our calculations, with an F -statistic of only 10, one cannot reject HW

0 : d21  1.512

at 5% significance level. However, a concentration parameter of 1.512 corresponds to

maximal rejection probabilities of 16.9% and 13.6% for 5% one-sided and two-sided

tests respectively.

The results from Table 1 can also be used for designing valid tests (for the FRD

effect �) based on usual t-statistics in combination with somewhat larger than usual

critical values. For example, suppose one is interested in a 5% two-sided test about

�, and rejects the null hypothesis when F
n

> 21.57 and |T
n

(�0)| exceeds the 1%

standard normal critical value. According to Table 1, if the concentration parameter

d21 � 9, the asymptotic size does not exceed 5%. On the other hand, if d21  9,

lim
n!1 P (F

n

> 21.75)  0.05. Hence, overall this test has an asymptotic 5% sig-

nificance level. Intuitively, such a test is valid because the null-hypothesis for the

F -pre-test assumes size distortions, and one proceeds using the t-statistic only if it

is rejected, i.e. if the concentration parameter is found to be large enough. Note,

however, that the procedure is conservative. Furthermore, passing the F -test does

not completely safeguard against size distortions, and the usual t-statistic must be
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used with somewhat larger critical values.

Although the F -test provides useful guidance on the potential magnitude of size

distortions, practitioners should not solely rely on this test to decide whether it is

worth proceeding with the estimation. With this in mind, we present a robust in-

ference approach in the next section that always yields valid confidence intervals

regardless of the strength of identification and does not rely on any pre-tests.

2.4 Weak-identification-robust inference for FRD

A common approach adopted in the weak IVs literature is to use weak-identification-

robust statistics to test hypotheses about structural parameters directly, instead of

using their estimates and standard errors. The Anderson-Rubin (AR) statistic (An-

derson and Rubin, 1949; Staiger and Stock, 1997) is often used for that purpose. In

the context of IV regression, the AR statistic can be used to test H0 : � = �0 against

H1 : � 6= �0 by testing whether the null-restricted residuals computed for � = �0 are

uncorrelated with the instruments.

In our case, the structural parameter is defined by (1). Hence, to test H0 : � = �0

against H1 : � 6= �0, following the AR approach we can test instead H0 : �y��0�x =

0 against H1 : �y � �0�x 6= 0. A test, therefore, can be based on

nh
n

⇣
c�y

n

� �0
c�x

n

⌘2

k�̂2
n

(�0)/f̂z,n(z0)
=
��TR

n

(�0)
��2 ,

where TR

n

(�0) denotes a modified or null-restricted version of the usual t-statistic:

TR

n

(�0) =
p

nh
n

⇣
�̂
n

� �0

⌘
/

q
k�̂2

n

(�0)/(f̂z,n(z0)(c�x
n

)2),

and the equality holds by (4). Unlike the usual t-statistic, TR

n

(�0) uses the null-
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restricted value �0 instead of �̂
n

when computing the standard error. In view of the

discussion at the beginning of Section 2.2 and since the asymptotic distribution of

|TR

n

(�0)| does not depend on the concentration parameter, replacing �̂2
n

(�̂
n

) by �̂2
n

(�0)

eliminates size distortions.

Theorem 5. Suppose that Assumption 2 holds. Tests that reject H0 : � = �0 in favor

of H1 : � 6= �0 when |TR

n

(�0)| > z1�↵/2 have AsySz equal to ↵.

Consider now a one-sided testing problem H0 : �  �0 vs. H1 : � > �0. Again,

one can base a test on the null-restricted statistic. In this case under H0 when

� = �0 we have TR

n

(�) = (�Y
n

� ��X
n

) ⇥ sign (�X
n

± d
n,1) /�(�) + o

p

(1). When

identification is strong or semi-strong, d
n,1 ! 1, and the sign term is constant

with probability one. Since the first term is asymptotically N(0, 1), TR

n

(�) is also

asymptotically N(0, 1), and one could use standard normal critical values. On the

other hand, when identification is weak and the concentration parameter is small, the

sign term is random, and therefore, the null asymptotic distribution of the product

differs from the standard normal. To obtain an asymptotically uniformly valid test,

one can use data-dependent critical values that automatically adjust to the strength

of identification. Such critical values can be generated using the approach of Moreira

(2001, 2003) by conditioning on a statistic that is i) asymptotically independent of

�Y
n

� ��X
n

, and ii) summarizes the information on the strength of identification.14

Define S
n

= (�Y
n

� ��X
n

)/�(�) and Q = �X
n

/�
x

� (�
xy

� ��2
x

)S
n

/(�
x

�(�)),

so that, when � = �0, TR

n

(�) = S
n

⇥ sign[Q
n

± d
n,1 + (�

xy

� ��2
x

)S
n

/(�
x

�(�))] +

o
p

(1). When identification is weak, S
n

and Q
n

are asymptotically independent by

construction, while S
n

!
d

N(0, 1). Therefore one can construct data-dependent
14See also Andrews et al. (2006) and Mills et al. (2014).
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critical values as follows. First, compute

Q̂
n

(�0) =

p
nh

n

c�x
nq

k�̂2
x,n

/f̂
z,n

(z0)
�

�̂
xy,n

� �0�̂
2
x,n

�̂
x,n

�̂
n

(�0)

0

@
p
nh

n

⇣
c�y

n

� �0
c�x

n

⌘

q
k�̂2

n

(�0)/f̂z,n(z0)

1

A .

Second, simulate M independent N(0, 1) random variables {S1, . . . ,SM

} for some

large M . Third, for m = 1, . . .M compute

T̂ R

n,m

(�0, Q̂n

(�0)) = S
m

⇥ sign

✓
Q̂

n

(�0) +
�̂
xy,n

� �0�̂
2
x,n

�̂
x,n

�̂
n

(�0)
S
m

◆
.

Let ĉv
n,1�↵

(�0, Q̂n

(�0)) denote the (1 � ↵)-th quantile of the sample distribution of

{T̂ R

n,m

(�0, Q̂n

(�0)) : m = 1, . . . ,M}. To obtain an asymptotically uniformly valid

one-sided test, one can use ĉv
n,1�↵

(�0, Q̂n

(�0)) as the critical value.

Theorem 6. Suppose that Assumption 2 holds. Tests that reject H0 : �  �0 in favor

of H1 : � > �0 when TR

n

(�0) > ĉv
n,1�↵

(�0, Q̂n

(�0)) have AsySz equal to ↵.

Weak-identification-robust confidence sets for � can be constructed by inversion

of the robust tests. For example, a confidence set for � with asymptotic coverage

probability 1�↵ can be constructed by collecting all values �0 that cannot be rejected

by the two-sided robust test:

CS1�↵,n

=
�
�0 2 R :

��TR

n

(�0)
��  z1�↵/2

 
. (9)

This confidence set can be easily computed analytically by solving for values of �0

that satisfy the inequality

(�̂
n

� �0)
2�̂2

x,n

F
n

� z21�↵/2(�̂
2
y,n

+ �2
0 �̂

2
x,n

� 2�̂
xy,n

�0)  0, (10)
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where F
n

is defined in (8).

Depending on the coefficients of the second-order polynomial (in �0) in equation

(10), CS1�↵,n

can take one of the following forms: i) an interval, ii) a union of two

disconnected half-lines (�1, a1] [ [a2,1), where a1 < a2, or iii) the entire real line.

One will see cases ii) or iii) if the coefficient on �2
0 in (10) is negative, which occurs

when

F
n

� z21�↵/2 < 0. (11)

Thus, in practice one will see non-standard confidence sets if the null hypothesis

�x = 0 cannot be rejected using the F -statistic and central �2
1,1�↵

critical values.

Case iii) arises when the discriminant of the quadratic polynomial in (10) is negative,

which occurs if

F
n

�̂2
n

(�̂
n

)� z21�↵/2

�
�̂2
y,n

� �̂2
xy,n

/�̂2
x,n

�
< 0. (12)

Positive definiteness of the variance-covariance matrix composed of �̂2
x,n

, �̂2
y,n

, and

�̂
xy,n

implies that (11) holds whenever (12) holds. Thus, negative discriminants im-

plied by (12) are inconsistent with F
n

> z21�↵/2 or positive coefficients on �2
0 in (10).

This in turn implies that CS1�↵,n

cannot be empty.

When identification is strong or semi-strong, the concentration parameter and,

therefore, F
n

diverge to infinity. In such cases, both the discriminant and the coef-

ficient on �2
0 tend to be positive, and consequently, CS1�↵,n

will be an interval with

probability approaching one.

Furthermore, one can show that when identification is strong and under local

alternatives of the form � = �0 + µ/(nh
n

)1/2, tests based on T
n

(�0) and TR

n

(�0) have

the same asymptotic power. Thus, in practice there is no loss of asymptotic power

from adopting the robust inference approach if identification is strong.
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3 Testing for constancy of the RD effect across co-

variates

In this section, we develop a test of constancy of the RD effect across covariates, which

is robust to weak identification issues. Such a test can be useful in practice when

the econometrician wants to argue that the treatment effect is different for different

population sub-groups. For example, in Section 4 we use this test to argue that the

effect of class sizes on educational achievements is different for secular and religious

schools, and therefore it might be optimal to implement different rules concerning

class sizes in those two categories of schools.15

Similarly to Otsu et al. (forthcoming), we consider the RD effect conditional on

some covariate w
i

.16 Let W denote the support of the distribution of w
i

. Next, for

w 2 W we define y+(w) using the conditional expectation given z
i

and w
i

= w:

y+(w) = lim
z#z0 E (y

i

|z
i

= z, w
i

= w) . Let y�(w), x+(w) and x�(w) be defined sim-

ilarly. The conditional RD effect given w
i

= w is defined a s�(w) = (y+(w) �

y�(w))/(x+(w) � x�(w)). Similarly to the case without covariates, under an appro-

priate set of assumptions, �(w) captures the (local) ATE at z0 conditional on w
i

= w.

We are interested in testing the null hypothesis of constancy of the RD effect

H0 : �(w) = � for some � 2 R and all w 2 W , (13)

against a general alternative H1 : �(w) 6= �(v) for some v, w 2 W . When identifi-

cation is strong, the econometrician can estimate the conditional RD effect function

consistently and then use it for testing of H0.17 However, this approach can be unre-
15The problem is related to the classical ANOVA hypothesis of homogeneous populations (see, for

example, Casella and Berger, 2002, Chapter 11).
16See also Frölich (2007).
17Such a test can be constructed similarly to the ANOVA F -test as in Casella and Berger (2002,
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liable if identification is weak. We therefore take an alternative approach.

Suppose that W = {w̄1, . . . , w̄J}, i.e. the covariate is categorical and divides

the population into J groups. The assumption of a categorical covariate is plausible

in many practical applications where the econometrician may be interested in the

effect of gender, school type, etc. However, even when the covariate is continuous,

in a nonparametric framework it might be sensible to categorize it to have sufficient

power (as is often done in practice). For j = 1, . . . , J , let ŷ+
n

(w̄j), ŷ�
n

(w̄j), x̂+
n

(w̄j),

and x̂�
j,n

(w̄j) denote the local linear estimators of the corresponding population terms

computed using only the observations with w
i

= w̄j. Let n
j

be the number of such

observations. �2
y

(w̄j), �2
x

(w̄j) and �
xy

(w̄j) are defined as the conditional versions of

the corresponding population terms, and �̂2
y,n

(w̄j), �̂2
x,n

(w̄j), and �̂
xy,n

(w̄j) denote the

corresponding estimators.

Suppose that Assumption 2 holds for each of the J categories, and none of the

categories is redundant asymptotically: n
j

h
nj/(nhn

) ! p
j

> 0 for j = 1, . . . , J , where

n =
P

J

j=1 nj

. If H0 is true and the FRD effect is independent of w, one can construct a

robust confidence set for the common effect: CSJ

1�↵,n

=
�
�0 2 R : G

n

(�0)  �2
J,1�↵

 
,

where

G
n

(�0) =
JX

j=1

n
j

h
nj

⇣
�̂
n

(w̄j)� �0

⌘2

k�̂2
n

(�0, w̄j)/(f̂
z,n

(z0|w̄j)(c�x
n

(w̄j))2)
,

�̂
n

(w̄j) = c�y
n

(w̄j)/c�x
n

(w̄j), c�x
n

(w̄j) = x̂+
n

(w̄j)� x̂�
n

(w̄j); �̂2
n

(�0, w̄
j) is defined sim-

ilarly to �̂2
n

(�0) in (3) using the estimators conditional on w
i

= w̄j; and f̂
z,n

(z0|w̄j) =

(n
j

h
nj)

�1
P

n

i=1 K((z
i

� z0)/hnj)1{wi

= w̄j} is the estimator for f
z

(z0|w̄j), which de-

notes the conditional density of z
i

at z0 conditional on w
i

= w̄j.

Under H0 : �(w) = � for some � 2 R, CSJ

1�↵,n

is an asymptotically valid confi-

Chapter 11) and is discussed in the supplement.
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dence set since G
n

(�) !
d

�2
J

under weak or strong identification. We consider the

following size ↵ asymptotic test: Reject H0 if CSJ

1�↵,n

is empty. The test is asymp-

totically valid because under H0, P (CSJ

1�↵,n

= ?)  P (� /2 CSJ

1�↵,n

) = P (G
n

(�) >

�2
J,1�↵

) ! ↵, which again holds under weak or strong identification. Under the al-

ternative, there is no common value � that will provide a proper re-centering for

all J categories, and therefore, one can expect deviations from the asymptotic �2
J

distribution.

We show below that the test is consistent if there is strong (or semi-strong) iden-

tification for at least two values w̄j1 and w̄j2 that satisfy �(w̄j1) 6= �(w̄j2). Let

d2
n,1(w̄

j) = n
j

h
nj |x+(w̄j)� x�(w̄j)|2f

z

(z0|w̄j)/(k�2
x

(w̄j)) be the conditional version of

the concentration parameter.

Theorem 7. Suppose that n
j

h
nj/(nhn

) ! p
j

> 0 and Assumption 2 holds for each

j = 1, . . . , J .

(a) Tests that reject H0 of constancy in (13) when CSJ

1�↵,n

= ? have AsySz less or

equal to ↵.

(b) Let W⇤ = {w̄1, . . . , w̄J

⇤} ⇢ W be such that d2
n,1(w̄

j) ! 1 for w̄j 2 W⇤ and

�(w̄j1) 6= �(w̄j2) for some w̄j1 , w̄j2 2 W⇤. Then, P (CSJ

1�↵,n

= ?) ! 1 as

n ! 1.

4 Empirical Applications

In this section we compare the results of standard and weak identification robust

inference in two separate, but related, applications. We show that the standard

method and our proposed method yield significantly different conclusions when weak

identification is a problem, but similar results when it is not. We also show that
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Figure 1: Angrist and Lavy (1999): Empirical relationship between class size and
school enrollment

Note: The solid line show the relationship when Maimonides’ rule (cap of 40 students) is

strictly enforced.

the robust confidence sets can provide more informative answers than the standard

confidence intervals in cases when the usual assumptions are violated. We also apply

our weak identification robust constancy test.

We begin with a case where weak identification is not a serious issue. In an

influential paper, Angrist and Lavy (1999) study the effect of class size on academic

success in Israel using the fact class size in Israeli public schools was capped at 40

students during their sample period. As demonstrated in Figure 1, this cap results

in discontinuities in the relationship between class size and total school enrollment

for a given grade. In practice, school enrollment does not perfectly predict class size

and thus the appropriate design is fuzzy rather than sharp. We use the same sample

selection rules as Angrist and Lavy (1999) and focus on language scores among 4th

graders.18

Table 2 shows that the estimated discontinuity in the treatment variable (the
18The data can be found at http://econ-www.mit.edu/faculty/angrist/data1/data/anglavy99.

There is a total of 2049 classes in 1013 schools with valid test results. Here we only look at the first
discontinuity at the 40 students cutoff. The number of observations used in the estimation depends
on the bandwidth. It ranges from 471 classes in 118 schools for the smallest bandwidth (6), to 722
observations in 484 schools for the widest bandwidth (20). We use the uniform kernel in all cases.
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estimate of strength of identification) ranges from 8 to 14 students depending on the

bandwidth chosen. The table also shows that, as expected, the F -statistic becomes

smaller as the bandwidth gets smaller. Silverman’s normal rule of thumb and the

optimal bandwidth procedure of Imbens and Kalyanaraman (2012) both suggest a

bandwidth value of approximately 8, which corresponds to a relatively large value

of the F -statistic (approximately 62). Applying the standards of Table 1, we then

conclude that weak identification is not a serious concern in this application. Using the

5% non-central �2 critical value, we reject the null hypothesis that the concentration

parameter is below 36, and therefore, the maximal size distortions of the 5% two-sided

tests are expected to be under 1%. Note that even at the smallest bandwidth, the

F -statistic is relatively large. This is consistent with Figure 2 which shows that the

95% standard and robust confidence sets for the class size effect are very similar. The

figure shows that the two sets of confidence intervals are essentially indistinguishable

for larger bandwidths, and only differ slightly for smaller bandwidths.

Figure 2: Angrist and Lavy (1999): 95% confidence intervals for the effect of class
size on verbal test scores for different values of the bandwidth

Note: This figure is for the enrollment cut-off of 40. The bandwidth according to Silver-

man’s normal rule-of-thumb is 7.94. The optimal bandwidth selected according to Imbens

and Kalyanaraman (2012) is 7.90. The scores are given in terms of standard deviations

from the mean.
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Table 2: Angrist and Lavy (1999): Estimated discontinuity in the treatment variable
for the first cutoff and their standard errors, estimated effect of class size on class
average verbal score, and standard and robust 95% confidence sets (CSs) for the class
size effect for different values of the bandwidth

bandwidth discont. std errors F -stat effect standard CS robust CS
6 �8.40 1.60 27.5 �0.07 [�0.145, 0.007] [�0.170,�0.000]

8 -9.90 1.26 61.9 �0.07 [�0.129,�0.015] [�0.138,�0.019]

10 -10.83 1.03 110.2 �0.06 [�0.103,�0.015] [�0.103,�0.015]

12 -12.00 0.92 172.0 �0.02 [�0.056, 0.011] [�0.058, 0.010]

14 -12.62 0.78 258.8 �0.03 [�0.061, 0.000] [�0.062,�0.000]

16 -13.21 0.69 370.1 �0.02 [�0.048, 0.008] [�0.049, 0.007]

18 -13.87 0.61 525.8 �0.02 [�0.046, 0.003] [�0.047, 0.003]

20 -14.35 0.56 667.7 �0.02 [�0.042, 0.005] [�0.043, 0.004]
Note: Silverman’s normal rule-of-thumb bandwidth is 7.84 and the optimal bandwidth suggested by

Imbens and Kalyanaraman (2012) is 7.90. The scores are given in terms of standard deviations from

the mean.

In this application we also compare the results of the standard constancy test of the

treatment effect across sub-groups to the results of our robust constancy test. The first

set of results reported in Section 5 of the online Supplement compare the treatment

effect for secular and religious schools. The null hypothesis (the treatment effect is

the same across subgroups) can never be rejected using a standard test. By contrast,

the robust constancy test rejects the null hypothesis for the largest values of the

bandwidth (18 and 20). We reach similar conclusions when comparing the treatment

effect for schools with above and below median proportions of disadvantaged students.

The null hypothesis is rejected by the robust test under the largest bandwidth (20).

This suggests that our proposed test may have greater power against alternatives

than the standard test in some contexts.

The second application considers a similar policy in Chile originally studied by

Urquiola and Verhoogen (2009).19 In this application, the class sizes are capped at 45
19It should be noted that Urquiola and Verhoogen (2009) are not attempting to provide causal
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students. Figure 3 shows the fuzzy discontinuity in the empirical relationship between

class size and enrollment at the various multiples of 45. The figure also shows that the

discontinuity becomes smaller as enrollment increases. In this example, the outcome

variable is average class scores on state standardized math exams and we restrict

attention to 4th graders. We also strictly adhere to the sample selection rules used

by Urquiola and Verhoogen (2009).20

Figure 3: Urquiola and Verhoogen (2009): Empirical relationship between class size
and enrollment

Note: The solid line show the relationship when the rule (cap of 45 students) is strictly

enforced.

Table 3 reports the FRD estimates and the confidence sets for the different values

of the bandwidth and cutoff points. As before, we set the size of the test at 5%.

Starting with the first cutoff point, Table 3 shows that the robust and conventional

confidence sets diverge dramatically as the bandwidth gets smaller. Interestingly,

while the robust confidence interval is much wider than the conventional one, it

estimates of the effect of class size on tests score. They instead show how the RD design can be
invalid when there is manipulation around the cutoff, which results in a violation of Assumption 1b
(exogeneity of zi). So while this particular application is useful for illustrating some pitfalls linked
to weak identification in a FRD design, the results should be interpreted with caution.

20The total number of observations is 1,636. The effective number of observations varies with the
bandwidth and the enrollment cutoff of interest. At the first cutoff point (45) we use between 273 and
778 school level observations, depending on the bandwidth. The range in the number of observations
is 201 to 402, 45 to 95, and 17 to 34 at the 90, 135, and 180 enrollment cutoffs, respectively. The
uniform kernel is used to compute all the results below.
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nevertheless rejects the null hypothesis that the effect of class size is equal to zero

while the conventional fails to reject the null.

Table 3: Urquiola and Verhoogen (2009): The estimated effect of class size on the
class average math score and its 95% standard and robust confidence sets (CSs) for
different values of the bandwidth

bandwidth estimated effect standard CS robust CS

first cutoff (45)
6 0.146 [�0.061, 0.353] (�1,�0.433] [ [0.043,1)

8 3.378 [�74.820, 81.576] (�1,�0.120] [ [0.129,1)

10 �0.437 [�1.867, 0.993] (�1,�0.078] [ [0.181,1)

12 �0.173 [�0.360, 0.014] [�1.720,�0.065]

14 �0.136 [�0.246,�0.026] [�0.376,�0.060]

16 �0.091 [�0.153,�0.029] [�0.186,�0.042]

18 �0.073 [�0.115,�0.031] [�0.127,�0.037]

20 �0.063 [�0.099,�0.027] [�0.107,�0.032]

second cutoff (90)
6 0.128 [�0.025, 0.281] [0.004, 3.093]

8 0.261 [�0.061, 0.582] (�1,�0.587] [ [0.085,1)

10 0.227 [�0.111, 0.566] (�1,�0.241] [ [0.046,1)

12 0.306 [�0.296, 0.908] (�1,�0.118] [ [0.053,1)

14 0.486 [�1.092, 2.063] (�1,�0.056] [ [0.068,1)

16 1.636 [�18.745, 22.017] (�1, 0.002] [ [0.065,1)

18 �1.056 [�10.968, 8.856] (�1,1)

20 �0.425 [�2.041, 1.190] (�1, 0.005] [ [0.162,1)

Silverman’s rule-of-thumb bandwidth is 8.59. The optimal bandwidth suggested by Imbens and

Kalyanaraman (2012) for the cut-off of 45 is 9.67 and for the cut-off of 90, the suggested bandwidth

is 11.60. The scores are given in terms of standard deviations from the mean.
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Table 3: (Continued)
bandwidth estimated effect standard CS robust CS

third cutoff (135)
6 �2.145 [�15.627, 11.336] (�1,�0.076] [ [0.584,1)

8 �0.298 [�0.692, 0.097] [�21.482, 0.007]

10 �0.307 [�0.850, 0.236] (�1, 0.027] [ [1.414,1)

12 �0.309 [�0.861, 0.243] (�1, 0.027] [ [1.550,1)

14 �0.328 [�0.885, 0.228] (�1,�0.001] [ [1.838,1)

16 �0.231 [�0.652, 0.190] (�1, 0.034] [ [1.604,1)

18 �0.181 [�0.500, 0.138] (�1, 0.041] [ [21.933,1)

20 �0.136 [�0.389, 0.117] [�1.642, 0.063]

fourth cutoff (180)
10 0.048 [�0.119, 0.216] (�1, 1)
12 0.035 [�0.130, 0.200] (�1, 1)
14 �0.047 [�0.371, 0.278] (�1, 1)
16 �0.045 [�0.343, 0.254] (�1, 1)
18 �0.039 [�0.316, 0.238] (�1, 1)
20 �0.029 [�0.299, 0.242] (�1, 1)

Silverman’s rule-of-thumb bandwidth is 8.59 . The optimal bandwidth suggested by Imbens and

Kalyanaraman (2012) for the cut-off of 135 is 14.12 and for the cut-off of 180, the suggested bandwidth

is 17.81. The scores are given in terms of standard deviations from the mean.

To help interpret the results, we also graphically illustrate the difference between

standard and robust confidence sets in Figure 4. The first panel plots the standard

confidence sets as a function of the bandwidth. The second panel does the same for

the weak identification robust method. The shaded area is the region covered by the

confidence sets. As the bandwidth increases, the robust confidence sets evolve from

two disjoint sections of the real line to a well defined interval.21 This is consistent

with the size of the discontinuity in class size as a function of enrollment estimated

at different bandwidths and the corresponding F -statistic. At bandwidths below

10, the estimated discontinuity is small and the F -statistic is below 7. However
21Note that class size is a discrete rather than a strictly continuous variable, hence the break

between bandwidths 11 and 12 when the robust confidence set switches from two disjoint half lines
to a single interval.
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at bandwidths higher than 12, the estimated discontinuity is progressively closer to

10 students and the F -statistic ranges from just over 40 to just over 188. This is

important since the bandwidth suggested by Silverman’s normal rule-of-thumb is

only 8.59 and the optimal bandwidth suggested by Imbens and Kalyanaraman (2012)

is 9.67. See Section 5 in the online supplement for a complete listing of the F -statistic

and discontinuity estimates at different bandwidths.

Figure 4: Urquiola and Verhoogen (2009): 95% standard and robust confidence sets
(CSs) for the effect of class size on class average math score for different values of the
bandwidth

Note: This figure is for the first enrollment cut-off of 45. The bandwidth according to Silver-

man’s normal rule-of-thumb is 8.59 . The optimal bandwidth selected according to Imbens

and Kalyanaraman (2012) is 9.67. The scores are given in terms of standard deviations

from the mean.

Identification is considerably weaker for the second cutoff point. At all band-

widths, the standard confidence intervals fail to reject the null that the effect of class

size is zero. However, for most bandwidths, the robust confidence sets do not in-

clude a zero effect. For example, for a bandwidth of 8 we cannot reject the null that

class size is not related to grades when using the standard method, while the robust

method suggests rejecting the null.
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Identification is even weaker at the third cutoff and, for most bandwidths, the

robust confidence sets consists of two disjoint intervals. Finally, results get very

imprecise at the fourth cutoff and the robust confidence sets now map the entire real

line. This suggests that identification is very weak at these levels and the standard

confidence sets are overly liberal, even if they do not lead the econometrician to reject

the null hypothesis of zero effects at conventional levels.

In summary, our results suggest that when weak identification is not a problem,

the robust and standard confidence sets are similar. But when the discontinuity in the

treatment variable is not large enough, the robust confidence sets are very different

from those obtained using the standard method. We also demonstrate that our robust

inference method provides more informative results than the standard method.
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Abstract

This paper contains supplemental materials for Feir et al. (2015). It discusses the

problem of weak identification in applied Fuzzy Regression Discontinuity (FRD) liter-

ature, provides the proofs of the analytical results in the main paper, reports Monte

Carlo results, and provides additional tables for the empirical application.

1 Influential applied papers sample procedure

We start with thirty applied papers that were cited by Lee and Lemieux (2010). Of the

thirty papers, sixteen did not report enough information to perform the F -test. Of the

remaining papers, more than half had specifications which would be suspect according to

the test. We reach similar conclusions when only focusing on the ten most cited paper

in the list (Pitt and Khandker (1998); Hoxby (2000); Angrist (1990); (Van der Klaauw,

2002); Thistlethwaite and Campbell (1960); Greenstone and Gallagher (2008); Jacob and

Lefgren (2004); (Oreopoulos, 2006); Card et al. (2009); and (Kane, 2003)). These papers

had between 203 and 888 Google Scholar citations. Four of the ten papers do not report
⇤Deparment of Economics, University of Victoria, PO Box 1700 STN CSC, Victoria, BC, V8W 2Y2,

Canada. Email: dfeir@uvic.ca.
†Vancouver School of Economics, University of British Columbia, 997 - 1873 East Mall, Vancouver, BC,

V6T 1Z1, Canada. E-mails: thomas.lemieux@ubc.ca (Lemieux) and vadim.marmer@ubc.ca (Marmer).
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enough information to compute the test, but four of the remaining six papers presented

some specifications that failed the test.

2 Proofs of Theorem 4, 5 and 6

Proof of Theorem 4. In what follows, the population parameters should be viewed as

drifting sequences indexed by n. Let d⇤
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Note that d
n,5 and d
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d1,d2,d3 | is the same as

that of |T
d1,�d2,�d3 |, and therefore, without loss of generality, one can restrict d2 to [0, ⇢̄] for

two-sided testing.

Suppose now that |d⇤1| < 1, d2 2 [�⇢̄, ⇢̄], and d3 = ±1. In this case,

T
n

(�) =
((�Y

n

/d
n,5dn,3)� (�X

n

/d
n,6)) sign

�
(�X

n

/d
n,6) + d⇤

n,1

�
r

1
d

2
n,3

+

⇣
(�Y

n

/d

n,5dn,3)+d

⇤
n,1

(�X

n

/d

n,6)+d

⇤
n,1

⌘2
� 2d

n,2

d

n,3

(�Y

n

/d

n,5dn,3)+d

⇤
n,1

(�X

n

/d

n,6)+d

⇤
n,1

+ o
p

(1). (S.2)

Therefore, T
p

n

(�) !
d

�X (X + d1)/d1 =d T
d1,d2,±1 for any d2 2 [�⇢̄, ⇢̄].

Next, suppose that |d⇤1| = 1, d2 2 [�⇢̄, ⇢̄], and |d3| < 1. We have

T
n

(�) =
((�Y

n

/d
n,5)� d

n,3(�X
n

/d
n,6)) sign

�
(�X

n

/d
n,6) + d⇤

n,1

�
r
1 +

⇣
(�Y

n

/d

n,5d
⇤
n,1)+d

n,3

(�X

n

/d

n,6d
⇤
n,1)+1

⌘2
� 2d

n,2
(�Y

n

/d

n,5d
⇤
n,1)+d

n,3

(�X

n

/d

n,6d
⇤
n,1)+1

+ o
p

(1),

and, therefore, T
p

n

(�) converges in distribution to (Y�d3X )/(1+d23�2d2d3)1/2⇥sign(d⇤1) =
d

T1,d2,d3 ⇠ N(0, 1) for any d2 2 [�⇢̄, ⇢̄]. The case of |d⇤1| = 1 and |d3| = 1 can be handled

similarly to the previous to cases with T
p

n

(�) !
d

T1,d2,±1 ⇠ N(0, 1) for any d2 2 [�⇢̄, ⇢̄].

The results of the theorem now follow from Lemma 3 provided that (S.1) holds. To show

(S.1), consider ŷ+
n

first. As in Hahn et al. (1999, Lemma 2), write

p
nh

n

0

B@
ŷ+
n

� y+

h
n

(ŷ(1),+
n

� y(1),+)

1

CA =

 
1

nh
n

nX

i=1

Z
i

Z 0
i

K
i

!�1

3



⇥
 

1p
nh

n

nX

i=1

⇠
ni

+

p
nh

n

Ey⇤
i

Z
i

K
i

!
, (S.3)

where y(1),+ = lim

e#0 dE(y
i

|z
i

= z0 + e)/dz
i

, ŷ(1),+
n

denotes the estimator of y(1),+, Z 0
i

=

(1, (z
i

� z0)/hn), Ki

= K((z
i

� z0)/hn)1{zi � z0}, and y⇤
i

= y
i

� y+ � y(1),+(z
i

� z0)/hn,

and

⇠
ni

= y⇤
i

Z
i

K
i

� Ey⇤
i

Z
i

K
i

.

Hahn et al. (1999) show that Ey⇤
i

Z
i

K
i

= h2
n

f
z

(z0)(lim
e#0 d2E(y

i

|z
i

= z0 + e)/dz2
i

) ⇥ (k1 +

o(1)), where k1 is a vector of constants depending only on K(·). Since f
z

(z) and the second

derivative of E(y
i

|z
i

= z) are bounded in the neighborhood of z0 by Assumption 2(b)(i)-(ii),

it follows from Assumption 2(c) that
p
p
n

h
p

n

Ey⇤
i

Z
i

K
i

! 0 for all subsequences {p
n

} of {n}.

Similarly, since the variances are bounded from below by Assumption 2(b)(iii),

 
V ar

 
1p
p
n

h
p

n

nX

i=1

⇠
p

n

i

!!�1/2p
p
n

h
p

n

Ey⇤
i

Z
i

K
i

! 0. (S.4)

By Lyapounov’s CLT (see for example, Lehmann and Romano, 2005, Corollary 11.2.1, p.

427) and the Cramér-Wold device (Davidson, 1994, Theorem 25.5, p. 405),

 
V ar

 
1p
p
n

h
p

n

nX

i=1

⇠
p

n

i

!!�1/2
1p
p
n

h
n

nX

i=1

⇠
p

n

i

!
d

N(0, 1), (S.5)

where Lyapounov’s condition can be verified by Theorem 23.12 on p. 373 in Davidson (1994)

using Assumption 2(b)(iv). Uniform positive definiteness of the variance-covariance matrix,

which is needed to apply the Cramér-Wold device, holds because �2
y

(z
i

) is bounded away

from zero around z0 by Assumption 2(b)(iii), and by Lemma 4 in Hahn et al. (1999). Let

⌦

n

=

 
1

nh
n

nX

i=1

Z
i

Z 0
i

K
i

!�1

V ar

 
1p
nh

n

nX

i=1

⇠
ni

! 
1

nh
n

nX

i=1

Z
i

Z 0
i

K
i

!�1

.
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By (S.3)-(S.5),

⌦

�1/2
p

n

p
p
n

h
p

n

0

B@
ŷ+
p

n

� y+

h
p

n

(ŷ(1),+
p

n

� y(1),+)

1

CA !
d

N(0, 1).

Now, by Lemmas 1 and 4 in Hahn et al. (1999) and in view of Assumption 2, we conclude

that
p

p
n

h
p

n

(ŷ+
p

n

� y+)/(�+
y

p
k/f

z

(z0)) !
d

N(0, 1), where �+
y

= lim

e#0 �y(z0 + e).

Let d
n,7 = �+

y

, d
n,8 = ��

y

= lim

e#0 �y(z0 � e), �Y +
n

=

p
nh

n

/(k/f
z

(z0))(ŷ+
n

� y+), and

let �Y �
n

be defined similarly with the plus-terms replaced with the minus-terms. Using the

same arguments as above and applying the Cramér-Wold device, we can show that

(�Y +
p

n

/d
p

n

,7,�Y �
p

n

/d
p

n

,8) !
d

�
Y+,Y�� . (S.6)

where Y+,Y� are independent standard normal random variables. Next,

�Y
p

n

d
p

n

,5
=

�Y +
p

n

d
p

n

,7

d
p

n

,7

d
p

n

,5
+

�Y �
p

n

d
p

n

,8

d
p

n

,8

d
p

n

,5
.

Now, �Y
p

n

/d
p

n

,5 !
d

Y in (S.1) can be argued using (S.6), Assumption 2(b)(iii), and Lemma

3.

Lastly, the joint convergence in (S.1) can be shown using the same arguments as above

in combination with the Cramér-Wold device applied to y- and x-terms. Note that since

|⇢
xy

| is bounded away from one by Assumption 2(b)(iii), the variance-covariance matrices

will be positive definite, which ensures that the Cramér-Wold device can be applied. ⇤

Proof of Theorem 5. Again, the population parameters should be viewed as drifting

sequences indexed by n. First, note that under H0, the rejection probability is largest when

� = �0. Next, as in the proof of Theorem 4, we can write

TR

n

(�) =
((�Y

n

/d
n,5)� d

n,3(�X
n

/d
n,6)) sign

�
(�X

n

/d
n,6) + d⇤

n,1

�
q

1 + d2
n,3 � 2d

n,2dn,3
+ o

p

(1). (S.7)

Suppose that d⇤
p

n

,1 ! ±1, and d
p

n

,3 ! d3, where |d3| < 1. By (S.1) we have that

5



TR

p

n

(�) !
d

N(0, 1). Next, similarly to (S.7),

ˆQ
n

(�) =
�X

n

d
n,6

+ d⇤
n,1 �

(d
n,2 � d

n,3) ((�Y
n

/d
n,5)� d

n,3(�X
n

/d
n,6))

1 + d2
n,3 � 2d

n,2dn,3
+ o

p

(1),

ˆT R

n,m

(�, ˆQ
n

(�)) = S
m

⇥ sign

0

@ ˆQ
n

(�) +
d
n,2 � d

n,3q
1 + d2

n,3 � 2d
n,2dn,3

S
m

1

A
+ o

p

(1). (S.8)

We have that ˆQ
p

n

(�) diverges to ±1, and ˆT R

p

n

,m

(�, ˆQ
p

n

(�)) !
d

N(0, 1). Hence, it follows

that for all subsequences {p
n

} of {n}, ĉv
p

n

,1�↵

(�0, ˆQp

n

(�)) !
p

z1�↵

, and

P (TR

p

n

(�) > ĉv
p

n

,1�↵

(�0, ˆQp

n

(�))) ! ↵. (S.9)

Suppose now that d⇤
p

n

,1 ! d⇤1, where |d⇤1| < 1, and d
p

n

,3 ! d3, where |d3| < 1. We can

re-write (S.7) as

TR

n

(�) =
(�Y

n

/d
n,5)� d

n,3(�X
n

/d
n,6)q

1 + d2
n,3 � 2d

n,2dn,3

⇥ sign

 
ˆQ
n

(�) +
(d

n,2 � d
n,3) ((�Y

n

/d
n,5)� d

n,3(�X
n

/d
n,6))

1 + d2
n,3 � 2d

n,2dn,3

!
+ o

p

(1).

By (S.1),

(�Y
p

n

/d
p

n

,5)� d
p

n

,3(�X
p

n

/d
p

n

,6)q
1 + d2

p

n

,3 � 2d
p

n

,2dp
n

,3

!
d

S =

Y � d3Xp
1 + d23 � 2d2

,

ˆQ
p

n

(�) !
d

Q+ d⇤1, where

Q = X � d2 � d3p
1 + d23 � 2d2

S.

Note that the two limiting distributions represented by S and Q are independent, and

S ⇠ N(0, 1). Hence

TR

p

n

(�) !
d

S ⇥ sign

 
Q+ d⇤1 +

d2 � d3p
1 + d23 � 2d2

S
!
. (S.10)
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By (S.8), we have

ˆT R

p

n

,m

(�, ˆQ
p

n

(�)) !
d

S
m

⇥ sign

 
Q+ d⇤1 +

d2 � d3p
1 + d23 � 2d2d3

S
m

!
, (S.11)

where S
m

⇠ N(0, 1) and is independent from Q by construction. The results in (S.10) and

(S.11) imply that (S.9) holds also for |d⇤1| < 1.

Equation (S.9) remains true in the case of d
p

n

,3 ! ±1, which can be handled as in the

proof of Theorem 4, equation (S.2). The result of the theorem now follows by Lemma 3. ⇤

Proof of Theorem 6. The result in part (a) holds since the concentration parameter does

not affect the asymptotic distribution of G
n

(�). To prove part (b), let

G⇤
n

(�0) =
J

⇤X

j=1

n
j

h
n

j

⇣
ˆ�
n

(w̄j

)� �0
⌘2

k�̂2
n

(�0, w̄j

)/( ˆf
z,n

(z0|w̄j

)(

c
�x

n

(w̄j

))

2
)

 G
n

(�0).

In the proof below, we allow for G⇤
n

(b) to be minimized at a set of points or infinity. Let

�x(w̄j

) = x+(w̄j

)� x�(w̄j

), �2
(b, w̄j

) = �2
y

(w̄j

) + b2�2
x

(w̄j

)� 2�
xy

(w̄j

), and

G⇤
(b) =

J

⇤X

j=1

p
j

(�(w̄j

)� b)2(�x(w̄j

))

2

�2
(b, w̄j

)

f
z

(z0|w̄j

)

k
.

Since under the theorem’s assumptions inf

b2RG⇤
(b) > 0, it suffices to show that

| inf
b2R

G⇤
n

(b)/(nh
n

)� inf

b2R
G⇤

(b)| !
p

0, (S.12)

as (S.12) implies that P (inf

b2RG⇤
n

(b) > a) ! 1 for all a 2 R as n ! 1. However, the last

equation can be shown to establishing that

sup

b2R
|G⇤

n

(b)/(nh
n

)�G⇤
(b)| !

p

0. (S.13)

Since (�(w̄j

)�b)2 and �2
(b, (w̄j

)) are continuous for all b 2 R, and the asymptotic variance-

covariance matrix composed of �2
y

(w̄j

), �2
x

(w̄j

), and �
xy

(w̄j

) is positive definite, it follows
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that the function (�(w̄j

) � b)2/�2
(b, w̄j

) is continuous for all b 2 R and bounded. By the

same arguments,

sup

b2R

⇣
ˆ�
n

(w̄j

)� b
⌘2

�̂2
n

(b, w̄j

)

= O
p

(1). (S.14)

By triangle inequality,

|G⇤
n

(b)/(nh
n

)�G⇤
(b)| 

J

⇤X

j=1

p
j

(�x(w̄j

))

2

⇥

�������

⇣
ˆ�
n

(w̄j

)� b
⌘2

�̂2
n

(b, w̄j

)k/ ˆf
z

(z0|w̄j

)

� (�(w̄j

)� b)2

�2
(b, w̄j

)k/f
z

(z0|w̄j

)

�������
+

J

⇤X

j=1

R
j,n

(b), (S.15)

where |R
j,n

(b)| is bounded by

✓����
n
j

h
n

j

nh
n

� p
j

���� (�x(w̄j

))

2
+

���(c�x
n

(w̄j

))

2 � (�x(w̄j

))

2
��� p

j

◆
�������

⇣
ˆ�
n

(w̄j

)� b
⌘2

�̂2
n

(b, w̄j

)k/ ˆf
z

(z0|w̄j

)

�������
.

Since n
j

h
n

j

/nh
n

! p
j

, it follows from (S.14) that for j = 1, . . . , J⇤, sup
b2R |R

j,n

(b)| = o
p

(1).

Similarly, one can show that, for all j = 1, . . . , J⇤,

sup

b2R

�������

⇣
ˆ�
n

(w̄j

)� b
⌘2

�̂2
n

(b, w̄j

)k/ ˆf
z

(z0|w̄j

)

� (�(w̄j

)� b)2

�2
(b, w̄j

)k/f
z

(z0|w̄j

)

�������
= o

p

(1). (S.16)

The last result holds since it is assumed that there is strong or semi-strong identification for

j = 1, . . . , J⇤. It also establishes (S.15), which now implies (S.13). ⇤

3 Monte Carlo results for standard and weak-identification-

robust confidence sets for FRD designs

In this section, we discuss the performance of standard and robust confidence sets for FRD

in Monte Carlo experiments. The model is as in Section 2.1 of the main paper, and specific

8



parametrizations that we use for our simulations are described below. Standard confidence

intervals are based on the usual t-statistic for FRD (T
n

(�0)) and standard normal critical

values. Thus, standard two-sided symmetric confidence intervals with asymptotic coverage

probability of 1 � ↵ are constructed as estimator±z1�↵/2 ⇥ std.err, where z
⌧

denotes the

⌧ -th quantile of N(0, 1) distribution, and they correspond to testing H0 : � = �0 against

H1 : � 6= �0. Standard one-sided confidence intervals are constructed as (�1, estimator �

z
↵

⇥ std.err] = (�1, estimator+ z1�↵

⇥ std.err], and they correspond to testing H0 : � � �0

against H0 : � < �0. Robust confidence sets are constructed as discussed in Section 2.4 of

the main paper using robust t-statistic TR

n

(�0). Robust two-sided confidence sets consist of

all values �0 such that |TR

n

(�0)| < z1�↵/2, and are computed analytically by solving (11) in

the main paper.

Robust one-sided confidence sets consist of all values �0 that satisfy the inequality

TR

n

(�0) > ĉv
n,1�↵

(�0, ˆQn

(�0)), where ĉv
n,1�↵

(�0, ˆQn

(�0)) denotes data-dependent critical

values discussed in Section 2.4 of the main paper. In practice one-sided robust confidence

sets can be computed numerically by checking the above inequality over a grid of values for

�0. However, to evaluate their coverage probabilities in a Monte Carlo experiment, one can

simply compute the relative frequency of occurrence of the event TR

n

(�) > ĉv
n,1�↵

(�, ˆQ
n

(�)),

where � is the true value used to generate data.

3.1 Data generating process (DGP)

The outcome variable y
i

is generated according to the following model with a constant RD

effect:

y
i

= y0i + x
i

�,

y0i = g
y

(u
yi

, v
i

),

x
i

= g
x

(z
i

, u
xi

, c),

9



where u
yi

and u
xi

are bivariate normal with correlation parameter :

0

B@
u
yi

u
xi

1

CA ⇠ N

0

B@

0

B@
0

0

1

CA ,

0

B@
1 

 1

1

CA

1

CA ,

the assignment variable x
i

follows a normal distribution,

z
i

⇠ N(0,�2
z

),

and v
i

follows a �2-distribution with 3 degrees of freedom,

v
i

⇠ �2
3.

Note also that (u
yi

, u
xi

)

0, z
i

, and v
i

are jointly independent. In our setup, y0i captures the

outcome in the absence of treatment, and the function g
y

(·, ·) takes one of the following

three forms:

g
y

(u
yi

, v
i

) =

8
>>>>>><

>>>>>>:

u
yi

, y0i ⇠ N(0, 1),

exp(u
yi

), y0i ⇠ Log-normal,

u
yi

/v
i

, y0i ⇠ t3.

Thus, the marginal distribution of the outcome without treatment is either standard normal,

log-normal, or a t-distribution with 3 degrees of freedom. Log-normal and t- distributions

are used to evaluate the effect of deviations from normality: asymmetries in the first case

and heavier tails in the second case.

The function g
x

(·, ·, ·) controls when and what kind of treatment is received, and it can

take one of the two following forms. In the first case,

g
x

(z
i

, u
xi

, c) = u
i

⇥ 1{z
i

 0}+ (u
i

+ c)⇥ 1{z
i

> 0}.

10



This is a DGP with continuous treatment variables (thus, there are treatments of different

intensity). In this case, x+ � x� = c, and the concentration parameter (equations (7) and

(8) in the main paper) is given by
nh

n

c2

2k
p
2⇡�2

z

,

since z0 = 0, f
z

(0) = 1/
p

2⇡�2
z

, V ar(x
i

|z
i

) = 1, so �2
x

= 2. Thus, weaker designs can

be generated by reducing the value of |c| or by increasing the value of �2
z

. Alternatively,

treatment assignment can be generated using

g
x

(z
i

, u
xi

, c) = 1{u
i

 0}⇥ 1{z
i

 0}+ 1{u
i

 c}⇥ 1{z
i

> 0}.

With this DGP, the treatment variable is binary. Let � (·) denote the standard normal

CDF. Then, x+ � x� = � (c) � � (0), and �2
x

= �(0)(1 � �(0)) + �(c)(1 � �(c)). Hence,

the concentration parameter is given by

nh
n

(�(c)� �(0))

2

2k
p

2⇡�2
z

(�(0)(1� �(0)) + �(c)(1� �(c)))
.

Similarly to the continuous case DGP, the concentration parameter is increasing in c, how-

ever, it is now bounded from above for fixed nh
n

and �2
z

, since lim

c!1�(c) = 1.

In our DGP, u
xi

determines whether the treatment is received, and therefore the param-

eter  captures the degree of endogeneity of treatment.

Observations are simulated to be independent across i’s. The number of Monte Carlo

replications is set to 10,000. Our sample size is set to n = 1, 000. Our base bandwidth

value has been chosen as h
n

= n�1/4 ⇡ 0.1778. We also explore sensitivity of the results

to bandwidth choices by also using h
n

= 0.0889 and 0.8891. We use the uniform kernel

function K(z) = 1/2⇥ 1{�1  z  1}, which corresponds to k = 4.

We use the following parameter values:

� = 0,

11



�
z

= 1, 5,

 = 0.5, 0.99,

c = 2, 0.5, 0.1

where with c = 2 identification is considered to be relatively strong, and it becomes weak

as c decreases. The values for our endogeneity parameter () are the same as those used in

the weak IV literature (Staiger and Stock, 1997). However, since our DGP is non-linear, 

is different from the asymptotic correlation between estimation errors ⇢
xy

(see Section 2.1

of the main paper), where ⇢
xy

is typically smaller in absolute value than . Note that ⇢
xy

directly affects asymptotic rejection probabilities.

3.2 Results

First, we consider the effect of weak identification on the distribution of the usual t-statistic

T
n

(�). Figure 1 shows the densities of T
n

(�) estimated by kernel smoothing for binary x
i

,

normal y0i, and �
z

= 1. As a comparison, we also plot the standard normal density. From

panels (a) and (b) constructed using  = 0.50 or  = 0.99 and c = 2 (strong identification),

it is apparent that the standard normal distribution is a very good approximation to the

distribution of T
n

(�). When  = 0.99, the distribution of T
n

(�) is slightly skewed to the left.

However, the normal approximation should still work reasonably well (as we show below),

because there are no substantial deviations of the extreme values of the distribution of T
n

(�)

from those of the standard normal distribution.

Figures 1 (c) and (d) show the density of T
n

(�) under very weak identification (c = 0.1).

In this case, the distribution of T
n

(�) is very different from normal. It is strongly skewed to

the left, although when  = 0.50 it is also more concentrated around zero. A consequence

of concentration is that there will be no size distortions when identification is weak but

the degree of endogeneity is small. The picture changes drastically when  = 0.99. The

distribution of T
n

(�) is strongly skewed to the left and no longer concentrated as much

around zero. One can expect substantial size distortions in this case for two-sided tests or
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confidence intervals. Even more severe distortions can be expected for one-sided tests of

H0 : � � �0 against H1 : � < �0. However, there will be no size distortions for tests of

H0 : �  �0 against H1 : � > �0, since the probability mass is shifted to the left. Similarly,

one can expect that the coverage probability of one-sided confidence intervals of the form

(�1, estimator+z1�↵

⇥std.err] will be below the nominal coverage of 1�↵. The discrepancy

between the actual and nominal coverage for such intervals would be even larger than for

two-sided confidence intervals. At the same time, one can expect that the actual coverage

of one-sided confidence intervals of the form [estimator� z1�↵

⇥ std.err,1) will exceed the

nominal coverage.

Simulated coverage probabilities for different combinations of the model’s parameters are

reported in Table 1. With moderate degree of endogeneity ( = 0.5) and when identification

is relatively strong (the concentration parameter is around 35 or 7), the usual confidence

intervals, two-sided and one-sided, have coverage probabilities very close to the nominal

ones. Their coverage probabilities remain very close to nominal even when the concentra-

tion parameter drops to very small values (0.09 and 0.02), as long as endogeneity remains

moderate.

When the degree of endogeneity is very high ( = 0.99), the coverage probabilities of the

standard confidence intervals deviate from the nominal levels. Even with a large value of the

concentration parameter of 35, the simulated coverage of one-sided intervals can be below the

nominal level by 5% (while two-sided intervals remain quite accurate). For a concentration

parameter around 7, distortions can be up to 10% for one-sided intervals and 5% for two-

sided intervals. The situation becomes substantially worse when identification is very weak

(c = 0.1 and the corresponding values of the concentration parameter below 0.1). In this

case we observe severe size distortions for one-sided and two-sided interval. For example,

the actual coverage probabilities of the 90%, 95% and 99% two-sided confidence intervals are

approximately 51%, 55%, and 62%, respectively when the concentration parameter is around

0.09. More substantial size distortions were observed with the concentration parameter equal

to 0.009: the actual coverages of the 90%, 95% and 99% two-sided confidence intervals were
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32%, 35%, and 41%, respectively.

As expected, the performance of one-sided intervals was even worse due to the skewness

of the distribution of T
n

(�) in the case of weak identification and strong endogeneity (Figure

1(d)). For example, when c = 0.1 and  = 0.99, the actual coverage of the 90% one-sided

confidence intervals does not exceed 46%, and it goes as low as 28% in the case of the

concentration parameter equal to 0.009.

The last rows of Table 1 show coverage when identification is still weak, but less so

(c = 0.5), which results in the concentration parameter values of 2.22, 0.44, or 0.22 depending

on �
z

and the bandwidth. Still, distortions remain serious when  is large. For example, the

actual coverage for two-sided intervals, when nominal coverage is set to 90%, ranges from

83% when the concentration parameter is 2.22, to 55% when it is 0.22.

Table 1 makes clear that, as long as the concentration parameter is similar, coverage will

be similar even if some of the primitive parameters such as the bandwidth and �
z

differ.

For example, compare the seventh row of Table 1 with the tenth row. In the seventh row,

the bandwidth is 0.1778, and �
z

is equal to one, which corresponds to the concentration

parameter of approximately 0.09. In the tenth row, �
z

is five, but the bandwidth has been

increased five times leaving the concentration parameter unchanged. The actual coverage

probabilities of the standard confidence intervals are equal in both cases.1

Table 1 also clearly demonstrates how the magnitude of the concentration parameter

relates to the degree of distortions observed. When the concentration parameter is relatively

large as in the first and fifth rows of Table 1, the coverage probabilities are close to the

nominal ones. On the other hand, the closer to zero the concentration parameter is, the

more severe the distortions. It is important to note, however, that the degree of endogeneity

is kept the same. Even with equivalent concentration parameters, if there is a higher degree

of endogeneity then distortions will be more severe. We can see this by comparing the third

and seventh rows.

We have also computed the simulated coverage probabilities of the weak identification
1Note that in each experiment (i.e. for each combination of parameters), we used the same sequence of

primitive random variables by controlling the random numbers generator.
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robust confidence sets. We find that regardless of the strength of identification and degree

of endogeneity, the simulated coverage probabilities of two-sided and one-sided robust confi-

dence sets are uniformly very close to the nominal coverage probabilities. This supports our

claim that the inference based on the null-restricted statistic TR

n

(�0) does not suffer from

size distortions.

Table 2 repeats the exercises presented in Table 1 when the treatment variable is binary

rather than continuous. The distortions observed in this case are less severe under all

specifications. The reason is that  does not map exactly to the asymptotic correlation

between the estimation errors ⇢
xy

, which controls directly asymptotic rejection probabilities

(see Section 2.2 of the main paper). This is due to the non-linear nature of the DGP. For

example, when  = 0.99 and �
z

= 5, the implied correlation between c
�y

n

and c
�x

n

is

approximately 0.80. Under our standard choice of bandwidth, the coverage probabilities of

the 90%, 95%, and 99% confidence sets are 78.7%, 84.9%, and 92.2%, respectively.

Table 3 presents the results for non-normal DGPs. Again, the distortions appear less

severe than those in Table 1 due to the non-linear mapping of  to the degree of endogeneity.

We report the implied value of ⇢
xy

in Table 3. Nevertheless, the table demonstrates that

even when the endogeneity is not as severe and the system is non-normal, size distortions

are still present.

In the main body of the paper, we have discussed the possibility that the robust confi-

dence sets may cover the entire real line or be the union of two half-lines. Table 4 demon-

strates the likelihood of this possibility under different scenarios. When identification is

relatively strong (c = 2), the form of the robust confidence sets complies to the standard

one. By contrast, the shape of weak-identification-robust confidence sets is non-standard

when identification becomes weaker. As reported in Table 4, in the case of a relatively strong

FRD (c = 2), the probabilities that the robust confidence sets are unbounded are very small

regardless of the value of , and even negligible in the case of continuous treatment. For

binary treatment, the probability of seeing unbounded confidence sets when c = 2 varies be-

tween 0.0007 and 0.11 depending on the nominal coverage and the value of . On the other
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hand, in the case of a weak FRD (c = 0.1 or c = 0.5), unbounded robust confidence sets are

obtained with very high probabilities. For example, in the case of continuous treatment and

when c = 0.1 and  = 0.99, the entire real line is obtained with probabilities 23%, 35% and

60% and the union of two half lines with probabilities 65%, 60% and 39% for the confidence

sets with nominal coverage of 90%, 95% and 99% respectively.

4 Monte Carlo results for the test of constancy of the RD

effect

In this section, we present the simulated size and power of the standard and weak-identification-

robust constancy tests. As discussed in Section 3 of the main paper, it is assumed that in

addition to y
i

, x
i

, z
i

, the econometrician observes the covariate variable w
i

that takes values

in W = {w̄1, . . . , w̄J}. The econometrician is interested in testing the null hypothesis that

the RD effect is independent of w
i

. We maintain the same basic design as in Section 3

with normally distributed outcomes in the absence of treatment and continuous treatment

variables. However, we now consider three population sub-groups (J = 3) with n
j

= 1, 000

for all j = 1, 2, 3. We use the uniform kernel for all sub-groups, select the bandwidth ac-

cording to h
n

j

= n�1/4
j

, and use �
z

= 1 and  = 0.99 in all simulations for all categories

of w
i

. Under H0 of constancy, we generate data with �
j

= 0 for all j = 1, 2, 3. Under the

alternative of heterogenous treatment effects, we generate data with �1 = 0, �2 = �1 and

�3 = 1, or �2 = �3 and �3 = 3.

The standard constancy test can be constructed along the lines of the ANOVA F -test.

See for example, Casella and Berger (2002, Chapter 11). Using the notation of Section 3 of

the main paper, let

CB
n

=

JX

j=1

⇣
ˆ�
n

(w̄j

)� ¯�
n

⌘2
/ ˆV

n

(w̄j

), where

¯�
n

=

P
J

j=1
ˆ�
n

(w̄j

)/ ˆV
n

(w̄j

)

P
J

j=1 1/
ˆV
n

(w̄j

)

, and
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ˆV
n

(w̄j

) =

1

n
j

h
n

j

k�̂2
n

(�0, w̄j

)

ˆf
z,n

(z0|w̄j

)(

c
�x

n

(w̄j

))

2
.

Under H0 of constancy of the RD effect across the covariate’s values and under strong

identification for all J categories, CB
n

!
d

�2
J�1. Thus, the standard test of constancy

will reject H0 whenCB
n

> �2
J�1,1�↵

. Since the standard test relies on the asymptotic

normal approximation for the FRD estimator, one can expect that it will be distorted when

identification is weak.

Weak-identification-robust constancy test is proposed in Section 3 of the main paper.

The robust statistic G
n

(�0) is evaluated over a grid of values for �0 that covers the interval

[�10, 10]. The null hypothesis of constancy is rejected by the robust test if the smallest

value of G
n

(�0) obtained on the grid exceeds �2
J,1�↵

. Our theoretical results predict that

the robust test has accurate size regardless of the strength of identification, and good power

if at least two categories with different RD effects have sufficiently strong identification.

Table 5 reports simulated rejection probabilities for the standard and robust tests when

the treatment effect is strongly identified for all sub-groups and when it is weakly identified

for some sub-groups. As one can see from the first row of Table 5, which reports the results

under H0, the standard test is under-sized when identification is relatively strong for all

three categories, while the robust test has rejection probabilities very close to the desired

significance level.

When the treatment effect for one of the groups is only weakly identified as shown in

the second row of Table 5, the standard test over-rejects the null hypothesis of equality: the

simulated rejection probabilities of the standard test are equal to 43%, 38%, and 31% for

the significance levels of 10%, 5%, and 1% respectively. The rejection probabilities for the

robust test remain very close to the corresponding significance levels.

When the treatment effect differs between the groups, rows three and four of Table

5 demonstrate that the robust test has reasonable power to reject the null hypothesis of

constancy even when the treatment effect is weakly identified for one or more groups. For

example, when the treatment effect is 0, -1, and 1 from groups 1, 2 and 3 respectively, the
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robust test rejects the null hypothesis 80%, 70% and 47% of the time for a 10%, 5% and 1%

test. When the difference in the treatment effect between the groups is greater, 0, -3 and 3

for example, the robust test rejects the null hypothesis of equality nearly 100% of the time.

Rows five and six of Table 5 demonstrate that similar results hold when weak identification

is a problem for more than one of the sub-groups. The last row of the table shows that,

when identification is strong for all groups, the two tests have comparable power.
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Figure 1: Kernel estimated density of the usual T statistic (solid line) under strong (c = 2)
and weak (c = 0.1) identification for different values of the endogeneity parameter against
the standard normal PDF (dashed line)

(a) Strong identification,  = 0.50 (b) Strong identification,  = 0.99

(c) Weak identification,  = 0.50 (d) Weak identification,  = 0.99
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Table 1: (Continuous x
i

& normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence sets
for different values of the standard deviation of the assignment variable (�

z

), size of discontinuity in treatment assignment (c),
degree of endogeneity (), and bandwidth (h

n

).
Simulated Coverage

Concentration Nominal Two-sided One-sided
�
z

c  Parameter h
n

Coverage Standard Robust Standard Robust

1 2 0.50 35.48 0.1778
0.90
0.95
0.99

0.9180
0.9583
0.9885

0.9051
0.9522
0.9931

0.8784
0.9320
0.9793

0.8970
0.9505
0.9907

5 2 0.50 7.10 0.1778
0.90
0.95
0.99

0.9262
0.9604
0.9896

0.9157
0.9693
0.9984

0.8713
0.9273
0.9820

0.9025
0.9585
0.9969

1 0.1 0.50 0.09 0.1778
0.90
0.95
0.99

0.9600
0.9815
0.9969

0.9051
0.9522
0.9931

0.9073
0.9600
0.9938

0.8970
0.9505
0.9907

5 0.1 0.50 0.02 0.1778
0.90
0.95
0.99

0.9403
0.9659
0.9892

0.9157
0.9693
0.9984

0.8824
0.9404
0.9831

0.9025
0.9585
0.9969

1 2 0.99 35.48 0.1778
0.90
0.95
0.99

0.9072
0.9393
0.9722

0.9051
0.9522
0.9931

0.8580
0.9072
0.9629

0.8970
0.9505
0.9907

5 2 0.99 7.10 0.1778
0.90
0.95
0.99

0.8676
0.9011
0.9443

0.9157
0.9693
0.9984

0.8189
0.8676
0.9299

0.9025
0.9585
0.9969

1 0.1 0.99 0.09 0.1778
0.90
0.95
0.99

0.5165
0.5573
0.6203

0.9051
0.9522
0.9931

0.4625
0.5165
0.5949

0.8970
0.9505
0.9907

5 0.1 0.99 0.02 0.1778
0.90
0.95
0.99

0.3741
0.4113
0.4718

0.9157
0.9693
0.9984

0.3264
0.3741
0.4475

0.9025
0.9585
0.9969

5 0.1 0.99 0.009 0.0889
0.90
0.95
0.99

0.3203
0.3521
0.4139

0.9289
0.9670
0.9847

0.2829
0.3203
0.3902

0.8999
0.9569
0.9845

5 0.1 0.99 0.09 0.8891
0.90
0.95
0.99

0.5165
0.5573
0.6203

0.9051
0.9522
0.9931

0.4625
0.5165
0.5949

0.8970
0.9505
0.9907
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Table 1: (Continued)

Simulated Coverage
Concentration Nominal Two-sided One-sided

�
z

c  Parameter h
n

Coverage Standard Robust Standard Robust

1 0.5 0.50 2.22 0.1778
0.90
0.95
0.99

0.9367
0.9656
0.9917

0.9051
0.9522
0.9931

0.8828
0.9367
0.9845

0.8970
0.9505
0.9907

5 0.5 0.50 0.44 0.1778
0.90
0.95
0.99

0.9362
0.9646
0.9895

0.9157
0.9693
0.9984

0.8780
0.9365
0.9823

0.9025
0.9585
0.9969

1 0.5 0.99 2.22 0.1778
0.90
0.95
0.99

0.8287
0.8617
0.9066

0.9051
0.9522
0.9931

0.7843
0.8287
0.8908

0.8970
0.9505
0.9907

5 0.5 0.99 0.44 0.1778
0.90
0.95
0.99

0.6783
0.7195
0.7812

0.9157
0.9693
0.9984

0.6183
0.6783
0.7585

0.9025
0.9585
0.9969

5 0.5 0.99 0.22 0.0889
0.90
0.95
0.99

0.5535
0.5946
0.6579

0.9289
0.9670
0.9847

0.4983
0.5535
0.6347

0.8999
0.9569
0.9845

5 0.5 0.99 2.22 0.8891
0.90
0.95
0.99

0.8287
0.8617
0.9066

0.9051
0.9522
0.9931

0.7843
0.8287
0.8908

0.8970
0.9505
0.9907
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Table 2: (Binary x
i

& normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence sets for
different values of the standard deviation of the assignment variable (�

z

), size of discontinuity in treatment assignment (c), degree
of endogeneity (), and bandwidth (h

n

).
Simulated Coverage

Concentration Nominal Two-sided One-sided
�
z

c  Parameter h
n

Coverage Standard Robust Standard Robust

1 2 0.50 7.42 0.1778
0.90
0.95
0.99

0.9376
0.9745
0.9961

0.9051
0.9522
0.9931

0.8925
0.9472
0.9912

0.8970
0.9505
0.9907

5 2 0.50 1.48 0.1778
0.90
0.95
0.99

0.9606
0.9838
0.9966

0.9157
0.9693
0.9984

0.9120
0.9625
0.9932

0.9025
0.9585
0.9969

1 0.1 0.50 0.03 0.1778
0.90
0.95
0.99

0.9783
0.9913
0.9987

0.9051
0.9522
0.9931

0.9394
0.9783
0.9972

0.8970
0.9505
0.9907

5 0.1 0.50 0.006 0.1778
0.90
0.95
0.99

0.9627
0.9816
0.9942

0.9157
0.9693
0.9984

0.9184
0.9628
0.9913

0.9025
0.9585
0.9969

1 2 0.99 7.42 0.1778
0.90
0.95
0.99

0.9206
0.9546
0.9857

0.9051
0.9522
0.9931

0.8704
0.9211
0.9758

0.8970
0.9505
0.9907

5 2 0.99 1.48 0.1778
0.90
0.95
0.99

0.9141
0.9493
0.9839

0.9157
0.9693
0.9984

0.8514
0.9141
0.9750

0.9025
0.9585
0.9969

1 0.1 0.99 0.03 0.1778
0.90
0.95
0.99

0.8201
0.8732
0.9448

0.9051
0.9522
0.9931

0.7382
0.8201
0.9204

0.8970
0.9505
0.9907

5 0.1 0.99 0.006 0.1778
0.90
0.95
0.99

0.7872
0.8495
0.9226

0.9157
0.9693
0.9984

0.7057
0.7872
0.8976

0.9025
0.9585
0.9969

5 0.1 0.99 0.003 0.0889
0.90
0.95
0.99

0.7325
0.7868
0.8654

0.9287
0.9668
0.9845

0.6487
0.7327
0.8385

0.8997
0.9567
0.9843

5 0.1 0.99 0.03 0.8891
0.90
0.95
0.99

0.8201
0.8732
0.9448

0.9051
0.9522
0.9931

0.7382
0.8201
0.9204

0.8970
0.9505
0.9907
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Table 3: (Non-normal y0i) Simulated coverage probabilities of standard and weak-identification-robust confidence sets for different
values of the standard deviation of the assignment variable (�

z

), size of discontinuity in treatment assignment (c), degree of
endogeneity (), correlation between estimation errors for y and x (⇢

xy

), and different distributions of the outcome without
treatment (y0i). Bandwidth is equal to 0.1778.

Simulated Coverage
Distribution Concentration Nominal Two-sided One-sided

�
z

c of y0i  ⇢
xy

Parameter Coverage Standard Robust Standard Robust

continuous treatment x
i

5 0.1 Log-normal 0.99 0.85 0.02
0.90
0.95
0.99

0.7189
0.7788
0.8643

0.9207
0.9769
0.9996

0.6359
0.7189
0.8321

0.9025
0.9609
0.9989

5 0.1 t3 0.99 0.64 0.02
0.90
0.95
0.99

0.8774
0.9194
0.9663

0.9267
0.9785
0.9991

0.8067
0.8774
0.9521

0.9015
0.9638
0.9987

5 0.5 Log-normal 0.99 0.85 0.44
0.90
0.95
0.99

0.7701
0.8193
0.8995

0.9207
0.9769
0.9996

0.6949
0.7701
0.8725

0.9025
0.9609
0.9989

5 0.5 t3 0.99 0.64 0.44
0.90
0.95
0.99

0.8837
0.9245
0.9686

0.9290
0.9814
0.9992

0.8166
0.8840
0.9556

0.9057
0.9636
0.9985

binary treatment x
i

5 0.1 Log-normal 0.99 -0.6435 0.006
0.90
0.95
0.99

0.8861
0.9255
0.9716

0.9207
0.9769
0.9996

0.8106
0.8861
0.9575

0.9025
0.9609
0.9989

5 0.1 t3 0.99 -0.5327 0.006
0.90
0.95
0.99

0.9327
0.9627
0.9877

0.9320
0.9812
0.9992

0.8735
0.9327
0.9801

0.9051
0.9652
0.9978
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Table 4: Simulated probabilities for weak-identification-robust confidence sets to be un-
bounded for different values of the discontinuity parameter (c), different degrees of endo-
geneity (), and different types of treatment variable x

i

. The bandwidth is set to 0.1778,
assignment variable is standard normal, and the outcome without treatment is normal.

c  nominal coverage entire real line two half-lines

continuous treatment x
i

2 0.50 0.90
0.95
0.99

0

0

0

0.0002
0.0002
0.0020

2 0.99 0.90
0.95
0.99

0

0

0

0.0001
0.0001
0.0008

0.1 0.50 0.90
0.95
0.99

0.7282
0.8494
0.9681

0.1614
0.0973
0.0221

0.1 0.99 0.90
0.95
0.99

0.2354
0.3534
0.5972

0.6544
0.5909
0.3908

0.5 0.50 0.90
0.95
0.99

0.3572
0.4894
0.7348

0.2148
0.1980
0.1324

0.5 0.99 0.90
0.95
0.99

0

0

0

0.5637
0.6847
0.8626

binary treatment x
i

2 0.50 0.90
0.95
0.99

0.0061
0.0183
0.0630

0.0139
0.0222
0.0551

2 0.99 0.90
0.95
0.99

0.0007
0.0021
0.0134

0.0196
0.0402
0.1103

0.1 0.50 0.90
0.95
0.99

0.7348
0.8532
0.9689

0.1592
0.0945
0.0217

0.1 0.99 0.90
0.95
0.99

0.7218
0.8385
0.9619

0.1745
0.1077
0.0282
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Table 5: Simulated size and power of the standard and weak-identification-robust tests for
constancy of the RD effect across covariates. There are three groups with RD effects �

j

and
discontinuities in treatment assignments c

j

.

Size of Discontinuity Treatment Effect Nominal Rejection probabilities
c1 c2 c3 �1 �2 �3 Size Standard Robust

2 2 2 0 0 0
0.10
0.05
0.01

0.0309
0.0070

0

0.0858
0.0372
0.0060

2 2 0.1 0 0 0
0.10
0.05
0.01

0.4310
0.3864
0.3171

0.0745
0.0335
0.0047

2 2 0.1 0 -1 1
0.10
0.05
0.01

0.9739
0.9615
0.9238

0.7961
0.6978
0.4660

2 2 0.1 0 -3 3
0.10
0.05
0.01

1

1

1

0.9840
0.9684
0.8946

2 0.1 0.1 0 0 0
0.10
0.05
0.01

0.6581
0.6104
0.5009

0.0676
0.0312
0.0043

2 0.1 0.1 0 -1 1
0.10
0.05
0.01

0.6068
0.5794
0.5188

0.4059
0.2709
0.0932

2 2 2 0 -1 1
0.10
0.05
0.01

0.9531
0.9239
0.8251

0.9958
0.9921
0.9656
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5 Empirical Applications: Additional Tables

Table 6: Angrist and Lavy (1999): Test of equality of RD effect across groups at 5%
significance level for different values of the bandwidth

reject H0 of equality?
bandwidth estimated effect robust standard

religious secular
6 �0.0524 �0.1131 no no
8 �0.0540 �0.0985 no no
10 �0.0381 �0.0756 no no
12 �0.0170 �0.0364 no no
14 �0.0274 �0.0363 no no
16 �0.0035 �0.0382 no no
18 0.0052 �0.0505 yes no
20 0.0107 �0.0523 yes no

<= 10% disadvantaged > 10% disadvantaged
6 �0.0390 �0.0909 no no
8 �0.0626 �0.0469 no no
10 �0.0387 �0.0488 no no
12 �0.0259 �0.0192 no no
14 �0.0343 �0.0226 no no
16 �0.0290 �0.0079 no no
18 �0.0368 �0.0037 no no
20 �0.0360 �0.0008 yes no
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Table 7: Urquiola and Verhoogen (2009): Estimated discontinuity in the treatment variable
for the first cutoff and F -statistics for testing for potential size distortions for various values
of the bandwidth

bandwidth discontinuity estimates F -statistic

6 1.388 0.8226
8 �0.387 0.0812
10 �3.107 6.8069
12 �4.779 20.684
14 �6.092 41.037
16 �7.870 84.236
18 �8.934 129.80
20 �9.968 188.43

Note: Silverman’s normal rule-of-thumb is only 8.59 and the optimal bandwidth suggested by Imbens

and Kalyanaraman (2012) is 9.67. The scores are given in terms of standard deviations from the

mean.
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