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S.1 Outline
We use MSX to abbreviate the main paper.

This supplement contains the following materials: smoothness results for the
distributions of values and bids; proofs of consistency and asymptotic normality
of the nonparametric estimators used in MSX; and a proof of the validity of the
bootstrap critical values used in MSX. We also describe here how single-index models
can be incorporated in MSX’s approach to circumvent the curse of dimensionality
when there are many covariates.

S.2 Smoothness Results for the distributions of val-
ues and bids

Lemma S.1 The following results hold for the SEM and the S model.

(a) Let f ∗(v|N, x) denote the conditional PDF of valuations given Nl = N, xl = x
and conditional on bidding. Then f ∗(·|N, x) is strictly positive and bounded
away from zero on its support [v (x) , v (x)], admits up to R − 1 continuous
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derivatives on [v (x) , v (x)] for all x ∈ X , N ∈ N , and f ∗(v|N, ·) admits up to R
continuous partial derivatives on the interior of X for all v ∈ [v (N, x) , v (N, x)],
N ∈ N .

(b) The conditional probability of entry p(N, x) admits up to R continuous partial
derivatives with respect to x on the interior of X for all N ∈ N .

Proof of Lemma S.1. Consider the SEM first. Note that s̄ (N, x) is determined
by

ˆ v̄(x)

r(x)

(1− F (v|s, x))λ (v, s̄, x)N−1 dv − k (x) = 0, where (S.1)

λ (v, s̄, x) = F (s̄|x) +

ˆ v̄(x)

s̄

F (v|s, x) f (s|x) ds.

By Lemma A1(i) in GPV, v̄ (x) admits up to R continuous partial derivatives on
the interior of X . Together with our Assumptions 8(f)-(h), this implies that the
left-hand side in (S.1) is smooth up to order R in x. Moreover, its partial derivative
with respect to s̄ is

ˆ v̄(x)

r(x)

(1− F (v|x)) (f (s̄|x)− F (v|s̄, x) f (s̄|x))N−1 dv > 0.

The Implicit Function Theorem then implies that s̄ (N, x) admits up to R continuous
partial derivatives with respect to x on the interior of X for all N ∈ N . The result
follows then from the conditions of the lemma, and the definitions of f ∗(v|N, x) and
p(N, x):

f ∗ (v|N, x) =

´ v̄(x)

s≥s̄(N,x)
f (v, s|x) ds´ v̄(x)

v≥r(x)

´ v̄(x)

s≥s̄(N,x)
f (v, s|x) dsdv

,

p (N, x) =

ˆ v̄(x)

r(x)

ˆ v̄(x)

s̄(N,x)

F (v, s|N, x) f (s|N, x) dsdv.

In the S model, the cutoff s̄(N, x) is determined as an implicit function from the
equation (s̄− r (x))F (s̄|x)N−1−k (x) = 0. The derivative with respect to s̄ of the ex-
pression on the left-hand side is F (s̄|x)N−1 +(s̄− r (x)) (N − 1) f (s̄|x)F (s̄|x)N−2 >
0. Assumptions of the lemma also imply that the left-hand side of equation determin-
ing s̄(N, x) has continuous partial derivatives up to order R with respect to s̄ and x.
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The Implicit Function Theorem then implies that the solution s̄ (N, x) has continu-
ous derivatives up to order R in x on the interior of X . The result follows since in this
case for v ≥ s̄ (N, x), f ∗ (v|N, x) = f (v|x) /p (N, x), and p (N, x) = 1−F (s̄ (N, x) |x).
�

We can now prove the following result about the order of smoothness of g (b|N, x).1

Lemma S.2 Suppose that Assumptions 8(f) and (g) hold. Then for all N ∈ N , the
conditional PDF of bids g∗ (b|N, x) is strictly positive and bounded away from zero
on its support [b (N, x) , b̄(N, x)], and g∗ (·|N, ·) admits up to R continuous partial
derivatives on the interior of the set {(b, x) : x ∈ X , b ∈ [b (N, x) , b̄(N, x)]}.

Proof of Lemma S.2. First, we establish the order of smoothness of inverse bidding
strategy ξ (v|N, x) is R in both v and x. It is straightforward to show that differential
equation (3) can be re-written in terms of ξ (b|N, x) for b ∈

(
b (N, x) , b̄ (N, x)

)
as

∂ξ (b|N, x)

∂b
=

1

N − 1

1

ξ (b|N, x)− b
p (N, x) f ∗ (ξ (b|N, x) |N, x)

1− p (N, x) + p (N, x)F ∗ (ξ (b|N, x) |N, x)
(S.2)

≡ ΦN (ξ (b|N, x) , x) .

By Assumption 8(f), f ∗ (v|N, x) admits R − 1 derivatives with respect to v and R
derivatives with respect to x, while p (N, x) admits R derivatives with respect to
x. Therefore ΦN (v, x) also admits R − 1 derivatives with respect to its first ar-
gument and R derivatives with respect to second. A fundamental results in the
theory of differential equations (see, for example, Theorem 2.6 in Anosov, Aranson,
Arnold, Bronshtein, Grines, and Il‘Yashenko (1997)) implies that ξ (·|N, x) admits
R derivatives on

(
b (N, x) , b̄ (N, x)

)
as a solution of this differential equation. Also,

ξ(b|N, ·) admits R partial derivatives on the interior of X . Next, since G∗ (b|N, x) =
F ∗ (ξ (b|N, x) |N, x), we have g (b|N, x) = f ∗ (ξ (b|N, x) |N, x) ∂ξ (b|N, x) /∂b. Substi-
tuting ∂ξ (b|N, x) /∂b from (S.2) yields (note that f ∗ (ξ (b) |N, x) cancels out):

g∗ (b|N, x) =
1

N − 1

1

ξ (b|N, x)− b
p (N, x)

1− p (N, x) + p (N, x)F ∗ (ξ (b|N, x) |N, x)
.

The result follows from the just established order of smoothness of ξ (·|N, ·) and
Assumptions 8(f) and (g). �

1This result parallels Proposition 1(iii) in GPV.
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S.3 Consistency and asymptotic normality of the es-
timators in MSX

For kernel estimation, we use kernel functions K satisfying the following standard
assumption (see, for example, Newey (1994)).

The standard nonparametric regression arguments imply that the estimator of
entry probabilities p̂ (N, x) is asymptotically normal (see, for example, Pagan and
Ullah (1999), Theorem 3.5, page 110):

Proposition S.1 Assume that the bandwidth h satisfies Lhd →∞ and
√
LhdhR → 0

as L → ∞. Then, for x in the interior of X and under Assumptions 8 and 9,√
Lhd(p̂ (N, x)− p (N, x)) is asymptotically normal with mean zero and variance

Vp (N, x) =
p (N, x) (1− p (N, x))

Nπ (N |x)ϕ (x)

(ˆ
K (u)2 du

)d
.

Moreover, the estimators p̂ (N, x) are asymptotically independent for any distinct
N,N ′ ∈

{
N, ...N̄

}
and x, x′ in the interior of X .

Since the distribution of values and, consequently, the distribution bids have com-
pact supports, the estimator of the PDF g∗(b|N, x) in Section 4.3 is asymptotically
biased near the boundaries of the bids’ support. Our quantile approach allows one
to avoid the problem by considering only inner intervals of the supports. Specifically
given N ∈ N and x in the interior of X , let 0 < τ1(N, x) < τ2(N, x) < 1. In our
approach, we use quantiles Q∗(τ |N, x) with τ ∈ [τ1 (N, x) , τ2 (N, x)]. Due to the
assumptions on f ∗(v|N, x) and since the bidding function is monotone, there are
b1 (N, x) and b2 (N, x) such that

[b1 (N, x) , b2 (N, x)] ⊂
(
b (N, x) , b̄(N, x)

)
, and (S.3)

[q∗ (τ1 (N, x) |N, x) , q∗ (τ2 (N, x) |N, x)] ⊂ (b1 (N, x) , b2 (N, x)) . (S.4)

By (S.3), the estimator ĝ∗(b|N, x) in Section 4.3 consistently estimates g∗(b|N, x) on
the interval [b1 (N, x) , b2 (N, x)] as we show in the lemma below. Condition (S.4) is
used for establishing consistency of Q̂∗(q̂∗(τ |N, x)|N, x).

In practice, τ1(N, x) and τ2(N, x) can be selected as follows. Following the dis-
cussion on page 531 of GPV, in the case with no covariates one can choose τ1(N)
and τ2(N) such that

[q̂∗ (τ1 (N) |N) , q̂∗ (τ2 (N) |N)] ⊂ (bmin (N) + h, bmax (N)− h) ,
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where bmin (N) and bmax (N) denote the minimum and maximum bids respectively
in the auctions with Nl = N . When there are covariates available, one can replace
bmin (N) and bmax (N) with the corresponding minimum and maximum bids in the
neighborhood of x as defined on page 541 of GPV.

Lemma S.3 Under Assumptions 8 and 9, for all x in the interior of X and N ∈ N ,

(a) ϕ̂ (x)− ϕ (x) = Op((Lh
d/ logL)−1/2 + hR).

(b) π̂ (N |x)− π (N |x) = Op((Lh
d/ logL)−1/2 + hR).

(c) p̂ (N, x)− p (N, x) = Op((Lh
d/ logL)−1/2 + hR).

(d) supb∈[b(N,x),b̄(N,x)] |Ĝ
∗ (b|N, x)−G∗ (b|N, x) | = Op((Lh

d/ logL)−1/2 + hR).

(e) supτ∈[ε,1−ε] |q̂∗ (τ |N, x) − q∗ (τ |N, x) | = Op((Lh
d/ logL)−1/2 + hR), for any 0 <

ε < 1/2.

(f) supb∈[b1(N,x),b2(N,x)] |ĝ∗ (b|N, x)−g∗ (b|N, x) | = Op((Lh
d+1/ logL)−1/2+hR), where

b1 (N, x) and b2 (N, x) are defined in (S.3) and (S.4).

(g) supτ∈[τ1(N,x),τ2(N,x)] |Q̂∗ (τ |N, x)−Q∗ (τ |N, x) | = Op((Lh
d+1/ logL)−1/2 + hR).

(h) Q̂∗(β̂ (τ,N, x) |N, x) = Q∗ (β (τ,N, x) |N, x) + Op((Lh
d+1/ logL)−1/2 + hR) uni-

formly in τ such that β (τ,N, x) ∈ [τ1(N, x) + ε, τ2(N, x)− ε], for any 0 < ε <
(τ2(N, x)− τ1(N, x))/2.

Proof of Lemma S.3. Parts (a)-(c) of the lemma follow from Lemma B.3 of Newey
(1994).

For part (d), define

G∗0 (b,N, x) = Np (N, x)π (N |x)G∗ (b|N, x)ϕ (x) ,

and its estimator

Ĝ∗0 (b,N, x) =
1

L

L∑
l=1

Nl∑
i=1

yil1 {Nl = N} 1 (bil ≤ b)K∗h (xl − x) ,

where

K∗h (xl − x) =
1

hd
Kd

(
xl − x
h

)
, and
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Kd

(
xl − x
h

)
=

d∏
k=1

K

(
xkl − xk

h

)
. (S.5)

Similarly to Lemma B.2 of Newey (1994), by Lemma S.2 and Assumptions 8(b), (c),
and (g),

sup
b∈[b(N,x),b̄(N,x)]

∣∣∣G∗0 (b,N, x)− EĜ∗0 (b,N, x)
∣∣∣ = O

(
hR
)
. (S.6)

Next, we show that

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) | = Op

((
Lhd

logL

)−1/2
)
. (S.7)

We follow the approach of Pollard (1984). Consider, for given N ∈ N and x in
the interior of X , a class of functions Z indexed by h and b, with a representative
function

zl (b,N, x) =

Nl∑
i=1

yil1 {Nl = N} 1 (bil ≤ b)hdK∗h (xl − x) .

By the result in Pollard (1984) (Problem 28), the class Z has polynomial discrim-
ination. Theorem 37 in Pollard (1984) (see also Example 38) implies that for any
sequences δL, αL such that Lδ2

Lα
2
L/ logL→∞, Ez2

l (b) ≤ δ2
L,

α−1
L δ−2

L sup
b∈[b(N,x),b̄(N,x)]

| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) | → 0 (S.8)

almost surely. We claim that this implies that(
Lhd

logL

)1/2

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) |

is bounded as L → ∞ almost surely, which in turn implies the result in (S.7). The
proof is by contradiction. Suppose not. Then there exist a sequence γL →∞ and a
subsequence of L such that along this subsequence

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) | ≥ γL

(
Lhd

logL

)−1/2

. (S.9)
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on a set of events Ω′ ⊂ Ω with a positive probability measure. Now if we let δ2
L = hd

and αL = ( Lh
d

logL
)−1/2γ

1/2
L , then the definition of z implies that, along the subsequence

on a set of events Ω′,

α−1
L δ−2

L sup
b∈[b(N,x),b̄(N,x)]

| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) |

=

(
Lhd

logL

)1/2

γ
−1/2
L h−d sup

b∈[b(N,x),b̄(N,x)]
| 1
L

L∑
l=1

zl (b,N, x)− Ezl (b,N, x) |

=

(
Lhd

logL

)1/2

γ
−1/2
L sup

b∈[b(N,x),b̄(N,x)]
|Ĝ∗0 (b,N, x)− EĜ∗0 (b,N, x) |

≥
(
Lhd

logL

)1/2

γ
−1/2
L γL

(
Lhd

logL

)−1/2

= γ
1/2
L →∞,

where the inequality follows by (S.9), a contradiction to (S.8). This establishes (S.7),
so that (S.6), (S.7) and the triangle inequality together imply that

sup
b∈[b(N,x),b̄(N,x)]

|Ĝ∗0 (b,N, x)−G∗0 (b,N, x) | = Op

((
Lhd

logL

)−1/2

+ hR

)
. (S.10)

To complete the proof, recall that from the definitions of G∗0 (b,N, x) and Ĝ∗0 (b,N, x),

G∗ (b|N, x) =
G∗0 (b,N, x)

p (N, x) π (N |x)ϕ (x)
and Ĝ∗ (b|n, x) =

Ĝ∗0 (b,N, x)

p̂ (N, x) π̂ (N |x) ϕ̂ (x)
,

so that by the mean-value theorem,

∣∣∣Ĝ∗ (b|N, x)−G∗ (b|N, x)
∣∣∣ ≤ C̃ (b,N, x)

∥∥∥∥∥∥∥∥


Ĝ∗0 (b,N, x)−G∗0 (b,N, x)
p̂ (N, x)− p (N, x)
π̂ (N |x)− π (N |x)
ϕ̂ (x)− ϕ (x)


∥∥∥∥∥∥∥∥ , (S.11)

where ‖·‖ denotes the Euclidean norm, C̃ (b,N, x) is given by∣∣∣∣ 1

p̃ (N, x) π̃ (N, x) ϕ̃ (x)

∣∣∣∣
∥∥∥∥∥
(

1,
G̃∗0 (b,N, x)

p̃ (N, x)
,
G̃∗0 (b,N, x)

π̃ (N, x)
,
G̃∗0 (b,N, x)

ϕ̃ (x)

)∥∥∥∥∥ ,
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and ‖(G̃∗0 −G∗0, p̃− p, π̃ − π, ϕ̃− ϕ)‖ ≤ ‖(Ĝ∗0 −G∗0, p̂− p, π̂ − π, ϕ̂− ϕ)‖. Further by
Assumption 8(b), (c), and (g), and the results in parts (a)-(c) of the lemma, with
probability approaching one ϕ̃, π̃, and p̃ are bounded away from zero. The desired
result follows from (S.10), (S.11) and parts (a)-(c) of the lemma.

For part (e) of the lemma, since Ĝ∗ (·|N, x) is monotone by construction,

P (q̂∗ (ε|N, x) ≤ b (N, x)) = P
(

inf
b

{
b : Ĝ∗ (b|N, x) ≥ ε

}
≤ b (N, x)

)
= P

(
Ĝ∗ (b (N, x) |N, x) ≥ ε

)
= o (1) ,

where the last equality is by the result in part (d). Similarly,

P
(
q̂∗ (1− ε|N, x) ≥ b (N, x)

)
= P

(
Ĝ∗
(
b (N, x) |N, x

)
≤ 1− ε

)
= o (1) .

Hence, for all x in the interior of X andN ∈ N , b (N, x) < q̂∗ (ε|N, x) < q̂∗ (1− ε|N, x) <
b (N, x) with probability approaching one. Since the distribution G∗ (b|N, x) is con-
tinuous in b, G∗ (q∗ (τ |N, x) |N, x) = τ , and for τ ∈ [ε, 1 − ε], we can write the
identity

G∗ (q̂∗ (τ |N, x) |N, x)−G∗ (q∗ (τ |N, x) |N, x) = G∗ (q̂∗ (τ |N, x) |N, x)− τ. (S.12)

Next,

0 ≤ Ĝ∗ (q̂∗ (τ |N, x) |N, x)− τ ≤ (supuK (u))d

p̂ (N, x) π̂ (N |x) ϕ̂ (x)NLhd
, (S.13)

where the first inequality is by Lemma 21.1(ii) in van der Vaart (1998), and the
second inequality holds with probability one since Ĝ∗(·|N, x) is an empirical CDF
and the distribution of bids is continuous so that ties occur with probability zero.
By (S.13) and the results in (a)-(c),

Ĝ∗ (q̂∗ (τ |N, x) |N, x) = τ +Op

((
Lhd

)−1
)

(S.14)

uniformly over τ ∈ [ε, 1− ε]. Combining (S.12) and (S.14), and applying the mean-
value theorem to the left-hand side of (S.12), we obtain

q̂∗ (τ |N, x)− q∗ (τ |N, x)
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=
G∗ (q̂∗ (τ |N, x) |N, x)− Ĝ∗ (q̂∗ (τ |N, x) |N, x)

g∗ (q̃∗ (τ |N, x) |N, x)
+Op

((
Lhd

)−1
)
, (S.15)

where q̃∗ lies between q̂∗ and q∗ for all (τ,N, x). Now, by Lemma S.2, g∗ (b|N, x) is
bounded away from zero, and the result in part (e) follows from (S.15) and part (d)
of the lemma.

To prove part (f), by Lemma S.2, g∗ (·|N, ·) admits up to R continuous bounded
partial derivatives. Let

g∗0 (b,N, x) = p (N, x)π (N |x)ϕ (x) g∗ (b|N, x) , and (S.16)
ĝ∗0 (b,N, x) = p̂ (N, x) π̂ (N |x) ϕ̂ (x) ĝ∗ (b|N, x) . (S.17)

By Lemma B.3 of Newey (1994), ĝ∗0 (b,N, x) is uniformly consistent in b over the
interval [b1 (N, x) , b2 (N, x)]. By the results in parts (a)-(c), the estimators p̂ (N, x),
π̂ (N |x), and ϕ̂ (x) converge at a faster rate than that of ĝ∗0 (b,N, x). The desired
result follows by the same argument as in the proof of part (d), equation (S.11).

Next, we prove part (g). By Lemma S.2, g∗ (b|N, x) > cg > 0 for some constant
cg. Then,∣∣∣Q̂∗ (τ |N, x)−Q∗ (τ |N, x)

∣∣∣
≤ |q̂∗ (τ |N, x)− q∗ (τ |N, x)|+ 2

|ĝ∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q∗ (τ |N, x) |N, x)|
p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

+
|p̂ (N, x)− p (N, x)|

p̂ (N, x) p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x)

≤
(

1 +
2 supb∈[b1(N,x),b2(N,x)] |∂g∗ (b|N, x) /∂b|

p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

)
|q̂∗ (τ |n, x)− q∗ (τ |n, x)|

+2
|ĝ∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)|

p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x) cg

+
|p̂ (N, x)− p (N, x)|

p̂ (N, x) p (N, x) ĝ∗ (q̂∗ (τ |N, x) |N, x)
. (S.18)

Define the event

EL (N, x) = {q̂∗ (τ1 (N, x) |N, x) ≥ b1 (N, x) , q̂∗ (τ2 (N, x) |N, x) ≤ b2 (N, x)} ,

and let βL =
(
Lhd+1/ logL

)−1/2
+hR. By the result in part (e), P (Ec

L (N, x)) = o (1).
Hence, it follows from part (e) of the lemma that the estimator ĝ∗(q̂∗ (τ |N, x) |N, x)
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is bounded away from zero with probability approaching one, and the first term on
the right-hand side of (S.18) is Op (βL) uniformly over [τ1 (N, x) , τ2 (N, x)]. Next,

P

(
sup

τ∈[τ1(N,x),τ2(N,x)]

β−1
L |ĝ

∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)| > M

)

≤ P

(
sup

τ∈[τ1(N,x),τ2(N,x)]

β−1
L |ĝ

∗ (q̂∗ (τ |N, x) |N, x)− g∗ (q̂∗ (τ |N, x) |N, x)| > M,EL (x)

)
+P (Ec

L (x))

≤ P

(
sup

b∈[b1(N,x),b2(N,x)]

β−1
L |ĝ

∗ (b|N, x)− g∗ (b|N, x)| > M

)
+ o (1) . (S.19)

Part (g) follows from (S.18) and (S.19) by the results in parts (c) and (f) of the
lemma.

For part (h), first for all τ ∈ [0, 1],

∣∣∣β̂ (τ,N, x)− β (τ,N, x)
∣∣∣ ≤ ∣∣∣∣∣ p̂

(
N̄ , x

)
p̂ (N, x)

−
p
(
N̄ , x

)
p (N, x)

∣∣∣∣∣ ,
and therefore by the result in part (c) of the lemma, supτ∈[0,1] |β̂ (τ,N, x)−β (τ,N, x) | =
Op((Lh

d/ logL)−1/2 + hR) for all N ∈ N and x in the interior of X . The desired
result then follows by the triangular inequality, uniform consistency of β̂(τ,N, x),
the result in part (g) of the lemma, differentiability of Q∗ (·|N, x), the mean-value
theorem, and since f ∗ (·|N, x) is bounded away from zero by Assumption 8(f). �

Lemma S.4 Suppose that Assumptions 8 and 9 hold, and that the bandwidth h is
such that Lhd+1 →∞,

√
Lhd+1hR → 0. Then,

√
Lhd+1 (ĝ∗ (b|N, x)− g∗ (b|N, x))→d N (0, Vg (b,N, x))

for b ∈ [b1 (N, x) , b2 (N, x)], x in the interior of X , N ∈ N , where b1 (N, x) and
b2 (N, x) are defined in (S.3) and (S.4), and Vg (b,N, x) is given by

Vg (N, b, x) =
g∗ (b|N, x)

Np (N, x)π (N |x)ϕ (x)

(ˆ
K (u)2 du

)d+1

.

Furthermore, ĝ∗ (b|N1, x) and ĝ∗ (b|N2, x) are asymptotically independent for all N1 6=
N2, N1,N2 ∈ N .
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Proof of Lemma S.4. Consider g∗0(b, n, x) and ĝ∗0(b, n, x) defined in (S.16) and
(S.17) respectively. It follows from parts (a)-(c) of Lemma S.3,

√
Lhd+1 (ĝ∗ (b|N, x)− g∗ (b|N, x))

=
1

p (N, x) π (N |x)ϕ (x)

√
Lhd+1 (ĝ∗0 (b,N, x)− g∗0 (b,N, x)) + op(1). (S.20)

Furthermore, as in Lemma B2 of Newey (1994), Eĝ∗0 (b,N, x)− g∗0 (b,N, x) = O
(
hR
)

uniformly in b ∈ [b1 (N, x) , b2 (N, x)] for all x in the interior of X and N ∈ N . Thus,
it remains to establish asymptotic normality of

√
Lhd+1 (ĝ∗0 (b,N, x)− Eĝ∗0 (b,N, x)).

Define

wil,N =

√
1

hd+1
yil1 {Nl = N}K

(
bil − b
h

)
Kd

(
xl − x
h

)
,

wL,N =
1

NL

L∑
l=1

Nl∑
i=l

wil,N ,

where Kd is defined in (S.5). With the above definitions we have that
√
NLhd+1 (ĝ∗0 (b,N, x)− Eĝ∗0 (b,N, x)) =

√
NL (wL,N − EwL,N) . (S.21)

Then, by the Liapunov CLT (see, for example, Corollary 11.2.1 on page 427 of
Lehman and Romano (2005)),

√
NL (wL,N − EwL,N) /

√
NLV ar (wL,N)→d N (0, 1) , (S.22)

provided that Ew2
il,N <∞, and for some δ > 0,

lim
L→∞

1

Lδ/2
E |wil,N − Ewil,N |2+δ = 0.

The last condition follows from the Liapunov’s condition (equation (11.12) on page
427 of Lehman and Romano (2005)) and because wil,N are i.i.d. Next, Ewil,N is given
by √

1

hd+1
E

(
p (N, xl) π (N |xl)

ˆ
K

(
u− b
h

)
g∗ (u|N, xl) duKd

(
xl − x
h

))
=

√
1

hd+1

ˆ ˆ
p (N, y) π (N |y)K

(
u− b
h

)
g∗ (u|N, y)Kd

(
y − x
h

)
ϕ (y) dudy

11



=
√
hd+1

×
ˆ ˆ

p (N, x+ hy) π (N |x+ hy)K (u) g∗ (b+ hu|N, x+ hy)Kd (y)ϕ (x+ hy) dudy

→ 0.

Further, Ew2
il,N is given by

1

hd+1

ˆ ˆ
p (N, y) π (N |y)K2

(
u− b
h

)
g∗ (u|N, y)K2

d

(
y − x
h

)
ϕ (y) dudy

=

ˆ ˆ
p (N, x+ hy) π (N |x+ hy)K2 (u) g∗ (b+ hu|N, x+ hy)K2

d (y)ϕ (x+ hy) dudy

< ∞.

Hence,

NLV ar (wL,N)→ p (N, x) π (N |x) g∗ (b|N, x)ϕ (x)

(ˆ
K2 (u) du

)d+1

du. (S.23)

Next, E |wil,N |2+δ is bounded by

1

h(d+1)(1+δ/2)

ˆ ˆ ∣∣∣∣K (u− bh

)∣∣∣∣2+δ

g∗ (u|N, y)

∣∣∣∣Kd

(
y − x
h

)∣∣∣∣2+δ

ϕ (y) dudy

=
1

h(d+1)δ/2

ˆ ˆ
|K (u)|2+δ g∗ (b+ hu|N, x+ hy) |Kd (y)|2+δ ϕ (x+ hy) dudy

≤ 1

h(d+1)δ/2
sup

u∈[−1,1]

|K (u)|(d+1)(2+δ) sup
x∈X

ϕ (x) sup
b∈[b1(N,x),b2(N,x)]

g∗ (b|N, x)

=
C

h(d+1)δ/2
.

Lastly,

1

Lδ/2
E |wil,N − Ewil,N |2+δ ≤ 21+δ

Lδ/2
E |wil,N |2+δ

≤ 21+δC

(Lhd+1)δ/2

→ 0, (S.24)

since Lhd+1 →∞ by the assumption. The first result of the lemma follows now from
(S.20)-(S.24).
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Next, note that the asymptotic covariance of wL,N1 and wL,N2 involves a product of
the two indicator functions, 1 {Nl = N1} 1 {Nl = N2}, which is zero for all N1 6= N2.
The joint asymptotic normality and asymptotic independence of ĝ∗ (b|N1, x) and
ĝ∗ (b|N2, x) follows then by the Cramér-Wold device. �

Proposition S.2 Assume that the bandwidth h satisfies Lhd+1 →∞ and
√
Lhd+1hR →

0. Then, for τ ∈ (0, 1), x in the interior of X , and under Assumptions 8 and 9,
√
Lhd+1

(
Q̂∗ (τ |N, x)−Q∗ (τ |N, x)

)
→d N (0, VQ (N, τ, x)) ,

√
Lhd+1

(
Q̂∗
(
β̂ (τ,N, x) |N, x

)
−Q∗ (β (τ,N, x) |N, x)

)
→d N (0, VQ (N, β (τ,N, x) , x))) ,

where

VQ (N, τ, x) =

(
1− p (N, x) (1− τ)

(N − 1)p (N, x) g∗2(q∗ (τ |N, x) |N, x)

)2

Vg (N, q∗ (τ |N, x) , x) ,

and Vg (N, τ, x) is defined in Lemma S.4. Moreover, for any distinct N,N ′ ∈
{
N, ...N̄

}
,

τ, τ ′ ∈ Υ, and x, x′ in the interior of X , the estimators Q̂∗ (τ |N, x) are asymptotically
independent, as well as the estimators Q̂∗

(
β̂ (τ,N, x) |N, x

)
.

Proof of Proposition S.2. First, by Lemma S.3 (c), (e) and (f), and the mean-
value theorem,

Q̂∗ (τ |N, x) = Q∗ (τ |N, x)− 1− p (N, x) (1− τ)

(N − 1)p (N, x) g̃∗2(q∗ (τ |N, x) |N, x)

× (ĝ∗ (q∗ (τ |N, x))− g∗ (q∗ (τ |N, x))) + op

(
1√
Lhd+1

)
, (S.25)

where g̃∗ is a mean-value between g∗ and ĝ∗ for b = q∗ (τ |N, x). The result follows
then by Lemma S.4. �

S.4 Validity of the bootstrap
In this section, we establish the bootstrap validity for the SEM test in (29) in MSX.
For the other tests, the proof is analogous and therefore omitted.
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S.4.1 Notation and auxiliary results

In what follows, the statistics with superscript † denote the bootstrap analogues
of the statistics computed using the original data. To simplify the notion, we will
suppress the subscript indicating the bootstrap sample number for bootstrap objects
(m). Let P † denote probability conditional on the original sample. We use E† and
V ar† to denote expectation and variance under P † respectively.

Let π† denote the distribution of N †l implied by P †, i.e.

π†(N) = P †(N †l = N)

= L−1

L∑
l=1

1(Nl = N)

= π̂ (N) ,

where π(N) = P (Nl = N). Also, define

p†(N) = P †(y†il = 1|N)

=
L∑
l=1

(nl/N)P †
(
n†l = nl|N

)
=

∑L
l=1 (nl/N) 1 {Nl = N}∑L

l=1 1 {Nl = N}
= p̂ (N) ,

where p (N) = P (yil = 1|Nl = N).
We say ζL = O†p(λL) if for all ε > 0 there is ∆ε > 0 such that for all L ≥ Lε,

P (P †(|ζL/λL| > ∆ε) > ε) < ε. We say ζL = o†p (λL) if P † (|ζL/λL| > ε) →p 0 for all
ε > 0 as L→∞.

Next, we present some simple results concerning the stochastic order (with respect
to P †) of the bootstrap statistics. Let θ̂L be a statistic computed using the data in
the original sample, and let θ̂†L be the bootstrap analogue of θ̂L.

Lemma S.5 (a) Suppose that θ̂L = θ + op (δL) and θ̂†L = θ̂L + o†p (δL). Then, θ̂†L =
θ + o†p (δL).

(b) Suppose that θ̂L = θ +Op (δL) and θ̂†L = θ̂L +O†p (δL). Then, θ̂†L = θ +O†p (δL).

Proof. For part (a), since θ̂L is not random under P †,

P †
(
δ−1
L

∣∣∣θ̂†L − θ∣∣∣ > ε
)
≤ P †

(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ P †

(
δ−1
L

∣∣∣θ̂†L − θ̂L∣∣∣ > ε

2

)
14



= 1
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ op (1) .

For the first summand, we have that for all ε, η > 0,

P
(

1
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
> η
)

= P
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
→ 0.

The proof of part (b) is similar.

Lemma S.6 Suppose that E†(θ̂†L)2 = Op(λ
2
L). Then θ̂†L = O†p(λL).

Proof. Since E†(θ̂†L)2 = Op(λ
2
L), for all ε > 0 there is ∆ε > 0 such that P (E†(θ̂†L)2 >

∆2
ελ

2
L) < ε. Let ∆̃2

ε = ∆2
ε/ε. Then, we can write

P (E†(θ̂†L)2 > ∆̃2
εελ

2
L) < ε (S.26)

for all L large enough. By Markov’s inequality,

P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
≤
E†
(
θ̂†L

)2

λ2
L∆̃2

ε

.

Thus, for all ε > 0 there is ∆̃ε, such that for all L large enough,

P

(
P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
> ε

)
≤ P

E†
(
θ̂†L

)2

∆̃2
ελ

2
L

> ε

 < ε,

where the last inequality is by (S.26).

The following lemma is the bootstrap counterpart of Lemma S.3 in Section S.3.
It will be used for justifying the asymptotic linearity of the bootstrap statistic in
(S.45) below.

Lemma S.7 Suppose that the assumptions of Lemma S.3 hold. Then, for all x in
the interior of X and N ∈ N ,

(a) ϕ̂† (x) = ϕ̂ (x) +O†p
(
Lhd

)−1/2.

(b) π̂† (N |x) = π̂ (N |x) +O†p
(
Lhd

)−1/2.
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(c) p̂† (N, x) = p̂ (N, x) +O†p((Lh
d/ logL)−1/2 + hR).

(d) supb∈[b(N,x),b̄(N,x)] |Ĝ
∗,† (b|N, x)− Ĝ∗ (b|N, x) | = O†p((Lh

d/ logL)−1/2 + hR).

(e) supτ∈[ε,1−ε] |q̂∗,† (τ |N, x)− q̂∗ (τ |N, x) | = O†p((Lh
d/ logL)−1/2 + hR), for any 0 <

ε < 1/2.

(f) supb∈[b1(N,x),b2(N,x)] |ĝ∗,† (b|N, x)−ĝ∗ (b|N, x) | = O†p((Lh
d+1/ logL)−1/2+hR), where

b1 (N, x) and b2 (N, x) are defined in (S.3) and (S.4) in MSX.

(g) supτ∈[τ1(N,x),τ2(N,x)] |Q̂∗,† (τ |N, x)− Q̂∗ (τ |N, x) | = O†p((Lh
d+1/ logL)−1/2 + hR).

(h) Q̂∗,†(β̂† (τ,N, x) |N, x) = Q̂∗ (β (τ,N, x) |N, x)+O†p((Lh
d+1/ logL)−1/2+hR) uni-

formly in τ such that β (τ,N, x) ∈ [τ1(N, x) + ε, τ2(N, x)− ε], for any 0 < ε <
(τ2(N, x)− τ1(N, x))/2.

Proof. Part (a) follows from the uniform strong approximation in Chen and Lo
(1997), Proposition 3.2.

For part (b), write

π̂ (N |x) = π̂ (N, x) ϕ̂ (x) , where

π̂ (N, x) =
1

Lhd

L∑
l=1

1 (Nl = N)
∏d

k=1K

(
xkl − xk

h

)
.

By Proposition 3.2 in Chen and Lo (1997), (Lhd)1/2(π̂ (N, x) − Eπ̂(N, x)) = O†p(1).
By the Taylor expansion of π̂† (N |x), the result in part (a), and since ϕ̂ (x) is bounded
away from zero with probability approaching one by Assumption 8(b) and Lemma
S.3(a), (

Lhd
)1/2 (

π̂† (N |x)− π̂ (N |x)
)

=
1

ϕ̂ (x)

(
Lhd

)1/2 (
π̂† (N, x)− π̂ (N, x)

)
− π̂† (N, x)

(ϕ̂ (x))2

(
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

)
+ o

((
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

))
=O†p (1) .

The proof of part (c) is similar to that of part (b) and therefore omitted.
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We prove part (d) next. The proof is similar to the proof of Lemma B.1 in Newey
(1994). For fixed x in the interior of X and N ∈ N , write

Ĝ∗ (b∗, N, x) = Ĝ (b∗|N, x) p̂ (N, x) π̂ (N |x) ϕ̂ (x) ,

so that

Ĝ∗ (b,N, x) =
1

NL

L∑
l=1

nl∑
i=1

Til,

Til =
1

hd
yil1 (bil ≤ b) 1 {Nl = N}

∏d
k=1K

(
xkl − xk

h

)
, (S.27)

and let

Ĝ∗,† (b,N, x) =
1

nL

L∑
l=1

nl∑
i=1

T †il (b) ,

T †il (b) =
1

hd
y†il1

(
b†il ≤ b

)
1
{
N †l = N

}∏d
k=1K

(
x†kl − xk

h

)
.

Next, for the chosen values N and x, let

I =
[
b (N, x) , b̄ (N, x)

]
,

I = ∪JLk=1Ik,

where the sub-intervals Ik’s are non-overlapping and of length

sL =
logL

L
. (S.28)

Denote as ck the center of Ik. Note that I, Ik, ck depend on N and x. Denote as κ(b)
the interval containing b, i.e. b ∈ Iκ(b). Since

Ĝ∗ (b,N, x) = E†T †il(b),

we can write

Ĝ∗,† (b, n, x)− Ĝ∗ (b, n, x) = A†L (b)−B†L (b) + C†L (b) , where

A†L (b) =
1

NL

L∑
l=1

Nl∑
i=1

(
T †il (b)− T

†
il

(
cκ(b)

))
,
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B†L (b) =
1

NL

L∑
l=1

nl∑
i=1

(
E†T †il (b)− E

†T †il
(
cκ(b)

))
,

C†L (b) =
1

NL

L∑
l=1

nl∑
i=1

(
T †il
(
cκ(b)

)
− E†T †il

(
cκ(b)

))
.

In the above decomposition, A†L(b) is the average of the deviations of T †il (b) from
its value computed using the center of the interval containing b, and B†L(b) is the
expected value under P † of A†L(b). The terms supb∈I |A

†
L (b) | and supb∈I |B

†
L (b) | are

small when sL is small.
For A†L we have∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d y†il1

(
N †l = N

) ∣∣∣1(b†il ≤ b
)
− 1

(
b†il ≤ cκ(b)

)∣∣∣
≤ h−d (supK)d y†il1

(
N †l = N

)
1
(
b†il ∈ Iκ(b)

)
, (S.29)

where the second inequality holds because |1(b†il ≤ b)− 1(b†il ≤ cκ(b))| is equal to zero
if b†il 6∈ Iκ(b) and is at most 1 if b†il ∈ Iκ(b). Thus,∣∣∣A†L (b)

∣∣∣ ≤ h−d (supK)d
1

NL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Iκ(b)

)
. (S.30)

Next,

E†

(
1

NL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

))
= E†

(
y†il1

(
N †l = N

)
1
(
b†il ∈ Ik

))
= E†

(
y†il1

(
N †l = N

)
P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

))
= E†

(
1
(
N †l = N

)
p† (N)P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

))
= π† (N) p† (N)P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
.

Further,

E†
[

1

nL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

)
18



− P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

]2

≤

≤
P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

NL
, (S.31)

and by Lemma S.6,

1

nL

L∑
l=1

N∑
i=1

y†il1
(
N †l = N

)
1
(
b†il ∈ Ik

)
= P †

(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

+O†p

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

NL

1/2

= P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

×

1 +O†p

 1

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)NL

1/2
 . (S.32)

Now, by a similar argument,

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
π† (N) p† (N)

=
1

NL

L∑
l=1

N∑
i=1

yil1 (Nl = N) 1 (bil ∈ Ik)

= P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)

×

(
1 +Op

(
1

P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)NL

)1/2
)

≤ sup
k=1,...,JL

P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)

×

(
1 +Op

(
1

infk=1,...,JL P (bil ∈ Ik|yil = 1, Nl = N) π (N) p (N)NL

)1/2
)
.

(S.33)
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Furthermore, for all Ik’s(
inf

b∈I,x∈X
g∗ (b|N, x)

)
sL ≤ P (bil ∈ Ik|yil = 1, Nl = N) ≤

(
sup

b∈I,x∈X
g∗ (b|N, x)

)
sL.

(S.34)
Equations (S.30)-(S.34) together imply that∣∣∣∣sup

b∈I
A†L (b)

∣∣∣∣ = O†p

(
h−dsL

(
1 +Op

(
1

sLL

)1/2
))

= O†p

(
logL

Lhd

)
, (S.35)

where the last equality is by (S.28).
By (S.29), (S.33), and (S.34), for B†L (b) we have∣∣∣∣sup

b∈I
B†L (b)

∣∣∣∣ ≤ sup
b∈I

E†
∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d π† (n) sup

k=1,...,JL

P †
(
b†il ∈ Ik|y

†
il = 1, N †l = N

)
= O†p

(
logL

Lhd

)
. (S.36)

Note that C†L(b) depends on b only through ck’s, and therefore

sup
b∈I
|C†L(b)| ≤ max

k=1,...,JL
|C†L(ck)|. (S.37)

A Bonferroni inequality implies that for any ∆ > 0,

P †

((
Lhd

logL

)1/2

max
k=1,...,JL

|C†L(b)| > ∆

)
≤

≤
JL∑
k=1

P †

(∣∣∣∣∣
L∑
l=1

N∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆NL

(
logL

Lhd

)1/2
)
. (S.38)

By (S.27), |T †il(ck)| ≤ h−d(supK)d and∣∣∣T †il (ck)− E†T †il (ck)∣∣∣ ≤ 2(supK)dh−d.
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Further, by (S.31)-(S.34), there is a constant 0 < D1 <∞ such that

V ar†
(
T †il (ck)

)
≤ D1h

−2dsL (1 + op (1))

= D1h
−d (logL/

(
Lhd

))
(1 + op (1)) .

We therefore can apply Bernstein’s inequality (Pollard, 1984, page 193) to obtain

P †

(∣∣∣∣∣
L∑
l=1

N∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆NL

(
logL

Lhd

)1/2
)

≤ 2 exp

(
−1

2

∆2N2L2 logL
Lhd

NLD1h−d (1 + op (1)) logL
Lhd

+ (2/3) ∆N(supK)dh−dL
(

logL
Lhd

)1/2

)

= 2 exp

(
−1

2

∆2N (logL)1/2 (Lhd)1/2

D1 (logL/ (Lhd))1/2 (1 + op (1)) + (2/3) ∆(supK)d

)

= 2 exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
, (S.39)

where the equality in the last line is due to Lhd/ logL → ∞. The inequalities in
(S.37)-(S.39) together with (S.28) imply that there is a constant 0 < D2 < ∞ such
that

P †

((
Lhd

logL

)1/2

sup
b∈I
|C†L(b)| > ∆

)

≤ 2JL exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2s

−1
L exp

(
− ∆N

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2 exp

(
logL

(
1− ∆N

(4/3) (supK)d + op (1)

(
Lhd

logL

)1/2
))

= op (1) ,

where the equality in the last line is by Lhd/ logL→∞. By a similar argument as
in the proof of Lemma S.6,

sup
b∈I
|C†L(b)| = o†p

(
Lhd

logL

)−1/2

. (S.40)
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The result of part (d) follows from (S.35), (S.36), and (S.40).
The proof of part (e) is similar to that of Lemma S.3(e). First, by similar argu-

ments as in the proof of Lemma S.3(e), one can show that b(N, x) ≤ q̂∗,†(ε|B, x) ≤
q̂†(1 − ε|n, x) ≤ b̄(N, x) with probability P † approaching one (in probability), and
that uniformly over τ ∈ [ε, 1− ε],

Ĝ∗,†
(
q̂†(τ |N, x)|N, x

)
= τ +O†p

(
Lhd

)−1

Next,

G∗
(
q̂∗,†(τ |N, x)|N, x

)
− Ĝ∗,†

(
q̂∗,†(τ |N, x)|N, x

)
= G∗

(
q̂∗,†(τ |N, x)|N, x

)
− τ +O†p

(
Lhd

)−1

= G∗
(
q̂∗,†(τ |N, x)|N, x

)
−G∗ (q∗ (τ |N, x) |N, x) +O†p

(
Lhd

)−1

= g∗
(
q̃∗,† (τ |N, x) |N, x

) (
q̂∗,†(τ |N, x)− q∗ (τ |N, x)

)
+O†p

(
Lhd

)−1
,

where q̃† denotes the mean value, or

q̂∗,†(τ |N, x)− q∗ (τ |N, x)

=
G∗
(
q̂∗,†(τ |N, x)|N, x

)
− Ĝ∗,†

(
q̂∗,†(τ |N, x)|N, x

)
g∗ (q̃∗,† (τ |N, x) |N, x)

+O†p
(
Lhd

)−1
.

By part (d) of this lemma, Lemma S.3(d) in MSX, and Lemma S.5(b),

sup
τ∈[ε,1−ε]

∣∣q̂∗,†(τ |N, x)− q∗ (τ |N, x)
∣∣ = O†p

(
Lhd

)−1
. (S.41)

As in the proof of Lemma S.5 and since q̂∗ (τ |N, x) is non-random under P †, for all
ε > 0 there is ∆ε > 0 such that

P
(
P †
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
> ε
)

= P
(
1
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
> ε
)

= P
(
Lhd |q̂∗ (τ |N, x)− q∗ (τ |N, x)| > ∆ε

)
< ε, (S.42)

where the inequality in the last line is by S.3(e). Furthermore, the last result holds
uniformly in τ ∈ [ε, 1− ε]. The result in part (e) of the lemma then follows by (S.41)
and (S.42).2

The result in part (f) is implied by Proposition 3.2 in Chen and Lo (1997). The
proof of parts (g) and (h) is similar to that of Lemma S.3(g) and (h).

2Note that (S.42) establishes a trivial result that, if θ̂L = θ + Op (λL), then θ̂L = θ + O†
p (λL)

(recall that θ̂L is computed using the data in the original sample).
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S.4.2 Main result

As is standard in the literature on statistical testing, see for example Chapter 21.4 in
Gourieroux and Monfort (1995), in the SEM test we control the maximum asymptotic
rejection probability under our composite null hypothesis, and replace the statistic
T SEM (x) with its infeasible re-centered version T̄ SEM (x),

T̄ SEM (x) = sup
τ∈Υ

√
Lhd+1

N̄−1∑
N=N

N̄∑
N ′=N+1

[
∆̂ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
−

σ̂ (τ,N,N ′, x)
, where

∆ (τ,N,N ′, x) = Q∗ (τ |N ′, x)−Q∗ (τ |N, x) .

Since under the null hypothesis, ∆(τ,N,N ′, x) ≤ 0, it follows that P (T SEM (x) >
u) ≤ P (T̄ SEM (x) > u) for all u ∈ R. Therefore, when the test based on T̄ SEM (x)
has asymptotic size α, the asymptotic size of the test T SEM (x) is less or equal to α.
Thus, it suffices to show that

sup
u

∣∣P (T̄ SEM (x) > u)− P †(T †,SEMm (x) > u)
∣∣→p 0, (S.43)

where P † denotes the bootstrap distribution conditional on the original data.
To show (S.43), we proceed as follows. First, the results in Lemma S.3 imply the

following delta-method expansion:

√
Lhd+1

[
∆̂ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
−

σ̂ (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

×
√
Lhd+1 [ĝ∗ (q∗ (τ |N ′, x))− g∗ (q∗ (τ |N ′, x))− ĝ∗ (q∗ (τ |N, x)) + g∗ (q∗ (τ |N, x))]−

+ op (1) , (S.44)

where κ (τ,N,N ′, x) is determined by the term in the front of ĝ∗ (q∗ (τ |N, x)) −
g∗ (q∗ (τ |N, x)) in (S.25), and the op (1) term is uniform in τ ∈ [τ1(N, x), τ2(N, x)].

Given the results in Lemma S.7 for the bootstrap analogues of the original sample
statistics and using the same arguments as in the proof of Proposition S.2 in Section
S.3, and applying Lemma S.5, one can show that the bootstrap version of (S.44)
holds as well:

√
Lhd+1

[
∆̂†m (τ,N,N ′, x)− ∆̂(τ,N,N ′, x)

]
−

σ̂† (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

×
√
Lhd+1

[
ĝ∗,†m (q∗ (τ |N ′, x))− ĝ∗ (q∗ (τ |N ′, x))− ĝ∗,†m (q∗ (τ |N, x)) + ĝ∗ (q∗ (τ |N, x))

]
−
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+ o†p (1) , (S.45)

where the o†p (1) term is again uniform in τ ∈ [τ1(N, x), τ2(N, x)].
Next, we use the uniform strong approximation for the bootstrap of Chen and

Lo (1997). Provided that Lhd+1 → ∞ and by Proposition 3.2 in Chen and Lo
(1997), one can construct g̃∗ (·|N, x) independent of the original data, such that
g̃∗ (·|N, x) =d ĝ∗ (·|N, x), and for almost all sample paths,

sup
x∈X 0

sup
b∈[b1(N,x),b2(N,x)]

√
Lhd+1

∣∣ĝ∗,†m (b|N, x)− ĝ∗ (b|N, x)− (g̃∗ (b|N, x)− g∗ (b|N, x))
∣∣

= O (δL) , (S.46)

where δL → 0 is a sequence of constants.3 In the above result, [b1 (N, x) , b2 (N, x)]
and X 0 are the inner compact subsets of the support of bids and x respectively.

Define[
∆̃ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
−

σ (τ,N,N ′, x)
=
κ (τ,N,N ′, x)

σ (τ,N,N ′, x)

× [g̃∗ (q∗ (τ |N ′, x))− g∗ (q∗ (τ |N ′, x))− g̃∗ (q∗ (τ |N, x)) + g∗ (q∗ (τ |N, x))]− ,

and

T̃ SEM (x) = sup
τ∈Υ

√
Lhd+1

N̄−1∑
N=N

N̄∑
N ′=N+1

[
∆̃ (τ,N,N ′, x)−∆(τ,N,N ′, x)

]
−

σ (τ,N,N ′, x)
.

By the results in Lemma S.4, (S.44), and the Continuous Mapping Theorem,

T̄ SEM (x)→d T , (S.47)

where T is a random variable with a continuous CDF. Since g̃∗ (·|N, x) =d ĝ∗ (·|N, x)
by construction, we have as well that

T̃ SEM (x)→d T . (S.48)

Next, by (S.45) and (S.46),

T †,SEMm (x)− T̃ SEM (x) = o†p(1). (S.49)

3See (14) in Chen and Lo (1997) for the precise definition of δL.
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Since g̃∗ (·|N, x) is independent of the original data by construction, P †(T̃ SEM (x) ≤
u) = P (T̃ SEM (x) ≤ u) for all u ∈ R. This, together with (S.49) and the fact that
the CDF of T is continuous, implies that

P (T̃ SEM (x) > u)− P †(T †,SEMm (x) > u)→p 0 (S.50)

for all u ∈ R.4 Lastly, by (S.47), (S.48), and (S.50), we have that for all u ∈ R,

P (T̄ SEM (x) > u)− P †(T †,SEMm (x) > u)→p 0. (S.51)

The result in (S.43) now follows by the pointwise convergence in (S.51) and Pólya’s
Theorem (Shao and Tu, 1995, page 447).

S.5 Circumventing the curse of dimensionality: A
single index approach

Consider a single index model

F (v, s|x) = F (v, s|x′β) ,

r = r (x′β) .

(In this section, we abuse the notation slightly by often keeping it the same for the
distribution conditional on the single index, as well as for other relevant objects, r
etc.) Here x′β is a single index that captures the dependence of signals and valuations
on covariates, and β ∈ Rd is a vector of coefficients, identifiable up to a common
scale normalization. For simplicity, assume that the entry cost k does not vary with
x.5 Equation (18) implies that the signal cutoffs s̄ are also functions of the single
index x′β, say s̄ (N, x′β), and therefore the distribution of active bidders’ valuations
F ∗ (v|x′β) also depends on x only through x′β. Equation (17) implies that the
bidding strategy B (·|N, x′β) also depends on x only through the single index x′β.
Moreover, since the bidding strategy is monotone increasing, the quantiles of bids
are equal to

q∗ (τ |N, x) = B (Q∗ (τ |N, x′β) |N, x′β)

≡ q̃∗ (τ |N, x′β) ,

4This can be shown similarly to Theorem 22.4 on page 349 in Davidson (1994).
5This assumption may be plausible in some applications. For example, Bajari, Hong, and Ryan

(2010) in their empirical study of highway procurement auctions assume that entry costs do not
depend on auction characteristics.

25



i.e. also depend on x only through the single index x′β. Consequently, we can
estimate β from the bids data by any of the methods proposed in the literature on
single index quantile regression.

In particular, we can use an average derivative estimator. For u = x′β, we have
∂q∗ (τ |N, x)

∂x
= β

∂q̃∗ (τ |N, u)

∂u
, (S.52)

and β can be estimated as an average quantile derivative. (Recall that β is only iden-
tifiable up to a scale normalization). Equation (S.52) implies that β is proportional
to the average derivative ˆ

∂q∗ (τ |N, x)

∂x
w (x)ϕ (x) dx, (S.53)

where w (·) is a nonnegative, smooth weighting function with compact support within
X . Since β is only identifiable up to a scalar multiple, we can normalize β by setting
it equal to (S.53). Taking into account this compact support assumption for w (·)
and using integration by parts in (S.53),

β = −
ˆ
q∗ (τ |N, x)

∂ [w (x)ϕ (x)]

∂x
dx

= −
ˆ
q∗ (τ |N, x)

(
ϕ (x)

∂w (x)

∂x
+ w (x)

∂ϕ (x)

∂x

)
dx. (S.54)

Chaudhuri, Doksum, and Samarov (1997) propose an estimator of β based on a finite
sample analogue to the average derivative (S.54):

β̂ = − 1

L

L∑
l=1

q̂∗ (τ |N, x)

ϕ̂ (xl)

(
ϕ̂ (xl)

∂w (xl)

∂x
+ w (xl)

∂ϕ̂ (xl)

∂x

)
, (S.55)

and provide conditions under which this estimator is root-L consistent, β̂ = β +
Op

(
L−1/2

)
. Since the convergence of the estimator β̂ is root-L, which is faster

than nonparametric, the asymptotics of our estimators Q̂∗ (τ |N, x) etc. will remain
unaffected if we use the single index x′β̂ in place of x in the implementation of the
nonparametric estimators described in the main text.
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