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Abstract

We develop a nonparametric approach that allows for discrimination among alter-
native models of entry in first-price auctions. Three models of entry are considered:
those of Levin and Smith (1994), Samuelson (1985), and a new model in which the
information received at the entry stage is imperfectly correlated with bidders’ valua-
tions. We derive testable restrictions of these models based on how the pro-competitive
selection effect shifts the quantiles of valuations’ distribution in response to an increase
in the number of potential bidders.
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1 Introduction

Economists have long recognized the importance of selectivity. In several subfields of eco-
nomics, selection effects are among the most important theoretical and practical issues.
This paper introduces and studies selection effects in auctions with endogenous entry.
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Entry in auctions is an important topic in itself. It is clear that equilibrium allocations
and efficiency are affected by who enters and why. At present, however, there is no consensus
on what model of entry best describes what occurs in most markets. Recent empirical
papers, recognizing that it is necessary to endogenize entry in modeling auctions, have
offered structural models. Since one attractive feature of the auction literature is that
nonparametric identification can be achieved under certain assumptions, it would be ideal if
models of entry could similarly be distinguished nonparametrically. The main contribution
of this paper is to offer a more general model of entry that nests those proposed in earlier
theoretical work; and then to offer nonparametric tests of these models. To the best of
our knowledge, this is the first paper to adopt a nonparametric approach first developed
in Laffont and Vuong (1996) and Guerre, Perrigne, and Vuong (2000, GPV hereafter) to
endogenous entry in first-price auctions.

We consider two models of entry proposed in the theoretical literature, Levin and Smith
(1994, LS hereafter) and Samuelson (1985, S hereafter), as well as a new model, the selective
entry model (SEM). Most of the empirical auction literature is based on the LS model. In
that model, potential bidders are initially uninformed about of their valuations of the good,
but may become informed and then submit a bid at a cost. In equilibrium, potential entrants
randomize their entry decisions and earn zero expected profit.

In the S model, bidders make their entry decisions after they have learned their valua-
tions. The entry cost is interpreted solely as the cost of preparing a bid, and bidders choose
to enter if their valuations exceed a certain cutoff. The set of entrants is therefore a select
sample biased towards bidders with higher valuations.

Both the LS and S models are stylized to capture the amount of information available
to bidders at the entry stage: no information is available in LS, whereas the information is
perfect in S. However, the S model also has what we call the selection effect, which has not
been studied previously. We show that as the number of potential bidders increases, those
who enter, tend to have larger valuations.

Our new SEM model also allows for selective entry, but dispenses with the stark as-
sumption that potential bidders know their valuations perfectly at the entry stage, as in S,
thus sharing with the LS model a costly valuation discovery stage. This model formally
nests the S and LS models. At the entry stage, the potential bidders each observe a private
signal correlated with their as yet unknown valuation of the good. Based on this private
signal, a bidder may learn the valuation upon incurring entry cost k. A bidder who has
entered will bid only if the valuation exceeds the reserve price. Although the signals may be
informative about the valuations, unlike in the S model, they are not perfectly informative.
Both the LS and S models can be viewed as limit cases of our model: the LS model corre-
sponds to uninformative signals, whereas the S model corresponds to perfectly informative
signals.

How can one test for the presence of the selection effect in first-price auctions with
endogenous entry? We build on the insight in Haile, Hong, and Shum (2003) and propose
the use of exogenous variation in the number of potential bidders, N , as the basis for such a
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test.1 Let Q∗ (τ |N) be the τ -th quantile of active bidders’ valuations conditional on N . We
show that, in the SEM, the selection effect manifests itself as the effect of N on Q∗ (τ |N): in
the face of greater potential competition, some potential entrants, who may be less efficient
in the auction, will choose not to enter, and accordingly, the quantiles of those who do
enter increase: Q∗ (τ |N ′) ≥ Q∗ (τ |N) for N ′ > N. We show that the inequality is strict
in the S model, while Q∗ (τ |N) does not depend on N in the LS model, so that there is
no selection effect. Following the approach of GPV, we show that the quantiles, Q∗ (τ |N),
can be nonparametrically identified in any SEM model if the number of potential bidders
and all bids in each auction are observed. Our tests are based on an asymptotically normal
estimator of Q∗ (τ |N) that we develop by following an approach similar to Marmer and
Shneyerov (2012).

Models that are in some respects similar to our SEM have been considered in the
literature. For example, Hendricks, Pinkse, and Porter (2003) estimate a bidding model
for off-shore oil. They sketch a model of entry that is in some respects similar to ours,
however, with a common-value component. The focus of their paper, however, is not on
entry but rather on testing an equilibrium model of bidding. This model is also outlined in
the concluding section of Ye (2007).

A closely related paper is Li and Zheng (2009), who develop Bayesian semiparametric
approach for the LS and S models.2 They focus on estimation, and address neither non-
parametric identification nor nonparametric testing of the entry models. In this regard, our
results are complementary.

An important contribution of Li and Zheng (2009) is that they identify the entry effect.
This effect exists in addition to the usual competition effect: as the number of potential
bidders increases, the probability of entry falls, which may lead to a reduction in the auction
price. Using data on lawn mowing contracts, they estimate a variant of the LS model, and
find that, under certain conditions, it may be optimal to restrict the competition. In fact,
their counterfactual experiment shows that, for a typical auction, it is not optimal to allow
more than three bidders to participate.

The entry effect is counter-competitive and therefore operates in the direction opposite
to the pro-competitive selection effect. Which of the two is dominant depends on the
application. We illustrate our approach using the same data as in Li and Zheng (2009). We
propose a minimum distance estimation method directly based on our testing framework,
where the nonparametric quantile estimators are used as a checking device. For a certain
subset of auctions, our nonparametric test favors the newly proposed SEM. We then find
that, in this application, the selection effect can overturn the entry effect.

The selection effect identified in this paper has been subsequently studied in Einav
and Esponda (2008), Roberts and Sweeting (2010a,b), and Coviello and Mariniello (2010).
Einav and Esponda (2008) and Roberts and Sweeting (2010a) investigate the effects of

1Haile, Hong, and Shum (2003) consider a different model in which bidders’ valuations may have a
common component.

2Li (2005) develops a general parametric approach for auctions with entry.
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bidder asymmetries; the latter paper considers second-price and open outcry auctions.
Roberts and Sweeting (2010b) study sequential sales mechanisms in an environment with
selective entry. Coviello and Mariniello (2010) explore how information revelation interacts
with selective entry in Italian public procurements.

Li and Gentry (2012) discuss partial identification of our selective entry model. In
particular, they show that exogenous variation in N is insufficient for full identification.
This stands in contrast with the findings in Guerre, Perrigne, and Vuong (2009), where
such variation is shown to be sufficient for the identification of a first-price auction model
with risk aversion. On the other hand, they show that SEM can be fully identifiable if there
is a continuous instrument that affects the entry cost, but not the valuations of the bidders.

Endogenous entry in auctions has been a subject of a number of recent papers. Bajari
and Hortacsu (2003), for example, have investigated entry and bidding in eBay auctions
using a common value framework. They implemented a Bayesian estimation method em-
ploying a dataset of mint and proof sets of US coins. The magnitude of the entry cost is
estimated, and expected seller revenues are simulated under different reserve prices. Athey,
Levin, and Seira (2011) estimate a model of timber auctions with costly entry. The entry
cost is assumed to be the private information of potential bidders, who are selected into
an entrant pool based on their entry cost draws. Krasnokutskaya and Seim (2011) explore
bid preference programs and bidder participation using California data. The latter paper
also adopts the LS model, but in an asymmetric context in which small firms are treated
preferentially. Bajari, Hong, and Ryan (2010) propose a parametric likelihood-based esti-
mation strategy in the presence of multiple equilibria, and apply it to highway procurement
auctions, using the LS model.

To summarize, our contribution is fivefold. First, we propose a more general model
of of entry and perform a detailed study of its identification. Second, we derive testable
implications of the new model. Third, based on those implications, we propose a flexi-
ble nonparametric framework for testing different models of entry. Fourth, based on this
framework, we propose a structural estimation method for the proposed selective entry
model. Fifth, in an empirical application, we show that the selection effect is economically
significant and should not be ignored.

The paper proceeds as follows. Section 2 presents the SEM and discusses the selection
effect. Section 3 contains results on nonparametric identification. Our testing framework
is presented in Section 4. Section 5 contains an empirical application, and Section 6 con-
cludes. An online supplement to this paper provides additional techincal details: the results
regarding smoothness of the distributions of values and bids, the proofs of consistency and
asymptotic normality of the estimators, and the proof of the validity of the bootstrap
procedure used in this paper.
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2 Model and selection effect

2.1 Model

In our model, N ≥ 2 risk-neutral potential bidders in a first-price auction observe (at no
cost) a signal that is correlated with the true value of the object, and make costly entry
decisions based on this signals. The model nests as special cases the LS model and the S
model, as noted in the introduction. The LS model arises when the signals and valuations
are statistically independent. The S model arises when the signals are perfectly informative
about valuations.

This model, which will be referred to as the selective entry model (SEM), is formally
described as follows. The game begins with the entry stage at which nature draws signal
and valuation tuples (Vi, Si) independently from the same distribution with joint cumulative
distribution function (CDF) F (v, s). At the entry stage, potential bidders privately observe
their Si’s at no cost, but they do not observe Vi. The latter become observable to those
potential bidders who have paid an entry cost k ≥ 0. Thus, at the bidding stage, the model
has independent private values. The bidders who have paid this cost are called entrants,
and only they are eligible to bid. Moreover, only those with valuations at or above the
reserve price r actually submit a bid. These bidders are called active.

The entry stage is followed by the bidding stage. Active bidders simultaneously and
independently submit sealed bids. They do not know the number of active bidders, only
the number of potential bidders, N . The good is awarded to the highest bidder.

We assume that the marginal distributions of Vi and Si are the same, and the marginal
CDF is denoted as F (·).3 We make a number of regularity assumptions on the joint
distribution of Vi and Si, F (·, ·):

Assumption 1. We assume: (i) the joint distribution F (·, ·) has support [v, v̄]2; (ii) the
marginal distribution F (·) is absolutely continuous, with a continuous density f(·) bounded
away from 0 on [v, v̄]; (iii) the conditional distribution F (·|s, Vi ≥ r) exists and satisfies
the non-degeneracy assumption F (0|s, Vi ≥ r) < 1 for s ∈ (v, v̄]; (iv) the conditional
distribution

F (v|Si ≥ s) =

´ v̄
s F (v|s̃)dF (s̃)

1− F (s)
(1)

has a support [v(s), v̄], where v ≤ v(s) < v̄ for s ∈ [v, v̄), and has a continuous density
positive on the support.

We assume that signals are informative and that higher signals are “good news”. For
our purposes, it will be sufficient to assume the following.

3This is a normalization and is without loss of generality. In all our models, any strictly increasing
transformation of the signals results in the same distribution of entry decisions and bids, and therefore is
observationally equivalent. We adopt this normalization because, in the S model, the signals are perfectly
informative. To minimize on notation, we use F to denote the joint distribution of Vi and Si, and its
marginals.
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Assumption 2 (“Good news”). For any r ≤ v̄, the conditional distribution of valuations
conditional on bidding, F (·|s, Vi ≥ r), satisfies first-order stochastic dominance: for any
s2 ≥ s1, F (·|s2, Vi ≥ r) ≤ F (·|s1, Vi ≥ r).

The lemma below shows that the stochastic dominance relation appearing in Assump-
tion 2 can be strengthened to F (·|Si ≥ s, Vi ≥ r), the distribution of values conditional on
entry with a signal above s and bidding. As we focus on equilibria in which bidders with
signals above a certain threshold enter, this result implies that increasing the threshold will
stochastically increase active bidders’ values. This fact will be fundamental for our testable
restrictions.

Lemma 1. Under Assumption 2, (i) F (·|Si ≥ s, Vi ≥ r) ≤ F (·|s, Vi ≥ r), and (ii) F (·|Si ≥
s, Vi ≥ r) is nonincreasing in s.

Both the LS and S models are included as special cases of SEM. In the LS, model, there
is no selectivity, and F (v|s) = F (v). In the S model, entry is selective, and

F (v|s) =

{
1 , v ≥ s
0 , v < s

, F (v|Si ≥ s) =

{
F (v)−F (s)

1−F (s) , v ≥ s
0 , v < s

. (2)

In particular, both models satisfy the “good news” assumption, with strict inequality
for the S model (in the relevant range of values and signals).

We restrict our attention to symmetric perfect Bayesian-Nash equilibria in which an
equilibrium entry strategy can be characterized by a cutoff s̄(N) such that (i) a bidder
weakly prefers to enter if s > s̄(N), and (ii) a bidder weakly prefers not to enter if s < s̄(N).
In what follows, we will refer to such an equilibrium simply as equilibrium.

Fix an arbitrary cutoff s̃ ∈ [v, v̄) and consider a first-price auction where bidders enter
independently with probability 1 − F (s̃), and draw their values independently from the
distribution F (v|Si ≥ s̃). Let B(v; s̃|N) : [v(s), v̄] → R+ be the corresponding equilibrium
bidding strategy. Such an auction has been studied previously by Harstad, Kagel, and
Levin (1990).4 Their results imply that the equilibrium bidding strategy is given by the
(unique) solution to the differential equation

B′ (v; s̃|N) = (v −B (v; s̃|N))
(N − 1) (1− F (s̃)) f (v|Si ≥ s̃)
F (s̃) + (1− F (s̃))F (v|Si ≥ s̃)

, (3)

subject to the boundary condition B (v(s̃)|N) = r.
In order to characterize the equilibrium cutoff s̄(N), consider Π(s, s̃, N), the expected

profit of a bidder with a signal s, who enters and bids “optimally” given his beliefs. In the
Appendix, we prove the following crucial lemma.5

4See their Theorem 1.
5In this lemma and below, we use notation x ∨ y ≡ max{x, y}.
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Lemma 2 (Monotonicity of Profit Function). The expected profit is equal to

Π (s, s̃, N) = (v(s)− r)F (s̃)N−1 ∨ 0 (4)

+

ˆ v̄

v(s)∨r
(1− F (v|s)) [F (s̃) + (1− F (s̃))F (v|Si ≥ s̃)]N−1 dv.

The function Π(s, s̃, N) is (i) nondecreasing in signal s; (ii) nondecreasing in cutoff s̃ ∈
[v, v̄), and (iii) decreasing in N .

We now provide intuition for this lemma. To begin, note that the profits at the bidding
stage, when the valuation v is know to the bidder, are increasing in v. Assuming a binding
reserve price, r > v(s), our good news Assumption 2 implies that Π(s, s̃, N) must be
nondecreasing in s. (The proof also shows that this is the case when the reserve price is
nonbinding). To gain intuition why Π(s, s̃, N) is nondecreasing in s̃, consider λ(v, s̃) =
F (s̃) + F (v|Si ≥ s̃)(1− F (s̃)), the probability that a bidder with value v wins over a rival
who adopts cutoff s̃. This probability must be nondecreasing in s̃. Indeed, marginally
increasing the cutoff s̃ by ds̃ may only lead bidder i winning over some of the rival types
v who originally had high v draws, but now simply do not enter. This leads to a weakly
higher profit for bidder i. To understand why Π(s, s̃, N) is decreasing in N , note that a
bidder with value v wins the auction with probability λ(v, s̃)N−1. For v < v̄, λ(v, s̃) < 1,
and λ(v, s̃)N−1 is decreasing in N . The proof in the Appendix shows that the Envelope
Theorem then implies that Π(s, s̃, N) is then also decreasing in N .

We now introduce continuity and strict monotonicity assumptions that are likely to be
satisfied in cases of practical interest.

Assumption 3 (Continuity). The function Π(s, s,N) is continuous in s.

Assumption 4 (Strict Monotonicity). The function Π(s, s,N) is increasing in s.

Under Assumption 3, the equilibrium cutoff under partial entry, i.e. whenever s̄(N) ∈
(v, v̄), is characterized by an indifference property: given that all rivals adopt this cutoff,
bidder i with a signal Si = s̄(N) must be indifferent between entering or not entering. Then,
the equilibrium cutoff s̄(N) is given by a solution to the equation k = Π (s̄(N), s̄(N), N),
and is unique if Assumption 4 holds.

Both S and LS models satisfy Assumptions 3 and 4. These assumptions will be main-
tained from this point on. The proposition below formally describes properties of an equi-
librium.

Proposition 1 (SEM equilibrium). There exists a unique symmetric perfect Bayesian equi-
librium. The bidding strategy B (v|N) ≡ B(v; s̄(N)|N) is strictly increasing and continu-
ously differentiable. The entry strategy is characterized by a cutoff s̄(N) that satisfies the
following properties:

(a) Large entry cost: If Π (v̄, v̄, N) < k, there is no entry: s̄ (N) = v̄.
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(b) Small entry cost: If k ≤ Π (v, v,N), there is entry with probability 1, or “full” entry:
s̄ (N) = v.

(c) Intermediate entry cost: If Π (v, v,N) < k < Π (v̄, v̄, N) and continuity Assumption 3
holds, entry is “partial”, s̄ (N) ∈ (v, v̄), and the cutoff s̄(N) must satisfy the indiffer-
ence condition

k = Π (s̄(N), s̄(N), N) . (5)

The cutoff is increasing in N when entry is partial: s̄(N) ∈ (v, v̄) and N ′ > N implies
s̄(N ′) > s̄(N).

The main result in the above proposition is the cutoff monotonicity result. Simply
put, lower entrant profits, arising ceteris paribus from more competition, eliminate entry
incentives of bidders with sufficiently low signals. This results in a higher cutoff s̄(N).

We define N∗ as the minimal N such that the cutoff s̄(N) implies partial entry,

N∗ ≡ min{N ≥ 2 : s̄(N) > v}

(we let N∗ = 2 if the entry cost is large enough so that s̄(N) > v for all N ≥ 2). Conse-
quently, the cutoff s̄(N) is increasing in N for N ≥ N∗.

Remark 1. Proposition 1(b) implies that entry in the S model cannot be “full”, as (2) im-
plies Π(v, v̄) = 0. Furthermore, the signal cutoff s̄ (N) ∈ (v, v̄) in the S model is determined
as the unique solution of

(s̄(N)− r)F (s̄(N))N−1 = k (6)

(the entrant with the lowest valuation, s̄(N), wins the auction if and only if all rivals do
not enter, the event that occurs with probability F (s̄(N))N−1).

2.2 Selection effect

We now turn to the selection effect, which is the main subject of our paper. Denote the
distribution of valuations conditional on bidding as

F ∗ (v|N) = F (v|Si ≥ s̄ (N) , Vi ≥ r) . (7)

Because the cutoff s̄ (N) is nondecreasing, the result in Lemma 1(ii) ensures that for N ′ >
N ,

F ∗(v|N ′) ≤ F ∗(v|N),

so that quantiles of F ∗(v|N), defined for τ ∈ (0, 1) as

Q∗ (τ |N) = F ∗−1 (τ |N) ≡ inf {v : F ∗ (v|N) ≥ τ} ,
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weakly increase:
Q∗(τ |N ′) ≥ Q∗(τ |N).

We define a selection effect ∆ (τ,N,N ′) as

∆
(
τ,N,N ′

)
≡ Q

(
τ |N ′

)
−Q (τ |N) ≥ 0. (8)

The inequality above is weak in general; for example, it becomes equality in the LS model,
so that there is no selection effect. On the other hand, the S model features a positive
selection effect for all τ ∈ (0, 1). A further question arises: what other SEM models also
have a positive selection effect? A sufficient condition for a positive selection effect is given
below.

Assumption 5. For all s ∈ (v, v̄), and v in the interior of the support of F (v|s, Vi ≥ r),
v ∈ (r ∨ v(s), v̄),

F (v|Si ≥ s, Vi ≥ r) < F (v|s, Vi ≥ r).

This assumption mirrors the condition in Lemma 1, but with a strict inequality, and is
satisfied if, for example, the vector (Vi, Si) has a strictly affiliated density f(v, s) > 0 on
the support. However, it is weaker since it is also satisfied in the S model, where the joint
density of values and signals does not exist.6

We then have the following proposition.

Proposition 2 (Selection effect). Under Assumption 5, the SEM features a positive selec-
tion effect: for any N ′ > N ≥ N∗ and τ ∈ (0, 1), ∆ (τ,N,N ′) > 0.

3 Nonparametric identification

3.1 Main identification result

We now show that the valuation quantiles Q∗ (τ |N), which are necessary for the identifi-
cation of the selection effect, are nonparametrically identifiable if the econometrician can
observe the reserve price r and all bids in each auction. The number of potential bidders
N is also assumed to be observable. In the SEM, the equilibrium probability of bidding is

p (N) = 1− F (s̄(N), Vi ≥ r) , (9)

and the distribution of the number of active bidders is binomial with parameters N and
p(N). Both the probability of entry p(N) and the distribution of active bidders’ bids,

G∗ (b|N) = F (ξ (b|N) |Si ≥ s̄ (N) , Vi ≥ r)
= F ∗ (ξ (b|N) |N) , (10)

6We would have liked instead to impose a strict version of the stochastic dominance condition appearing
in our “good news” Assumption 2. However, such a strict version would be violated in the S model, where
the selection effect is obviously present.
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are identifiable, where ξ (·|N) :
[
r, b̄ (N)

]
→ [v∗ (N) , v̄] is the inverse bidding strategy,

which is defined as the unique solution to the equation B (ξ|N) = b. (We use the notation
v∗(N) for the lower bound of the support of F ∗(v|N), i.e. v∗(N) = r ∨ v(s̄(N)).) The
probability density of G∗ (·|N) is denoted as g∗ (·|N). Our identification strategy follows
GPV.

Proposition 3. In both models, the inverse bidding strategy is identifiable for all b ∈[
r, b̄ (N)

]
as

ξ (b|N) = b+
1

N − 1

(
G∗ (b|N)

g∗ (b|N)
+

1− p (N)

p (N)

1

g∗ (b|N)

)
, (11)

and B (v|N) is identifiable on [v∗ (N) , v̄]. The quantiles of active bidders’ valuations (and
therefore the selection effect ∆ (τ,N ′, N)) are also identifiable according to

Q∗ (τ |N) = ξ (q∗ (τ |N) |N) ,

where q∗ (τ |N) ≡ G∗−1 (b|N) are the quantiles of bids.

Remark 2. Proposition 3 implies that the distribution of active bidders’ valuations is
identifiable in both models as F ∗ (v|N) = G∗

(
ξ−1 (v|N) |N

)
, with support[

ξ (r|N) , ξ
(
b̄ (N) |N

)]
. (12)

The intuition for this result is as follows. Consider the first-order equilibrium conditions
of the bidding game. A bidder with value v who submits a bid b has a probability of winning
over a given rival equal to 1−p (N) +p (N)G∗ (b|N). As there are N −1 identical rivals, it
follows by independence that the probability of winning is (1− p (N) + p (N)G∗ (b|N))N−1,
and the expected profit is

(v − b) (1− p (N) + p (N)G∗ (b|N))N−1 .

Writing out the first-order condition, i.e. taking the derivative of the expected profit with
respect to b and setting it equal to 0, gives the inverse bidding strategy (11).

Remark 3 (Identification using only winning bids). The assumption that all bids are
observable is not necessary. If only the winning bid is observable, then the distribution
G∗ (b|N) can be recovered from the distribution of the winning bid G∗Y (b|N) according to
the formula

G∗Y (b|N) =
(1− p (N) + p (N)G∗ (b|N))N − (1− p (N))N

1− (1− p (N))N
.

Therefore, the inverse bidding strategy ξ(b|N) as well as the quantiles of active bidders
valuations Q∗(τ |N) are identifiable as in Proposition 3.
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The reserve price r is identifiable as the infimum of the bids in all our models, regardless
of whether it is observable or not. (If there is no reserve price, the aforementioned infimum
is 0). Formally, in our notation, r = limb↓0 q

∗(b|N).
Note that (11) is parallel to equation (25) in GPV, who consider the identification in

a standard first-price auction model (k = 0) with a binding reserve price. In the standard
model, a failure to bid is attributed solely to the truncating effect of the reserve price, and
p (N) = 1− F (r). If k > 0, then there is an additional channel of costly entry, and p (N)
is given by (9). As s̄ (N) is nondecreasing in N ,

p (N) ≤ p
(
N ′
)
, for N > N ′.

This is another restriction that is shared by all models in this paper and will be tested
empirically.

3.2 Additional identification results

The focus of our paper is on the identification of the selection effect using variation in
N . However, in view of the identification results in GPV for the standard model (k = 0)
obtained for N fixed, it is also worth investigating the question what is identified under
this assumption in models with endogenous entry. The following proposition provides an
answer to this question.

Proposition 4. Given a number of potential bidders N , consider any absolutely contin-
uous CDF G (·) with the support

[
r, b̄
]
, a probability mass function ρ (·) with the support

{0, 1, . . . , N}, and p ∈ (0, 1).

(a) There exists a SEM that rationalizes the data, i.e. such that the probability of bidding
is p, the induced equilibrium distribution of bids is G (·) and the distribution of the
number of active bidders n is ρ (·), if and only if: (i) ρ (·) is Binomial with parameters
(N, p), (ii) the observed bids are i.i.d. according to G (·), and (iii) the function ξ (·|N)
defined in (11) with G∗(·|N) = G(·) and p(N) = p is strictly increasing on

[
r, b̄
]
and

its inverse is differentiable on
[
ξ (r|N) , ξ

(
b̄|N

)]
.

Furthermore, when conditions (i)-(iii) in (a) hold,

(b) Any SEM is observationally equivalent to the standard model (k = 0); therefore F (v) =
F ∗ (v|N) is identifiable for v ≥ r, while the entry cost is not identifiable.

(c) An S model rationalizes the data if and only if ξ (r|N) > r. The distribution F (v) is
identifiable according to

F (v) = p (N)F ∗ (v|N) + 1− p (N)

on
[
ξ (r|N) , ξ

(
b̄ (N) |N

)]
, and k is identifiable according to (6):

k = (ξ (r|N)− r) (1− p (N))N−1 .

11



Remark 4 (Entry Cost Bias). It is clear that model misspecification will lead to biased
estimation of the entry cost. The direction of the bias can also be determined. Suppose
that k is identifiable and is estimated according to LS. However, the data are generated
according to the SEM with selective entry (Assumption 5 holds). Then k is estimated using
the wrong (LS) factor 1− F ∗(v) instead of the correct (SEM) factor 1− F (v|s̄(N)) in (4)
and (5). Since selective entry implies 1−F ∗ (v) > 1−F (v|s̄(N)), the true k is smaller than
the estimated one. The intuition for the presence of this bias is straightforward. The entry
cost in the LS model is equal to the equilibrium expected profit of the average potential
bidder, while it is equal to the expected profit of the marginal potential bidder (with signal
s̄(N)) in the SEM. If there is a positive selection effect, as implied by the selective entry
condition in Assumption 5, the marginal bidder has a smaller expected profit than the
average bidder, which leads to over estimation of the entry cost.

The following proposition shows that the variation in N enhances the identification of
the S and LS models. Let N = [N, N̄ ], where 2 ≤ N < N̄ , denote the support of the
distribution of the number of potential bidders. In the S model, the set of v for which F (v)
is identified is [s̄ (N) , v̄] ⊃ [s̄ (N) , v̄] for all N > N . In the LS model, F (v) is still identified
if and only if v ∈ [r, v̄]. However, now the entry cost is identifiable if N has at least three
elements and N∗ < N̄ . This is because N∗ < N̄ and the cutoff monotonicity property in
Proposition 1 implies

p (N) = ... = p (N∗) > ... > p
(
N̄
)
. (13)

When N belongs to the flat segment, N ≤ N∗, we are certain that bidders enter with
probability one and non-participation is due to the truncating effect of the reserve price
only, and therefore are able to identify F (r) = 1−p (N). When N belongs to the decreasing
segment, N > N∗, we are certain that bidders are indifferent between entering or not, and
are able to identify the entry cost from the indifference condition given the knowledge of
F (r).7

Proposition 5. In the S model,

(a) F (v) is identifiable for v ≥ ξ (r|N).

(b) k is identifiable according to (6), k = (ξ (r|N)− r) (1− p (N))N−1.

In the LS model,

(c) F (v) is identifiable for v ≥ r.

(d) N∗ is identifiable as

N∗ = min {N ∈ N : p (N) > p (N + 1)} . (14)
7Xu (2012) develops a nonparametric estimator of the entry cost in S model.
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(e) If N has at least three elements and N∗ ≥ N + 1, k is identifiable according to

k = (1− F (r))

ˆ v̄

r
(1− F ∗ (v))(1− p (N) + p (N)F ∗ (v))N−1dv. (15)

Remark 5. Even if N has at least three elements, the variation in N is insufficient for
identification of the entry cost in the LS model when N∗ = N . In this case, p (N) < p (N ′)
for all N,N ′ ∈ N , and (15) holds for all N ∈ N . Then only the ratio k/(1 − F (r)) is
identifiable according to (15), but k and F (r) are not separately identifiable. Also, the
result in (d) above applies to the SEM.

4 Econometric implementation

In what follows, we allow for observable auction heterogeneity by introducing a vector of
auction-specific covariates x ∈ X ⊂ R

d. We now assume that the distribution of (v, s)
can change from auction to auction depending on the covariate value x, and is denoted by
F (v, s|x). Other objects are also indexed by x in a similar notation. The reserve price
r(x) is assumed to be binding. The SEM’s differential equation (3) for the bidding strategy
takes the following form:

B′ (v|N, x) = (v −B (v|N, x))

× (N − 1) (1− F (s̄ (N, x) |x)) f (v|Si ≥ s̄ (N, x) , x)

F (s̄ (N, x) |x) + (1− F (s̄ (N, x)))F (v|Si ≥ s̄ (N, x) , x)
, (16)

with the boundary condition B (r (x) |N, x) = r (x), whereas the counterpart of equation
(5) for the equilibrium cutoff s̄ (N, x) is

ˆ v̄(x)

r(x)
(1− F (v|s̄(N, x), x))

× (F (s̄(N, x)|x) + (1− F (s̄(N, x)|x))F (v|Si ≥ s̄(N, x), x))N−1 dv = k(x), (17)

where k (x) denotes the entry cost function.

4.1 Data generating process (DGP)

We assume that a sample of L auctions is available, and index the auctions by l = 1, .., L.
Each auction is characterized by the vector of covariates xl ∈ X . We make the following
formal assumptions concerning the DGP.

Assumption 6. (a) {(Nl, xl) : l = 1, . . . , L} are i.i.d.

13



(b) Let ϕ (x) denote the marginal PDF of xl. We assume that ϕ (·) > 0 on its compact
support X ⊂ R

d and admits up to R ≥ 2 continuous partial derivatives on the interior
of X .

(c) Let π (N |x) denote the distribution of Nl conditional on xl. We assume that π(·|x)
has support N =

{
N, ..., N̄

}
for all x ∈ X , N ≥ 2, and π (N |·) admits R continuous

bounded derivatives on the interior of X for all N ∈ N .

(d) (Vil, Sil) and Nl are independent conditional on xl.

(e) {(Vil, Sil) : i = 1, . . . Nl; l = 1, . . . , L} are i.i.d. conditional on (Nl, xl).

(f) In an SEM other than the S model, the density f (v, s|x) is strictly positive and bounded
away from zero on its support, a compact interval [v (x) , v (x)]2 ⊂ R

2
+ for all x ∈ X ;

f (·, ·|x) admits up to R − 1 continuous partial derivatives on [v (x) , v (x)]2 for all
x ∈ X , and f (v, s|·) admits up to R continuous partial derivatives on the interior of
X for all v, s ∈ [v (x) , v (x)]2. In the S model, the density f (v|x) is strictly positive
and bounded away from zero on its support, a compact interval [v (x) , v (x)] ⊂ R+ for
all x ∈ X ; f (·|x) admits up to R − 1 continuous derivatives on [v (x) , v (x)] for all
x ∈ X , f (v|·) admits up to R continuous partial derivatives on the interior of X for
all v ∈ [v (x) , v (x)].

(g) The reserve price r (x) is binding for all x ∈ X , N ∈ N , i.e. v (x) < r (x), and r(·)
admits up to R continuous partial derivatives on the interior of X .

(h) The entry cost k(x) admits up to R continuous partial derivatives on the interior of
X .

Central to our approach is the assumption (d): conditional on xl, the number of potential
bidders Nl is exogenous. This assumption allows us to use the variation in the number of
potential bidders for testing purposes. In Section 5, we explain why this assumption is
plausible in the context of our empirical application.

Assumption 6(a) is the usual i.i.d. assumption on the DGP for the covariates. The
smoothness conditions in Assumptions 6(b), (c), (f), (g) and (h) are standard in the non-
parametric literature and used for deriving the asymptotic properties of the kernel estima-
tors. Assumption 6(c) also defines the support of the distribution of Nl conditional on the
covariates. Assumption 6(e) is the IPV assumption.

The bid bil corresponding to the valuation Vil is generated according to the bidding
strategy

bil = B (Vil|Nl, xl) ,

where B (·|N, x) is a solution to (16). Decisions to submit a bid, yil ∈ {0, 1}, are generated
according to the cutoff strategy

yil = 1 if Sil ≥ s̄ (Nl, xl) and Vil ≥ rl.

14



The bidding strategy B and the cutoff function s̄ depend on the model’s primitives f and
k through the equilibrium conditions of each model; neither B nor s̄ is available in closed
form.

4.2 Hypotheses

Our main hypotheses are based on the identification of the selection effect in the active
bidders’ valuation quantiles. Recall that, for τ ∈ (0, 1), Q∗ (τ |N, x) denotes the conditional
quantile function of the distribution of active bidders’ valuations. Conditional on xl = x,
the restrictions of the SEM and LS model can be stated respectively as:

HSEM : Q∗ (τ |N, x) ≤ ... ≤ Q∗
(
τ |N̄ , x

)
, (18)

HLS : Q∗ (τ |N, x) = ... = Q∗
(
τ |N̄ , x

)
.

In the S model, F ∗ (v|N, x) is derived by truncation from the common “parent” distri-
bution F (v|x):

F ∗ (v|N, x) =
F (v|x)− F (s̄ (N, x) |x)

1− F (s̄ (N, x))

=
F (v|x)− (1− p (N, x))

p (N, x)
. (19)

Because the distribution F does not depend on N , this leads to the restriction

p (N, x)F ∗ (v|N, x) + 1− p (N, x) = p
(
N ′, x

)
F ∗
(
v|N ′, x

)
+ 1− p

(
N ′, x

)
. (20)

To express restriction (20) in terms of quantiles, we define

β (τ,N, x) = 1−
p
(
N̄ , x

)
p (N, x)

(1− τ) . (21)

Since p
(
N̄ , x

)
≤ p (N, x), it follows that 0 ≤ β (τ,N, x) ≤ 1 for all τ ∈ [0, 1], and β (τ,N, x)

can therefore be interpreted as a legitimate transformation of the quantile order τ .8 One
can easily show that in the S model, condition (20) implies the following restriction in terms
of the transformed quantiles:

HS : Q∗ (β (τ,N, x) |N, x) = . . . = Q∗
(
β
(
τ, N̄ , x

)
|N̄ , x

)
. (22)

In this paper, we consider the independent testing of HSEM , HLS , and HS against
their corresponding unrestricted alternatives.9 In addition, we also test whether the entry

8Although any other fixed value of N can be used in place of N̄ in the definition of β, the choice N = N̄
ensures that β takes on values in the zero-one interval.

9Our testing framework is designed to capture the selection effect, and the resulting tests may not be
consistent against all conceivable alternative models.
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probabilities p (N, x) are nonincreasing in N , as implied by all the models. In this case, for
a given value of x, the null hypothesis is

Hp : 1 > p (N, x) ≥ ... ≥ p
(
N̄ , x

)
> 0. (23)

Hypothesis Hp is also tested against its corresponding unrestricted alternative.
The fact that the equilibrium probabilities of submitting a bid decline with the number

of potential bidders is probably a common feature of many other models of entry. When-
ever a model with costly entry is used to explain why some potential bidders do not bid, an
alternative explanation must be confronted. Following Paarsch (1997), even with no entry
cost, non-participation can still be explained by the fact that some bidders draw valuations
below the reserve price. In that case, however, the probability of bidding is equal to proba-
bility P (Vi ≤ r|x) and therefore does not depend on the number of potential bidders under
Assumption 6(e). Thus, the null hypothesis of costless entry (k = 0) can be formulated as

Hk=0 : p (N, x) = ... = p
(
N̄ , x

)
. (24)

Note that because k = 0 is formally included as a special case of LS, HLS is also a testable
restriction of the standard model.10

Our model implies that the distribution of the number of active bidders conditional on
(N, x) is binomial:

ρ (n|N, x) =

(
N
n

)
p (N, x)n (1− p (N, x))N−n . (25)

Unobserved heterogeneity or the presence of multiple equilibria (see below) may result in
a more complicated DGP that violates this restriction.11 It is therefore desirable to have
a nonparametric test of the binomial restriction. The restriction is testable because the
conditional probability ρ (n|N, x) is directly identifiable, and its test is proposed in Section
4.4.

Remark 6 (Multiple Equilibria). As can be seen from the proof of Proposition 1, in the
SEM, there are also asymmetric equilibria, where a subset of min {N,N∗} bidders enters
with probability one.12,13 These equilibria also induce a binomial distribution of the number

10This result also follows from equation (6) in Guerre, Perrigne, and Vuong (2009), who consider identi-
fication in a more general model with risk-averse bidders.

11Krasnokutskaya (2011) explores identification and estimation in first-price auctions under unobserved
heterogeneity. In a recent working paper, Roberts (2009) proposes an alternative approach. He shows that,
to the extent that the reserve price is optimally chosen by the sellers, conditioning on the reserve controls
for unobserved heterogeneity.

12Since a subset of firms enters with probability 1, there is no selective entry in these equilibria.
13The equilibria of this form do not exist in the S model because the bidders with v = v make zero

expected profit from bidding, and are thus unable to recover the entry cost. It is unknown under which
conditions multiple equilibria exist in the S model (Tan and Yilankaya (2006) obtain some results for
second-price auctions).

16



of active bidders, conditional on (N, x): for n = 0, 1, . . . ,min {N,N∗},

ρ̃ (n|N, x) =

(
min {N,N∗}

n

)
(1− F (r|x))n F (r|x)min{N,N∗}−n .

However, this binomial distribution is different from that corresponding to the symmetric
equilibrium in (25), whenever there is partial entry for some N ∈ N . This is because partial
entry means that N∗ < N̄ , and therefore min {N,N∗} < N and 1 − F (r|x) > p (N, x),
which implies ρ̃ (n|N, x) 6= ρ (n|N, x). If such asymmetric equilibria are present in the data
with probability α (N, x) > 0 for some N > N∗, then the conditional distribution of the
number of active bidders is a mixture of two different binomial distributions ρ (n|N, x) and
ρ̃ (n|N, x):

α (N, x) ρ̃ (n|N, x) + [1− α (N, x)] ρ (n|N, x) ,

and therefore itself is not binomial. Our binomial test can thus be used to uncover the
presence of such asymmetric equilibria in the data.

4.3 Nonparametric estimation of quantiles

In this section, we present our nonparametric estimation method for Q∗ (τ |N, x). This
method is based on the fact that, because the bidding strategies are increasing, the quantiles
of valuations Q∗ (τ |N, x) and bids q∗ (τ |N, x) for active bidders, where

q∗ (τ |N, x) = G∗−1 (τ |N, x) ,

are linked through the (inverse) bidding strategy Q∗ (τ |N, x) = ξ (q∗ (τ |N, x) |N, x). Be-
cause both ξ (b|N, x) and q∗ (τ |N, x) can be estimated nonparametrically, we consider a
natural plug-in estimator:

Q̂∗ (τ |N, x) = ξ̂ (q̂∗ (τ |N, x) |N, x) , (26)

where ξ̂ (b|N, x) and q̂∗ (τ |N, x) denote the nonparametric estimators of ξ (b|N, x) and
q∗ (τ |N, x) respectively, which we describe below.

Recalling that the inverse bidding strategy ξ (b|N, x) is given by

ξ (b|N, x) = b+
1− p (N, x) + p (N, x)G∗ (b|N, x)

(N − 1)p (N, x) g∗(b|N, x)

(see Proposition 3), our estimator ξ̂ (b|N, x) is obtained by replacing p (N, x), G∗ (b|N, x),
and g∗(b|N, x) with their corresponding nonparametric estimators, p̂ (N, x), Ĝ∗ (b|N, x),
and ĝ∗(b|N, x). The conditional quantile q∗ (τ |N, x) is estimated by inverting the nonpara-
metric estimator for the bids’ CDF, Ĝ∗ (b|N, x):

q̂∗ (τ |N, x) = Ĝ∗−1 (τ |N, x) = inf
{
b : Ĝ∗ (b|N, x) ≥ τ

}
.

Our nonparametric estimators for g∗ (b|N, x), G∗ (b|N, x), and p (N, x) are based on the
kernel method. Let K denote a kernel functions satisfying the following assumption.
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Assumption 7. The kernel K has at least R ≥ 2 continuous and bounded derivatives on
R, compactly supported on [−1, 1] and is of order R:

´
K (u) du = 1,

´
ujK (u) du = 0 for

j = 1, ..., R− 1.

The conditional distribution of the number of potential bidders and the conditional
probability of bidding (given N and x) are estimated as

π̂ (N |x) =

∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)∑L
l=1

∏d
k=1K

(
xkl−xk

h

) , and

p̂ (N, x) =

∑L
l=1 nl1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)
N
∑L

l=1 1 {Nl = N}
∏d
k=1K

(
xkl−xk

h

) ,
where h is the bandwidth parameter, and nl =

∑Nl
i=1 yil is the number of active bidders

in auction l. As the probability of observing N conditional on xl = x and the probability
of submitting a bid conditional on Nl = N and x = xl can be written as π (N |x) =
E [1 {Nl = N} |x] and p (N, x) = E [n|N, x] /N respectively, their estimators are standard
nonparametric regression estimators.

In the supplement, we show that the estimator p̂ (N, x) is asymptotically normal and
derive its asymptotic variance:

Vp (N, x) =

(ˆ
K (u)2 du

)d p (N, x) (1− p (N, x))

Nπ (N |x)ϕ (x)
.

Moreover, the estimators p̂ (N, x) are asymptotically independent for any distinct N,N ′ ∈{
N, ...N̄

}
and x, x′ in the interior of X .

The proposed estimators of g∗ and G∗ are

ĝ∗ (b|N, x) =

∑L
l=1

∑Nl
i=1 yil1 {Nl = N}K

(
bil−b
h

)∏d
k=1K

(
xkl−xk

h

)
NLhd+1p̂ (N, x) π̂ (N |x) ϕ̂ (x)

, and

Ĝ∗ (b|N, x) =

∑L
l=1

∑Nl
i=1 yil1 {Nl = N} 1 (bil ≤ b)

∏d
k=1K

(
xkl−xk

h

)
NLhdp̂ (N, x) π̂ (N |x) ϕ̂ (x)

,

where ϕ̂ (x) is the usual multivariate kernel density estimator of the PDF ϕ:14

ϕ̂(x) = (Lhd)−1
L∑
l=1

d∏
k=1

K

(
xkl − xk

h

)
.

14The estimators ĝ∗ and Ĝ∗ are standard kernel estimators of the conditional density and conditional
CDF, see Pagan and Ullah (1999), equation (2.127) on page 58.
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The transformed quantiles Q∗ (β (τ,N, x) |N, x), which are needed for the tests of the S
model, can be estimated by Q̂∗(β̂ (τ,N, x) |N, x), where β̂ (τ,N, x) is a plug-in estimator of
β(τ,N, x) in (21):

β̂ (τ,N, x) = 1−
p̂
(
N̄ , x

)
p̂ (N, x)

(1− τ) .

In the supplement, we prove that the estimators Q̂∗ (τ |N, x) and Q̂∗(β̂ (τ,N, x) |N, x)
are consistent and asymptotically normal. More specifically, we prove that, under certain
technical but standard assumptions,

√
Lhd+1(Q̂∗(τ |N, x) − Q∗(τ |N, x)) is asymptotically

normal with mean zero and the variance given by

VQ (N, τ, x) =

(ˆ
K (u)2 du

)d+1 (1− p (N, x) (1− τ))2

(N − 1)2Np3 (N, x) g∗3(q∗ (τ |N, x) |N, x)π (N |x)ϕ (x)
.

Further, the estimation of β(τ,N, x) has no effect on the asymptotic distribution of the
transformed quantiles estimator Q̂∗(β̂ (τ,N, x) |N, x), since, as we also show in the sup-
plement, β̂ (τ,N, x) converges at a faster rate than Q̂∗(·|N, x). A consistent estimator
V̂Q (N, τ, x) can be obtained by replacing p (N, x), q∗ (τ |N, x), and the other unknown
functions by their estimators. Moreover, quantiles’ estimators are independent across the
values of τ ∈ (0, 1), N ∈ N , and x in the interior of X .

Remark 7 (Circumventing the curse of dimensionality). Although nonparametric methods
are attractive in principle, they may be unsuitable for applications with small samples and
a high-dimensional set of covariates. Indeed, most auction papers having made nonpara-
metric identification arguments, almost always follow the approach of Haile, Hong, and
Shum (2003) and apply them to “homogenized” bids, thus finessing the covariate problem.
Unfortunately, a standard trick of assuming linearity in the covariates, estimating a first-
stage regression model to get rid of the covariates, and then using “homogenized” bids in
the second stage does not work in our model with endogenous entry. However, following the
suggestion in Paarsch and Hong (2006, Chapter 3.3), a variant of the quantile single index
model can be applied to reduce the curse of dimensionality in our setting. This approach
is explained further in the supplement.

4.4 Tests

In this section, we propose nonparametric tests based on the models’ restrictions. (Refer
to Table 1 for a summary of these tests.) Recall the definition of the selection effect (8)
from Section 2.2. Conditional on xl = x, the estimated selection effect is

∆̂
(
τ,N,N ′, x

)
= Q̂∗

(
τ |N ′, x

)
− Q̂∗ (τ |N, x) .

We propose to test the affiliated model using the following statistic

TSEM (x) = sup
τ∈Υ

TSEM (τ, x) ,
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where Υ = {τ1, ..., τk} ⊂ (0, 1) is a finite set of quantile values, and TSEM (τ, x) is defined
as

TSEM (τ, x) =
√
Lhd+1

N̄−1∑
N=N

N̄∑
N ′=N+1

[
∆̂ (τ,N,N ′, x)

]
−

σ̂ (τ,N,N ′, x)
.

In the above expression,

σ̂2
(
τ,N,N ′, x

)
= V̂Q (b,N, x) + V̂Q

(
b,N ′, x

)
(27)

is the estimator of the asymptotic variance of ∆̂ (τ,N,N ′, x), and the function [·]− is defined
as

[u]− =

{
−u, u < 0,
0, u ≥ 0.

Note that under the hypothesis HSEM , Q∗ (τ |N ′, x) − Q∗ (τ |N, x) ≥ 0 for N ′ ≥ N , and
through the function [·]−, the statistic TSEM (τ, x) captures only pairwise differences be-
tween the sample quantiles corresponding to different N ’s that violate the model’s restric-
tion. We rescale each term by its standard error to give more weight to differences that are
estimated more precisely.

The hypothesis HSEM is rejected for large values of TSEM (x). Thus, the asymptotic
size α test is

Reject HSEM when TSEM (x) > cSEML,1−α(x), (28)

where cSEML,1−α(x) is an appropriately chosen critical value. We suggest computing the critical
values cSEML,1−α(x) using the bootstrap procedure described below.

To generate bootstrap samples, we first draw randomly with replacement, L auctions
from the original sample of auctions {(Nl, xl) : l = 1, . . . , L}. In the second step, we draw
bootstrap bids randomly with replacement from the bid data corresponding to each selected
auction. Thus, if auction l̄ is selected in the first step, then in the second step, we draw
Nl̄ values from the set {bil̄ : i = 1, . . . , Nl̄}. Here we redefine the bil’s so that they take
values in the augmented set {R++,“no bid”}. Let {(b†1l, . . . , b

†
N†l l

, N †l , x
†
l ) : l = 1, . . . , L} be

a bootstrap sample, and M be the number of bootstrap samples. Then, in each bootstrap
sample m = 1, . . . ,M , compute T †,SEMm (x) = supτ∈Υ T

†SEM
m (τ, x), where

T †,SEMm (τ, x) =
√
Lhd+1

N̄−1∑
N=N

N̄∑
N ′=N+1

[
∆̂†m (τ,N,N ′, x)− ∆̂ (τ,N,N ′, x)

]
−

σ̂†m (τ,N,N ′, x)
.

Here, ∆̂†m (τ,N,N ′, x) is the bootstrap analogue of the selection effect ∆̂ (τ,N,N ′, x):

∆̂†m
(
τ,N,N ′, x

)
= Q̂∗,†m

(
τ |N ′, x

)
− Q̂∗,†m (τ |N,x) ,
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Q̂∗,†m (τ |N, x) is the bootstrap analogue of estimator Q̂∗ (τ |N, x) for the bootstrap sample
m, and σ̂†m (τ,N,N ′, x) is the bootstrap analogue of σ̂ (τ,N,N ′, x) computed using (27)
in bootstrap sample m. To compute the required statistics, we also define the bootstrap
variable y†il, where y

†
il = 0 if b†il takes the value “no bid”, and y†il = 1 otherwise. The critical

value cSEML,1−α(x) is the (1− α)-th sample quantile of {T †,SEMm : m = 1, . . .M}.
A similar approach is used to test the restrictions of the LS and S models and those of

the standard model (no costly entry). In the case of the LS model, the statistic is given
by TLS (x) = supτ∈Υ T

LS (τ, x), where TLS (τ, x) is constructed similarly to TSEM (τ, x),
however, with the function [·]− replaced by the absolute value |·|. This is because the
LS model’s restrictions are equalities, and we need to capture the deviations from HLS in
either direction. For the S model, we define the quantile difference by using the transformed
quantiles,

∆̂
(
τ,N,N ′, x

)
= Q̂∗

(
β̂(τ,N ′, x)|N ′, x

)
− Q̂∗

(
β̂(τ,N, x)|N, x

)
,

and then proceed exactly as before.
The hypothesis Hp in (23) can be tested using the statistic

Tp (x) =
√
Lhd

N̄∑
N=N

N̄∑
N ′=N

[
∆̂p (N,N ′, x)

]
+

σ̂p (N,N ′, x)
, where

∆̂p

(
N,N ′, x

)
= p̂

(
N ′, x

)
− p̂ (N, x) ,

[u]+ =

{
0, u < 0,
u, u ≥ 0.

Here, σ̂2
p is the estimator of the asymptotic variance of ∆̂p. The null hypothesis of costless

entry in (24) can be tested using a statistic constructed similarly to Tp (x), however, with
the function [·]+ replaced by the absolute value |·|.

To test the binomial restriction in (25), let

∆̂Binomial (n,N, x) = ρ̂ (n|N, x)−
(
N
n

)
p̂ (N, x)n (1− p̂ (N, x))N−n

be the deviation of the directly estimated probability of entry from the corresponding
binomial probability, where

ρ̂ (n|N, x) =

∑L
l=1 1 {nl = n} 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

)∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

) (29)

is a consistent nonparametric estimator of ρ̂ (n|N, x). To test the binomial restriction, we
employ the following statistic:

TBinomial (x) =
√
Lhd

N̄∑
N=N

N∑
n=0

∣∣∣∆̂Binomial (n,N, x)
∣∣∣

σ̂Binomial (n,N, x)
,
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where σ̂2
Binomial (n,N, x) is the plug-in estimator of the asymptotic variance of the difference

∆̂Binomial (n,N, x):

σ2
Binomial (n,N, x) = Vρ (n,N, x) +D2 (n,N, x)Vp (N, x)− 2D (n,N, x)σρ,p (n,N, x) ,

where Vρ and Vp are the asymptotic variances of ρ̂ and p̂ respectively:

Vρ (n,N, x) =
ρ (n|N, x) (1− ρ (n|N, x))

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

,

Vp (N, x) =
p (N, x) (1− p (N, x))

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

,

D (n,N, x) is the derivative of
(
N
n

)
p (N, x)n (1− p (N, x))N−n with respect to p (N, x),

and σρ,p (n,N, x) is the asymptotic covariance between ρ̂ and p̂:

σρ,p (n,N, x) =
E {(1 (nl = n)− ρ (n|N, x)) (nl/N − p (N, x)) |N, x}

(´
K2 (u) du

)d
Nπ (N |x)ϕ (x)

.

In the above expression, the term E {(I (nl = n)− ρ (n|N, x)) (nl/N − p (N, x)) |N, x} can
be estimated as∑L

l=1 (1 (nl = n)− ρ̂ (n|N, x)) (nl/N − p̂ (N, x)) 1 {Nl = N}
∏d
k=1K

(
xkl−xk

h

)∑L
l=1 1 {Nl = N}

∏d
k=1K

(
xkl−xk

h

) .

As described above, we test each hypothesis for a given value x of the covariates. The
reason for this is that a null hypothesis can be true for one value of x and false for another.
If, however, one wishes to test a hypothesis over a range of values of x, then our approach
can be modified as follows. In the case of HSEM , for example, one can select a grid of
values of x from the interval of interest and compute TSEM (x) for each value in the grid.
TSEM (x) can then be averaged over the chosen grid of values. The critical values for
the test can be simulated using the averaged over the grid bootstrap statistic T †,SEMm (x).
Alternatively, one can use the maximum of TSEM (x) over the chosen grid for x. In this
case, the critical values should be simulated using the maximum of T †,SEMm (x) over the
same grid.

We establish the asymptotic validity of the bootstrap tests in the supplement. Note that
to ensure a valid bootstrap approximation, the bootstrap statistics must use re-centered
differences. Thus, the statistic TSEM (τ, x) is based on ∆̂ (τ,N,N ′, x), and its boot-
strap counterpart T †,SEMm (τ, x) is based on the re-centered differences ∆̂†m (τ,N,N ′, x) −
∆̂ (τ,N,N ′, x). This is to ensure that the bootstrap critical values are simulated from the
null distribution.

A Monte Carlo study of our test is contained in Appendix B. We find that our proposed
tests are close in size to the nominal levels, and also have good power properties.
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5 Empirical application

5.1 Auctions for highway maintenance jobs

We use the same data as those in Li and Zheng (2009, LZ hereafter) in our empirical
application. This dataset consists of 540 auctions for “mowing highway right-of-way” main-
tenance jobs held by the Texas Department of Transportation (TDoT) from January 2001
to December 2003. We observe all of the bids and the identities of the bidders. Moreover,
the available data contain information on the project characteristics, include the engineer’s
estimates, the length of the contract (number of working days), the number of items in the
proposal, the acreage of full-width mowing, the acreage of other mowing, whether it is a
state job, and whether the job is on an interstate highway.15 LZ provide further details of
this dataset. We focus only on those aspects relevant for this study.

Importantly, we observe the list of eligible bidders (planholders) for each auction. In
the nomenclature of this paper, these eligible bidders constitute the potential bidders. A
firm becomes a planholder through the following process. All projects to be auctioned are
advertised by the TDoT three to six weeks prior to the auction date. These advertisements
include the engineer’s estimate, a brief summary of the project, and the location and type
of work involved. However, they lack detailed schedules of the work items that are revealed
only in the construction plans. Interested firms then submit a request for plans and bidding
proposals, and these documents contain the project specifics (such as the item schedule).
The list of planholders is made available to all bidders prior to the bid submission deadline.
All bids must be submitted by the deadline in a sealed envelope. Submitted bids and active
bidders’ identities are released only after bid opening. In this application, we do not observe
the reserve price.

Our testing framework shares a number of assumptions with that in LZ, the first of
which is the exogeneity of the number of potential bidders. They note that “only (and
usually all of) those contractors in the mowing sub-industry who are located in the same
county as where the job is or nearby counties would request the official bidding proposals”.16

Thus, the exogeneity of N is supported by the local nature of participating firms and the
variation in the number of local firms across counties.17

Next, we also assume that the firms are ex-ante symmetric. LZ argue that the local
participating firms are likely to be small and not much differentiated from one another.
However, dynamic considerations such as those in Jofre-Bonet and Pesendorfer (2003) may
lead to asymmetries even within such firms. To address this issue, LZ construct the back-
log variable as the amount of incomplete work, measured in dollars, that remains from the
previously won projects. This backlog variable contains substantial variation, but has sta-

15Refer to Table 1 in LZ for the basic summary statistics of the data.
16See the first paragraph on page 6 of LZ.
17The assumption of an exogenous number of potential bidders has also been employed in other empirical

work on auctions. See, for example, Athey, Levin, and Seira (2011).
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tistically insignificant effects on both the bidding and bid-submission decisions (see Tables
3 and 4 in LZ).

Before turning to our nonparametric tests, we first discuss the importance of the effects
of various auction characteristics on bid levels and the decisions to submit a bid found in
the random-effect and probit regressions in LZ.18 In the former regression, the dependent
variable is log(bid), where bid is the amount of the bid in dollars. The size of the project
has a strongly positive effect on the bids, and clearly, is the most important variable. The
impact of the other variables is much smaller. The effect of project size on the probability of
submitting a bid is also positive, although not statistically significant. This positive effect
may reflect the fact that bidders have some information when deciding whether to submit
a bid, which further implies the possibility of selective entry.

The next potentially important variable is the number of items in the construction plan,
which captures the complexity of the project. This variable is statistically significant in
both regressions, although its degree of variation is very small. The standard deviation
is 0.82, and the mean is 2.01. This is not surprising, as lawn mowing jobs are relatively
simple. The estimates for “acreage of other mowing” are also statistically significant in both
regressions. However, the effects are small: a 1% increase in the “acreage of other mowing”
is associated with only a 0.0075% decrease in the bids.

In the implementation of our testing approach, we are confronted with the usual bias
and variance trade-off of our nonparametric estimators. Including a greater number of
variables reduces the bias, but at the same time increases the sample variability of the
estimators. The reduced-form regressions in LZ indicate that, apart from project size, the
auction characteristics are unlikely to matter much. In fact, their structural estimates
suggest that the project size is the only significant factor.

5.2 Tests

We perform our tests conditional on the median project size, x = $138, 000.19 We consider
a grid Υ of 200 uniformly spaced quantile values with τmin = 0.05 and τmax = 0.95, and
use the tri-weight kernels. The bandwidth chosen is h = 1.978× 1.06× (std.err.)× (sample
size)−(1/5). A well-understood practical issue is that nonparametric estimators suffer from
a substantial loss of precision when the sample size is very small. When we tried to include
all of the auctions, however, the estimates of the quantiles Q∗ (τ |N, x) were highly erratic.
Because the data are sparse, for some N, the estimated probabilities π̂ (N |x) are very close
to zero.20 To ensure the stability of our estimators, we decided to exclude those N where
the number of observations with Xi ∈ [x− h, x+ h] is less than 100. The working sample

18Refer to Tables 3 and 4 in LZ for details.
19We believe our choice of median project size is natural and reasonable. The models are not expected

to vary with x in this application.
20The estimated probability of N , conditional on x, is presented in Figure 3. There are no auctions with

19 or 21 potential bidders conditional on x = 138, 000. Note also that there remains considerable variation
in N .
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Table 2: Test results: Hypotheses, test statistics, and critical values corresponding to
asymptotic significance levels 0.10, 0.05, and 0.01

Hypothesis Test statistic Critical values
0.10 0.05 0.01

Costless Entry 14.50 13.56 14.92 17.05
Monotone Prob. of Entry 2.86 9.00 10.40 13.35
Binomial 327.27 391.53 470.76 759.94
SEM model 8.40 37.09 41.45 49.99
LS model 64.87 51.72 55.09 63.01
S model 60.22 67.82 71.23 78.90

ultimately consisted of auctions with 8-14 potential bidders, and all of the results discussed
in the following were obtained using this smaller sample.

The results of our tests are reported in Table 2. We first test the standard model (k = 0),
i.e. the equality of bid submission probabilities across N . The null hypothesis is rejected
at the 10% significance level. We then test the prediction shared by all remaining models
considered in this paper. As can be seen from Figure 1, the bid submission probabilities
p (N, x) are apparently nonincreasing in N . The formal test of the monotonicity restriction
on the bidding probabilities fails to reject the null at any reasonable significance level.21

The DGP passes the binomial test, thereby offering no evidence of multiple equilibria or
unobserved auction heterogeneity in the data.

The quantile test fails to reject the SEM restriction Q∗ (τ |N, x) ≤ Q∗ (τ |N ′, x) for
N ≥ N ′ uniformly over τ ∈ Υ.22 We now turn to tests of the two extreme models: LS and
S. We first note that the LS model is rejected even at a 1% significance level. We therefore
reach a different conclusion from that in LZ, who find a better fit for the LS model. The S
model passes all of our tests. However, based on the p-values of the S and SEM tests, the
SEM has more empirical support in this application.

21It is worth noting that the effect of the number of potential bidders is statistically significant in the
probit regression in LZ. Having more potential bidders reduces the bid submission rate. For example,
increasing N by 1 reduces the odds of submitting a bid by about 4%.

22Note that here, the order of N and N ′ is reversed because, in our application, we are dealing with
low-bid auctions.
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Figure 1: Estimated probabilities of bidding

5.3 Should the TDoT restrict competition?

An interesting empirical exercise is to fit an affiliated model to our data and then to compare
its predictions to those in LZ, who investigate, in a counterfactual experiment, the effect of
the number of potential bidders on the procurement price. In the LS model they estimated,
the entry effect overwhelms the direct effect of potential competition. Indeed, for a typical
project in the sample, they found it optimal to limit the competition to onlyN = 3 potential
bidders. An interesting question is whether the selection effect is strong enough to overturn
this conclusion.

To facilitate the counterfactual calculations, we rely on a parametric model specification
in the spirit of Bajari (2001) and Hong and Shum (2002). We, however, use nonparametric
estimates of quantiles for matching the model to the data.23 Suppose that the conditional
distribution of valuations can be described by a parametric family of PDFs {f(v, s|x; θ) : θ ∈
Θ ⊂ R

d}, and let Q∗(τ |N, x; θ) be the implied quantile function of valuations conditional on
entry. We follow Bajari, Hong, and Ryan (2010) and normalize the costs and signals by the
engineer’s estimate. The joint distribution of costs and signals is specified to (truncated)
normal:

cil
xl

= µ0 + εil,
sil
xl

= µ0 + ηil,

23We thank the Associate Editor for suggesting such an approach.
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where

(εil, ηil) ∼ N
(
0, σ2

0

(
1 ρ0

ρ0 1

))
.

Since the reserve price r is unobservable, we treat it as an unknown parameter.24 The
vector of parameters to be estimated is thus given by

θ0 =
(
µ0, σ

2
0, ρ0, k0, r0

)
,

where k0 and r0 are the normalized entry cost and reserve price respectively.
To estimate the parameters, we adopt a minimum distance (MD) estimation approach

(Newey and McFadden, 1994), where we match our nonparametric estimator Q̂∗(τ |N, x)
developed in Section 4.3 with the parametric conditional quantile function Q∗(τ |N, x; θ) for
a grid of pre-chosen quantile values τj , j = 1, . . . , k:

θ̂(x) = arg min
θ∈Θ

JL(θ, x), where

JL(θ, x) =

k∑
j=1

N̄∑
N=N

(Q̂∗(τj |N, x)−Q∗(τj |N, x; θ))2

N−1V̂Q(N, τj , x)
.

Note that Q̂∗(τj |N, x) are asymptotically independent across j’s and N ’s, and the recipro-
cals of their asymptotic variances N−1V̂Q(N, τj , x) are the efficient weights in this case. By
a usual formula, the variance-covariance matrix of θ̂(x) can be computed as:

1

Lhd+1

 k∑
j=1

N̄∑
N=N

1

N−1V̂Q(N, τj , x)

∂Q∗(τj |N, x; θ̂(x))

∂θ

∂Q∗(τj |N, x; θ̂(x))

∂θ′

−1

.

The parametric model is overidentified if the number of N ’s multiplied by k exceeds the
number of parameters (five). In this case, the specification can be tested with an overiden-
tifying restrictions test. As usual, the hypothesis of correct specification should be rejected
when Lhd+1JL(θ̂(x), x) exceeds a χ2 critical value for the number of degrees of freedom
equal to the degree of overidentification (the number of N ’s multiplied by k minus five).

The estimation results are given in Table 3. We match 19 equally spaced quantile values
{0.05, 0.1, ..., 0.95} for N = 8, ..., 14 (i.e. we chose the same values for N as those in the
previous section). As the estimate ρ̂ = 0.80 indicates, the signals contain a substantial
amount of information concerning the construction cost. This is realistic because, as we
have remarked previously, lawn-mowing jobs are relatively small and simple in nature,
meaning that the plans are likely to be quite informative about the true project cost. The

24Alternatively, this feature can be taken into account by considering a model with a secret reserve price
as in Li and Perrigne (2003). However, this complicates significantly the derivation of the equilibrium
bidding strategy.
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Table 3: Estimates of SEM structural parameters

Parameter Estimate Standard error

Mean of normalized cost, µ 0.991∗ 0.162
Standard deviation, σ 0.233∗ 0.838
Correlation, ρ 0.805∗ 0.302
Normalized reserve price, r 1.220∗ 0.091
Normalized entry cost, k 0.045∗ 0.012

MD objective 124.48

∗ Significant at 5%

estimate of the entry cost k̂ = 4.5% is given as a percentage of the project size for a
median-sized project, x = $138, 000.

The affiliated model is expected to yield a smaller estimate of the entry cost than the
LS model. Indeed, the entry cost in the latter is equal to the equilibrium expected profit
of the average potential bidder, whereas it is equal to the expected profit of the marginal
potential bidder (with signal s̄(N)) in the former. Because the signals in the SEM are
positively correlated with the costs, the marginal bidder has a smaller entry cost than the
average bidder.

Formally, the fit of the model is assessed by the J test. Since we have fitted 19 quantiles,
the J statistic has a limiting χ2 distribution with 19× 7− 5 degrees of freedom when the
specification is correct. The model fits reasonably well. The J test p-value is 0.57, and
therefore our parametric model is not rejected.

In the counterfactual experiment, we find that the selection effect leads to a reduction
in the procurement price. Figures 2 and 3 depict the counterfactual effect of the number
of potential bidders on the median entrant’s cost and price for a median-sized project.25

The graphs demonstrate the selection effect at work. Increasing the number of potential
bidders by 1 results, on average, in a 1.74% reduction in the cost and 4.35% reduction in
the price.26 Therefore, our results suggest that, in order to reduce the cost of procurement,

25LZ perform their counterfactual experiment for the 123rd auction in the sample, which has a project
size close to the mean value of $165, 349. As in our nonparametric test, we have decided here to use the
median-sized project. Our results take the same form for other project sizes, including that considered by
LZ.

26The confidence bands in the graphs are computed using the parametric bootstrap.
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Figure 2: Estimated median cost conditional on entry (solid line) and its 95% confidence
band (dashed lines)
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Figure 3: Counterfactual price (solid line) and its 95% confidence band (dashed lines)

30



the TDoT should not limit the competition in lawn-mowing auctions.

6 Concluding remarks

In this paper, we propose nonparametric tests to discriminate among alternative models of
entry in first-price auctions. Those considered are: (a) the Levin and Smith (1994) (LS)
model with randomized entry strategies; (b) the Samuelson (1985) (S) model that assumes
that bidders are perfectly informed about their valuations at the entry stage, and selected
into the pool of entrants based on this information; and (c) a new model (the selective
entry model, or SEM), which allows for selective entry but in a less stark form than that in
Samuelson (1985). More specifically, our model captures the selection effect by assuming
that bidders receive signals that are informative about their valuations and make entry
decisions based on these signals.

We estimate an SEM and find a strong degree of correlation between costs and signals.
We then repeat the counterfactual experiment of Li and Zheng (2009), and, using our new
model, find that increasing the number of potential bidders would be desirable: on average,
the price falls by 1% with each additional potential bidder in the auction.

Our work can be extended in a number of directions. First, it would be interesting to
extend our approach to other auction mechanisms and data structures as in Athey and Haile
(2002).27 Second, our models of entry do not fully endogenize the information acquisition
process, the nature of which may have important consequences for auction design (see, e.g.,
Persico (2000) and Bergemann and Valimaki (2002)). Also, incorporating risk aversion, as
Guerre, Perrigne, and Vuong (2009) and Campo, Guerre, Perrigne, and Vuong (2011) do
in the standard first-price auction model, would clearly be very interesting.

Another extension would be to address an important limitation of our model, that
is to allow for bidder asymmetries, as in a recent working paper by Krasnokutskaya and
Seim (2011). The obvious difficulty here would be the necessity to deal with multiple
equilibria head-on. Bajari, Hong, and Ryan (2010) obtain a number of identification results
in this direction, and estimate a parametric model with multiple equilibria for highway
procurement auctions. Another extension would be to incorporate dynamic features, as in
Jofre-Bonet and Pesendorfer (2003). These extensions are left for future research.

27See Athey and Haile (2007) for a survey of the literature.
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Appendix

A Proofs of the results in Sections 2 and 3

Proof of Lemma 1. To show part (i),

F (v|Si ≥ s, Vi ≥ r) =
1

1− F (s|Vi ≥ r)

ˆ v̄

s
F (v|s′, Vi ≥ r)f(s′|Vi ≥ r)ds′

≤ F (v|s, Vi ≥ r)

where the last inequality holds because, by Assumption 2, F (v|s′, Vi ≥ r) ≤ F (v|s, Vi ≥ r)
for all s′ ≥ s. To show part (ii),

∂F (v|Si ≥ s, Vi ≥ r)
∂s

=
f(s|Vi ≥ r)

1− F (s|Vi ≥ r)
(F (v|Si ≥ s, Vi ≥ r)− F (v|s, Vi ≥ r)),

and the result follows by part (i) of the lemma.

Proof of Lemma 2. The expected profit (4) follows from the Envelope Theorem: in a
symmetric equilibrium of the bidding game, by independence, the bidder with valuation v
has the probability of winning the auction

(F (s̃) + (1− F (s̃))F (v|Si ≥ s̃))N−1 ≡ λ (v, s̃)N−1 .

Therefore, his expected profit in the auction is (v(s)−r)F (s̃)N−1∨0+
´ v
v(s)∨r λ (x, s̃)N−1 dx.

(The first term reflects a positive profit of the bidder with the lowest valuation v.) At the
entry stage, the expected profit is

Π (s, s̃, N) = (v(s)− r)F (s̃)N−1 ∨ 0 +

ˆ v̄

rv(s)∨r

ˆ v

v(s)∨r
λ (x, s̃)N−1 dxdF (v|s)

= (v(s)− r)F (s̃)N−1 ∨ 0 +

ˆ v̄

v(s)∨r
(1− F (v|s))λ (v, s̃)N−1 dv, (30)

where the last line follows from integration by parts. This proves (4).
Next, Π (s, s̃, N) is nondecreasing in s̃ because λ (v, ·) is nondecreasing: for all v ∈

[v(s), v̄],

∂λ (v, s̃)

∂s̃
= f (s̃) +

∂

∂s̃
P {Vi ≤ v, Si ≥ s̃}

= f (s̃)− f (s̃)F (v|s̃) ≥ 0.

To show that Π (s, s̃, N) is also nondecreasing in s, observe that the integral that appears
in (30) depends on s in two ways: first, through the integrand term 1−F (v|s), and second
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– through the lower limit v(s) if v(s) > r. The term 1 − F (v|s) is nondecreasing in s by
Assumption 2. Also, for v(s) > r,

∂

∂y

∣∣∣∣∣
y=v(s)

[
(y − r)F (s̃)N−1 +

ˆ v̄

y
(1− F (v|s))λ (v, s̃)N−1 dv

]
= F (v(s)|s)λ (v(s), s̃)N−1 ≥ 0.

Therefore the r.h.s. of (30) is nondecreasing in v(s). Since Lemma 1 implies that v(s) is
nondecreasing in s, it follows that Π (s, s̃, N) is nondecreasing in s.

Lastly, to show that Π (s, s̃, N) is decreasing in N , observe that for v < v̄, λ(v, s̃) < 1,
which implies that λ(v, s̃)N−1 is decreasing in N . Assumption 1 implies that the interval
[v(s)∨ r, v̄] has positive length, and therefore the integral in (30) must be decreasing in N .
Since F (s̃)N−1 is decreasing in N , Π (s, s̃, N) is decreasing in N . �

Proof of Proposition 1. We have already argued in text that existence of a symmetric
bidding equilibrium follows from known results in the literature. To show existence of
an equilibrium with endogenous entry, we need to verify that bidders’ entry decisions are
optimal. We show this separately depending on whether the entry cost is small, large, or
intermediate, corresponding to cases (a) – (c) in the proposition. In case (a), Π (v̄, v̄, N) < k,
s̄(N) = v̄, because strict monotonicity of Π(s, s,N) in s implies that a bidder with v = v̄,
the highest valuation possible, is unable to recover the entry cost even when he is the single
bidder in the auction. In case (b), Π (v, v,N) ≥ k, we must have s̄(N) = v because a
bidder with v = v, the lowest valuation possible, is able to recover the entry cost even
when all his rivals enter with probability 1. On the other hand, strict monotonicity of
Π(s, s,N) in s implies that bidders with signals strictly above v strictly prefer to enter.
In case (c), Π (v, v,N) ≤ k < Π (v̄, v̄, N), strict monotonicity and continuity of Π(s, s,N)
in s implies that there exists a unique cutoff s̄(N) that solves the indifference condition
Π(s̄(N), s̄(N), N) = k.

The cutoff s̄(N) must be strictly increasing in N whenever entry is partial. Otherwise,
if for N ′ > N , s̄(N ′) ≤ s̄(N), Lemma 2 would imply Π(s̄(N ′), s̄(N ′), N ′) < k, at least
whenever s̄(N) ∈ (v, v̄). This would be in violation of indifference condition (5). �

Proof of Proposition 2. Using the definition of F (v|Si ≥ s, Vi ≥ r) in (1), one can
calculate its partial derivative with respect to s,

∂F (v|Si ≥ s, Vi ≥ r)
∂s

= − f(s)

1− F (s)
F (v|s, Vi ≥ r) +

f(s)

(1− F (s))2

ˆ v̄

s
F (v|s̃, Vi ≥ r)dF (s̃)

=
f(s)

1− F (s)
(F (v|Si ≥ s, Vi ≥ r)− F (v|s, Vi ≥ r)) . (31)

Consider a v in the interior of the support of F (v|s, Vi ≥ r). Then under Assumption
5, the above partial derivative is negative for all s ∈ (v, v̄). This implies that F (v|Si ≥
s′, Vi] ≥ r) < F (v|Si ≥ s, Vi ≥ r) for s′ > s. Because N ′ > N ≥ N∗ s̄(N

′) > s̄(N) and
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s̄(N) ∈ (v, v̄), it follows that F (v|s̄(N ′), Vi ≥ r) < F (v|s̄(N), Vi ≥ r) for v in the interior
of suppF (·|s̄(N), Vi ≥ r). This implies Q∗(τ |N ′) > Q∗(τ |N) for τ ∈ (0, 1), which in turn
implies the statement in the proposition. �

Proof of Proposition 3. For every b ∈
[
r, b̄ (N)

]
, we have

G∗ (b|N) = F (ξ (b|N) |N,Si ≥ s̄ (N) , Vi ≥ r)

=
F (ξ (b|N) |Si ≥ s̄ (N))− F (r|Si ≥ s̄ (N))

1− F (r|Si ≥ s̄ (N))
. (32)

where ξ (·|N) :
[
r, b̄ (N)

]
→ R+ denotes the inverse bidding strategy, defined as the unique

solution to the equation B (ξ|N) = b. Since the probability of submitting a bid is

p (N) = P (Si ≥ s̄ (N) , Vi ≥ r)
= P (Si ≥ s̄ (N))P (Vi ≥ r|Si ≥ s̄ (N))

= (1− F (s̄ (N))) (1− F (r|Si ≥ s̄ (N))) ,

we see that

p (N)G∗ (b|N) = (1− F (s̄ (N))) [F (ξ (b|N) |Si ≥ s̄ (N))− F (r|Si ≥ s̄ (N))]

After simplification,

1− p (N) + p (N)G∗ (b|N) = F (s̄ (N)) + (1− F (s̄ (N)))F (ξ (b|N) |Si ≥ s̄ (N)) .

Differentiating (32) with respect to b gives the density of bids

g∗ (b|N) =
f (ξ (b|N) |Si ≥ s̄ (N))

1− F (r|Si ≥ s̄ (N))
ξ′ (b|N) ,

and we see that

p (N) g∗ (b|N) = (1− F (s̄ (N))) f (ξ (b|N) |Si ≥ s̄ (N)) ξ′ (b|N) .

Therefore,

1− p (N) + p (N)G∗ (b|N)

p (N) g (b|N)
=
F (s̄ (N)) + (1− F (s̄ (N)))F (ξ (b|N) |Si ≥ s̄ (N))

(1− F (s̄ (N))) f (ξ (b|N) |Si ≥ s̄ (N))

1

ξ′ (b|N)
.

Since ξ′ (b|N) = 1/B′ (v|N) for v = ξ (b|N), (11) follows from the differential equation (3)
for the bidding strategy . �

Proof of Proposition 4. The proof of the results in (a) is omitted because it parallels
the proofs of Theorems 1 and 4 in GPV.
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For (b), suppose the data are generated by an SEM with some k > 0 and F (·|·) such
that F (r) ∈ (0, 1). Consider any standard model (k = 0) with the distribution of valuations
given by

F0 (v) = F0 (v|v < r)F0 (r) + F ∗ (v|N) [1− F0 (r)]

where F0 (r) = 1 − p (N) and F0 (·|v < r) is an arbitrary absolutely continuous CDF with
support [v0, r] for some v0 ∈ (0, r). One can check that the differential equation (3) for the
bidding strategy remains the same as for the original SEM, so the inverse bidding strategy
is also ξ (·|N). Since the distribution of active bidders’ valuations F ∗ (v|N) is the same by
construction, it follows that this standard model induces, in the Bayesian-Nash equilibrium,
the same distribution of observable bids G∗ (·|N). Furthermore, since each bidder becomes
active with probability 1− F (r) = p (N), the distribution of the number of active bidders
is also the same.

Going in the other direction, suppose the data (G∗ (·|N) , p (N)) are generated by some
standard model with the distribution of valuations F0 above. Since LS model is included in
the SEM class, it is sufficient to construct an observationally equivalent LS model. Consider
an LS model with the distribution of valuations

FLS (v) = FLS (v|v < r)FLS (r) + F ∗ (v|N) [1− FLS (r)]

where FLS (·|v < r) is an arbitrary absolutely continuous CDF with support [vLS , r] for
some vLS ∈ (0, r), and FLS (r) is chosen to assure that the probability of bidding is still
p (N): α [1− FLS (r)] = p (N) for some entry probability α ∈ (0, 1). To complete the
construction, let

k =

ˆ v̄

r
(1− FLS(v) (α+ (1− α)FLS (v))N−1 dv.

Again, it is straightforward to show that this LS model’s differential equation for the bidding
strategy is the same as in the original standard model. Since FLS (v|v ≥ r) = F0 (v ≥ r),
the induced distribution of bids is the same. Also, according to (5), bidders are indifferent
between entering and not entering provided the rivals enter with probability α ∈ (0, 1),
while the probability of submitting a bid is equal to p (N) as in the original standard
model.

For part (c), if ξ (r|N) > r, similar arguments imply that any S model with k =
(ξ (r|N)− r) (1− p (N))N−1 and

FS (v) = FS (v|v < ξ (r|N)) [1− p (N)] + F ∗ (v|N) p (N)

where FS (·|v < ξ (r|N)) is any absolutely continuous CDF with support [vLS , r] for some
vLS ∈ (0, r), rationalizes the data. �

Proof of Proposition 5. In the S model, F (v) is identified for v ≥ s̄ (N) > r, using, for
example, (19):

F (v) = p (N)F ∗ (v|N) + 1− p (N) (33)
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Consequently, F (v) is identified for v ≥ min {s̄ (N) : N ∈ N} = s̄ (N). The entry cost is
also identified:

k = (ξ (r|N)− r) (1− p (N))N−1 . (34)

In the LS model, k is smaller than the expected profit from bidding even under full entry
for N = N, ..., N∗, and is strictly greater than the expected profit for N = N∗ + 1, ..., N̄ .
Equivalently,

ˆ v̄

r
(1− F (v))(F (r) + [1− F (r)]F (v|Vi ≥ r))N∗−1dv > k

>

ˆ v̄

r
(1− F (v))(F (r) + [1− F (r)]F (v|Vi ≥ r))N∗dv. (35)

For N = N, ..., N∗, non-participation in the auction is caused by the truncating effect of the
reserve price. In other words, p (N) = 1− F (r) for N = N, ..., N∗, and F (r) = 1− p (N)
is identifiable. This implies the identification of both F (v) = [1− F (r)]F ∗ (v|N) + F (r)
and k according to (15). �

Remark 8. Note that (35) is a condition on the primitives of the model sufficient for the
pattern (13) to arise.

B Monte-Carlo experiment

In this section we present a Monte-Carlo study of the small sample properties of the tests.
In particular, we are interested in seeing how a dense grid of quantiles τ affects size and
power of the tests.

We simulate S and V using a Gaussian copula. Let (Z1, Z2) be bivariate normal with
zero means, variances equal to one, and correlation coefficient ρ ∈ [0, 1). Informative signals
corresponds to ρ > 0, while the LS model corresponds to ρ = 0. Let Φ denote the standard
normal CDF. A pair (S, V ) is generated as S = Φ (Z1) and V = Φ (Z2).

Details of the computation of the distributions F (v|S) and F ∗ (v|N) that are needed in
order to solve for the equilibrium of the auction are as follows. First, Z2|Z1 ∼ N

(
ρz1, 1− ρ2

)
,

and therefore the conditional distribution of V given S is given by

F (v|S) = P (V ≤ v|S) = P
(
Z2 ≤ Φ−1 (v) |Φ−1 (S)

)
= Φ

(
Φ−1 (v)− ρΦ−1 (S)√

1− ρ2

)
.

Next, note that the marginal distribution of S is uniform on the [0, 1] interval, therefore

F ∗ (v|N) = F (v|S ≥ s̄ (N)) =
1

1− s̄

ˆ 1

s̄(N)
Φ

(
Φ−1 (v)− ρΦ−1 (s)√

1− ρ2

)
ds,
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Table 4: Simulated size and size-corrected power of models’ tests

Number of auctions

L = 250 L = 50

Nominal size Nominal size

Model 0.1 0.05 0.01 0.1 0.05 0.01

Size Size

LS 0.0570 0.0250 0.0050 0.0720 0.0220 0.0070
SEM 0.0880 0.0470 0.0140 0.0810 0.0430 0.0090
S 0.0850 0.0510 0.0120 0.0790 0.0480 0.0150

Size-corrected power Size-corrected power

LS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
SEM 0.9930 0.9700 0.8550 0.3012 0.2745 0.2201
S 0.9950 0.9810 0.9300 0.7643 0.7133 0.7002

where the cutoff signal s̄ (N) can be found, given the value of N , as a solution to equation
(5). Lastly, for S ≥ s̄ (N), the bids are computed according as a solution to (3).

In our simulations, we set L = 250 or L = 50, N = {2, 3, 4, 5}, π (N) = 1/4 for all
N ∈ N , and k = 0.17. The number of Monte Carlo replications is 1,000; in each replication,
the critical values for the tests are obtained using 999 replications. We use the tri-weight
kernel function K (u) = (35/32)

(
1− u2

)3
1 {|u| ≤ 1} and 1.978×1.06×(std.err.)×(sample

size)−(1/5) for the bandwidth. Our grid consists of 200 quantiles equally spaced between
0.05 and 0.95.

We generate three random samples. The first one is ρ = 0, which corresponds to LS
model. The second is an SEM sample with ρ = 0.5. The last sample is the S sample. Table
4 reports the results of size simulations for the tests. The test based on TSEM performs
reasonably well in the finite samples. Some under rejection is observed for the LS sample
(ρ = 0). Consider L = 250. For nominal sizes of 0.1, 0.05, and 0.01, the simulated rejection
rates are approximately 0.057, 0.025 and 0.005 respectively. For the SEM (ρ = 0.5), the
simulated rejection probabilities are very close to their nominal values: for the same nominal
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sizes, they are approximately 0.088, 0.047, and 0.014. Finally, the rejection probabilities in
the S experiment are also close to their nominal values. Roughly similar conclusions can
be drawn for L = 50.

Table 1 also reports the size corrected power results (the critical values are computed
from the simulated distribution of the test statistic under the null). To address the power
issue for the SEM test, it is necessary to come up with an alternative. We reverse the order
of quantiles, making them decreasing in N . To do this in the simplest fashion possible, we
multiply each quantile by minus one and then add a constant to all quantiles to assure that
they are positive.

The results in Table 4 show that the power properties are good. Consider L = 250.
For ρ = 0.5 and for nominal sizes of 10%, 5%, and 1%, the simulated rejection rates are
99.3%, 97% and 85.5% respectively. Similar results hold for LS (ρ = 0) and S models. For
a smaller sample L = 50, the power for LS is still excellent. It is good for S, but there is
a substantial power loss for SEM. Taken together, the simulation results indicate that our
bootstrap method has both good size and power properties, even in samples of moderate
size.
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