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S.1 Introduction

This appendix contains the details of statistical methodology used for model

comparison in Gao et al. (2012). In particular, we extend the test for potentially

misspecified calibrated models proposed in Hnatkovska et al. (2012, 2011) along two

key dimensions. In Section S.2, we show how to adjust the procedure to account

for simulation uncertainty. Such adjustment becomes important when the model

moments can not be computed exactly and instead simulations must be used. In

Section S.3 we introduce a class-based test that allows us to compare classes of models

with several models in each class. This becomes important when one is interested in

evaluating the model’s performance with different features, for a range of parameter

values, or with different types of shocks. For instance, in the evaluations in the

main paper we are interested in whether LAMP improves model’s performance across

all international asset market regimes. In this case, one needs a way to aggregate

model fits across the different scenarios, which is what the class-based test does.

In Section S.4, we describe our estimation procedure. Sections S.5 and S.6 contain
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the derivations of the asymptotic variances and standard errors used in estimation

procedure.

S.2 Pairwise comparison

We begin by assuming that data can be summarized using two mutually exclusive

vectors of characteristics denoted by h1 and h2, where the first vector is used for

estimation of unknown structural parameters, while the second vector is used to com-

pare structural models. This reflects a standard practice in applied macroeconomics,

when parameters are calibrated to one group of data characteristics, while models are

evaluated on another. We assume that h1 and h2 can be estimated from data without

employing a structural model. For example, in our case, h1 consists of the estimated

productivity shocks, while h2 consists of volatilities and correlations between the

variables of interest as described in Tables 3-5 in the main text.

Suppose that there are two structural models denoted f(θ) and g(β), where θ

and β are the corresponding structural parameters describing consumer’s preferences,

technology, etc. Here, f(θ) and g(β) denote the value of h2 predicted by models

f and g, respectively. Naturally, vectors h2, f(θ) and g(β) must be of the same

dimension; we assume that they are m-vectors. We allow for the competing models

to be misspecified, i.e. it is possible that for all permitted values of θ and β, h2 6= f(θ)

and h2 6= g(β).

The models are allowed to share some of the parameters. Note, however, that θ

and β contain only the parameters that must be estimated from data. We allow that

some of the parameters may be assigned fixed values, for example, values that are

commonly used in the literature. Such parameters are excluded from θ and β and

absorbed into f and g.1

We are interested in testing a hypothesis that models f and g have equivalent fit

to the data as described by h2. For an m×m symmetric and positive definite weight

matrix Wh2 , the null hypothesis of the models’ equivalence is

H0 : (h2 − g(β))′Wh2(h2 − g(β))− (h2 − f(θ))′Wh2(h2 − f(θ)) = 0.

The notation indicates that the weight matrix Wh2 can depend on h2. A simple choice

1In our application θ and β are the same and describe the productivity process.
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for a weight matrix is to use the identity matrix. In that case, the weight matrix is

independent of h2, and the models are compared in terms of their squared prediction

errors. Another example for Wh2 is a diagonal matrix with the reciprocals of the

elements of h2 on the main diagonal. With such a choice of the weight matrix, the

models are compared in terms of the squares of their percentage prediction errors. In

our application, we use a combination of the two. That is to evaluate the models,

for some parameters, such as correlations, we use prediction errors, while for others,

such as volatilities, we use percentage prediction errors.

The alternative hypotheses are

Hf : (h2 − g(β))′Wh2(h2 − g(β))− (h2 − f(θ))′Wh2(h2 − f(θ)) > 0,

Hg : (h2 − g(β))′Wh2(h2 − g(β))− (h2 − f(θ))′Wh2(h2 − f(θ)) < 0,

where f has a better fit according to Hf , and g has a better fit according to Hg.

Let ĥ1 and ĥ2 denote the estimators of h1 and h2, respectively. We assume that

ĥ1 and ĥ2 do not require the knowledge of the true structural model, are consistent

and asymptotically normal as described in the following assumption:

√
n

(
ĥ1 − h1

ĥ2 − h2

)
→d N

(
0,

(
Λ11 Λ12

Λ′12 Λ22

))
, (S.1)

where n denotes the sample size used in estimation of h1 and h2, Λ11 and Λ22 denote

the asymptotic variance-covariance matrices of ĥ1 and ĥ2 respectively, and Λ12 denotes

the asymptotic covariance between ĥ1 and ĥ2. Let Λ̂11, Λ̂22 and Λ̂12 denote consistent

estimators of the corresponding elements in the above asymptotic variance-covariance

matrix. In a typical time-series application, Λ11, Λ22 and Λ12 are long-run variances

and covariances and, therefore, require HAC-type estimators, see Newey and West

(1987) and Andrews (1991).

Let θ̂ and β̂ denote the estimators of θ and β respectively. We assume that the

estimators are asymptotically linear in h1:

√
n
(
θ̂ − θ

)
= A
√
n
(
ĥ1 − h1

)
+ op(1), (S.2)

√
n
(
β̂ − β

)
= B
√
n
(
ĥ1 − h1

)
+ op(1), (S.3)

where matrices A and B may depend on the elements of h1. This specification is
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satisfied by most estimators used in practice. Appendix S.4 contains the derivations

of equation (S.2) for our estimators.2 We assume that A and B can be consistently

estimated, and use Â and B̂ to denote their estimators.

When functions f(θ) and g(β) are too complicated for analytical or even exact

numerical calculations, we assume that they can be estimated by simulations. For

example, as in our case, one can draw random shocks and solve the models as described

in Section 3 in the main text using θ̂ for model f and β̂ for model g, and obtain a set

of random equilibrium values for the variables of interest. By repeating this process

R times, one obtains a sample of R observations for the variables of interest, which

can be used to estimate f and g by averaging across the simulations. Let f̂(θ̂) and

ĝ(β̂) denote such estimators.

We assume that, at the true values θ and β, estimators f̂(θ) and ĝ(β) are inde-

pendent of ĥ1 and ĥ2, and satisfy the following assumption:

√
R

(
f̂(θ)− f(θ)

ĝ(β)− g(β)

)
→d N

(
0,

(
Λff Λfg

Λ′fg Λgg

))
. (S.4)

We use Λ̂ff , Λ̂gg and Λ̂fg to denote consistent estimators of the asymptotic variances

and covariance in (S.4).

Our test is based on the difference between the estimated fits of the two models:

S =
(
ĥ2 − ĝ(β̂)

)′
Wĥ2

(
ĥ2 − ĝ(β̂)

)
−
(
ĥ2 − f̂(θ̂)

)′
Wĥ2

(
ĥ2 − f̂(θ̂)

)
.

Under the assumptions in (S.1)-(S.4), S is asymptotically normal, and its standard

error can be computed as σ̂/
√
n, where3

σ̂2 = 4σ̂2
1 + 4σ̂2

2, (S.5)

σ̂2
1 =

 Â′
∂f̂
(
θ̂
)′

∂θ
Wĥ2

(
ĥ2 − f̂

(
θ̂
))
− B̂′ ∂ĝ

(
β̂
)′

∂β
Wĥ2

(
ĥ2 − ĝ

(
β̂
))

Wĥ2

(
f̂
(
θ̂
)
− ĝ
(
β̂
))

+ 0.5
∂w(ĥ2)

′

∂h2
J ′K

(
ĥ, f̂

(
θ̂
)
, ĝ
(
β̂
))


′(

Λ̂11 Λ̂12

Λ̂′12 Λ̂22

)

×

 Â′
∂f̂
(
θ̂
)′

∂θ
Wĥ2

(
ĥ2 − f̂

(
θ̂
))
− B̂′ ∂ĝ

(
β̂
)′

∂β
Wĥ2

(
ĥ2 − ĝ

(
β̂
))

Wĥ2

(
f̂
(
θ̂
)
− ĝ
(
β̂
))

+ 0.5
∂w(ĥ2)

′

∂h2
J ′K

(
ĥ, f̂

(
θ̂
)
, ĝ
(
β̂
))

 , (S.6)

2In our application, because β and θ are the same, we do not use equation (S.3).
3The asymptotic variance formula is explained in Appendix S.5
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σ̂2
2 =

n

R

 Wĥ2

(
ĥ2 − f̂

(
θ̂
))

−Wĥ2

(
ĥ2 − ĝ

(
β̂
))
′( Λ̂ff Λ̂fg

Λ̂′fg Λ̂gg

) Wĥ2

(
ĥ2 − f̂

(
θ̂
))

−Wĥ2

(
ĥ2 − ĝ

(
β̂
))
 . (S.7)

In the expression for σ̂2
1,

K(h, f, g) = ((h− g)⊗ (h− g))− ((h− f)⊗ (h− f)) , (S.8)

vector w(h2) collects the element of Wh2 without duplicates, and J denotes a known

m2 ×m selection matrix of zeros and ones such that

vec(Wh2) = Jw(h2). (S.9)

For example, when Wh2 is a diagonal matrix with the reciprocals of the elements of

h2 on the main diagonal, we have that wi(h) = 1/hi, i = 1, . . . ,m, and

J =


J1

...

Jm

 ,

where, for i = 1, . . . ,m, Ji is an m × m matrix with 1 in position (i, i) and zeros

everywhere else.

In (S.5), the first term, σ̂2
1, reflects the uncertainty due to estimation of θ, β,

and h2. For example, when comparing the models at some known fixed parameter

values θ̄ and β̄, matrices Â and B̂ should be replaced by zeros. Similarly, when

comparing the models using a known fixed weight matrix (independent of h2), the

terms 0.5(∂w(ĥ)′/∂h)J ′K(ĥ, f̂ , ĝ) in (S.6) should be replaced with zeros.

The second term in (S.5), σ̂2
2, is due to the simulations uncertainty in computation

of f̂(θ̂) and ĝ(β̂). This term is zero when f and g can be evaluated numerically

(without resorting to simulations). Uncertainty due to simulations can be ignored if

one can select a large number of simulations R so that the ratio n/R is sufficiently

small.

Our asymptotic test with significance level α is:

Reject H0 in favor of Hf when
√
nS/σ̂ > z1−α/2,

Reject H0 in favor of Hg when
√
nS/σ̂ < −z1−α/2,
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where z1−α/2 denotes a standard normal critical value.

S.3 Comparison of model classes

When there are general classes of models with each class containing several sub-

models, the researcher may be interested in overall comparison of classes instead of

pairwise comparison of each sub-model. We discuss such a procedure in this section.

Suppose that we have two classes of models with k models in each class: F =

{f1(θ), . . . , fk(θ)} and G = {g1(β), . . . , gk(β)}. We are interested in comparing the

overall performances of F and G. More specifically, we are testing whether F and G
have the same distance from the moments vector h2. Here we adopt the von Mises-

type (or average) distance between a set F and a point h2:

DM(F , h2) =
k∑
j=1

d(fj(θ), h2;Wh2),

where d(fj(θ), h2;Wh2) denotes the previously used weighted Euclidean distance be-

tween vectors fj(θ) and h2:

d(fj(θ), h2;Wh2) = (h2 − fj(θ))′Wh2(h2 − fj(θ)).

Note that, alternatively, one could use a Kolmogorov-type distance between F and h2:

Dmin(F , h2) = minj=1,...,k d(fj(θ), h2;Wh2) orDmax(F , h2) = maxj=1,...,k d(fj(θ), h2;Wh2).

While with a Kolmogorov-type distance each class is represented by its best (or worst)

performer, the von Mises-type distance measures the average performance of a class

of models, and we find it more appropriate when the object of interest is the overall

performance of a class.

Thus, our null hypothesis of interest can now be stated as

H0 : DM(F , h2) = DM(G, h2), (S.10)

and a test can be based on the difference of sample analogues of DM(F , h2) and
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DM(G, h2):4

SM =
k∑
j=1

(
d(ĝj(β̂), ĥ2;Wĥ2

)− d(f̂j(θ̂), ĥ2;Wĥ2
)
)
.

Let σ̂M denote the standard error of SM . As before, the null hypothesis in (S.10)

should be rejected when the studentized statistic
√
nSM/σ̂M exceeds standard normal

critical values. The standard error can be computed as follows.5 Define

Qj =

(
A′

∂fj(θ)′

∂θ
Wh2(h2 − fj(θ))−B′ ∂gj(β)′

∂β
Wh2(h2 − gj(β))

Wh2(fj(θ)− gj(β)) + 0.5∂w(h2)′

∂h
J ′K(h2, fj(θ), gj(β))

)
,

and let Q̂j denote a consistent estimator of Qj. Ignoring the simulation uncertainty,

the standard error of SM is given by the square-root of

σ̂2
M = 4

(
k∑
j=1

Q̂j

)′(
Λ̂11 Λ̂12

Λ̂′12 Λ̂22

)(
k∑
j=1

Q̂j

)
. (S.11)

The expression in (S.11) can be easily adjusted to account for simulation un-

certainty. Note that the formula will depend on whether each model is simulated

independently or if the same simulated structural shocks used in all models. In our

case, the number of simulations is sufficiently large for the simulation uncertainty to

be ignored.

S.4 Estimation details

In this section, we describe our estimation procedure, and show how it corresponds

with the asymptotic linearization in (S.2) and (S.3).

First, note that in our case, θ = β = (ρ11, ρ12, σe1 , σe1e2)
′. The parameters are

estimated using the following estimating equations:(
z1,t

z2,t

)
=

(
µ1

µ2

)
+

(
ρ11 ρ12

ρ12 ρ11

)(
z1,t−1

z2,t−1

)
+

(
ε1,t

ε2,t

)
, (S.12)

4We assume here, as in our case, that the same estimator of structural parameters is used inside
each class of models. A generalization allowing for model-specific estimators inside each class is
straightforward.

5The details of the derivation are provided in Appendix S.6.
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σe1 =
√
Eε2

1,t, (S.13)

σe1e2 =
Eε1,tε2,t√
Eε2

1,tEε
2
2,t

. (S.14)

Define y1,t = z1,t and y2,t = z2,t for t = 2, . . . , n, and let Y1 and Y2 denote the

corresponding (n − 1)-vectors of observations. Let Xt = (1, z1,t−1, z2,t−1)′ for t =

2, . . . , n, and let X denote the corresponding (n− 1)× 3 matrix of observations. Let

ε1 and ε2 denote the (n− 1)-vectors of observations on the error terms. We have the

following SUR system:

Y∗ = (I2 ⊗X) γ∗ + ε∗,

where Y∗ = (Y ′1 , Y
′

2)′, ε∗ = (ε′1, ε
′
2)′, and γ∗ = (µ1, ρ11, ρ12, µ2, ρ12, ρ11)′, and note that

γ∗ is restricted by Rγ∗ = 02×1, where

R =

(
0 1 0 0 0 −1

0 0 1 0 −1 0

)
.

Define Σ as the variance-covariance matrix of (ε1, ε2)′:

Σ =

(
σe1 σe1e2σe1σe2

σe1e2σe1σe2 σe2

)
,

and let Σ̂ denote its consistent estimator. For example, Σ̂ can be constructed using

the residuals obtained from OLS equation-by-equation estimation of (S.12). The

restricted (FGLS) efficient SUR estimator of γ∗ is given by:

γ̂∗ = γ̃∗ −
(

Σ̂−1 ⊗ (X ′−1
)
R′
(
R
(

Σ̂−1 ⊗ (X ′−1
)
R′
)−1

Rγ̃∗,

where γ̃∗ denotes the unrestricted OLS equation-by-equation estimator of γ∗.
6

Let σ̂e1 and σ̂e1e2 denote the estimators of σe1 and σe1e2 respectively constructed

by replacing the expectations in (S.13) and (S.14) with sample averages and ε’s with

fitted residuals from the SUR system above. We need additional notation to describe

6Since the two equations have the same set of regressors, the unrestricted efficient SUR estimator
is the equation-by-equation OLS estimator.

8



the linearization of the estimator of β in (S.3). Define:

H = I6−

(
Σ−1 ⊗

(
plimn→∞

X ′X

n

)−1
)
R′

(
R

(
Σ−1 ⊗

(
plimn→∞

X ′X

n

)−1
)
R′

)−1

R,

and let H2;3 denote the second and third rows of H. In this case,
√
n(β̂ − β), B, and

√
n(ĥ1−h1) in (S.3) are given by the corresponding terms in the following expression:

√
n


(
ρ̂11 − ρ11

ρ̂12 − ρ12

)
σ̂e1 − σe1

σ̂e1e2 − σe1e2

 =


H2;3 02×1 02×1 02×1

01×6
1

2σe1
0 0

01×6 −
σe1e2
2σ2

e1

−σe1e2
2σ2

e2

1
σe1σe2

 1√
n

n∑
t=2



(
ε1,t

ε2,t

)
⊗Xt

ε2
1,t − σ2

e1

ε2
2,t − σ2

e2

ε1,tε2,t − σe1e2σe1σe2


+ op(1),

where ρ̂11 and ρ̂12 denote the second and third elements of the efficient SUR estimator

γ̂∗.

To estimate Λ11 and B, one should replace the population parameters in the

above expression with their sample counterparts and ε’s with fitted residuals from

SUR estimation. To estimate Λ22 and Λ12, one can use a linearization (similar to that

of σ̂e1 and σ̂e1e2 above) for ĥ2.

S.5 Derivation of the asymptotic variances formu-

las in (S.5)-(S.7)

When H0 is true, S can be written as

S =

[(
ĥ2 − ĝ(β̂)

)′
Wĥ2

(
ĥ2 − ĝ(β̂)

)
− (h2 − g(β))′Wh2 (h2 − g(β))

]
−
[(
ĥ2 − f̂(θ̂)

)′
Wĥ2

(
ĥ2 − f̂(θ̂)

)
− (h2 − f(θ))′Wh2 (h2 − f(θ))

]
. (S.15)

Next, (
ĥ2 − ĝ(β)

)′
Wĥ2

(
ĥ2 − ĝ(β)

)
− (h2 − g(β))′Wh2 (h2 − g(β)) (S.16)
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=
(
ĥ2 − ĝ(β)

)′ (
Wĥ2
−Wh2

) (
ĥ2 − ĝ(β)

)
+
(
ĥ2 − ĝ(β) + h2 − g(β)

)′
Wh2

(
ĥ2 − h2

)
−
(
ĥ2 − ĝ(β) + h2 − g(β)

)′
Wh2 (ĝ(β)− g(β))

= ((h2 − g(β))⊗ (h2 − g(β)))′ J
(
w(ĥ2)− w(h2)

)
+ 2 (h2 − g(β))′Wh2

(
ĥ2 − h2

)
− 2 (h2 − g(β))′Wh2 (ĝ(β)− g(β)) + op(1/

√
n),

where the last equality holds by vec(ABC) = (C ′ ⊗ A) vec(B) (see Magnus and

Neudecker (1999), equation (5) on page 30), (S.4), and (S.9). With a similar expres-

sion for the second term in (S.15) and a first-order Taylor expansion for w(ĥ2), we

obtain that (S.16) multiplied by
√
n is equal to

 2Wh2(f(θ)− g(β)) + ∂w(h2)′

∂h
J ′K(h2, f(θ), g(β))

2Wh2(h2 − f(θ))

−2Wh2(h2 − g(β))


′

√
n
(
ĥ2 − h2

)√
n
R

√
R
(
f̂(θ)− f(θ)

)√
n
R

√
R
(
ĝ(β)− f(β)

)
+op(1)

(S.17)

Next, by a first-order Taylor expansion,(
ĥ2 − ĝ

(
β̂
))′

Wĥ2

(
ĥ2 − ĝ

(
β̂
))

=
(
ĥ2 − ĝ

(
β
))′

Wĥ2

(
ĥ2 − ĝ

(
β
))

− 2
(
ĥ2 − ĝ

(
β
))′

Wĥ2

∂g(β)

∂β′
(
β̂ − β

)
+ op(1/

√
n).

By combining this result (and a similar expansion for model f) with the results in

(S.17) and (S.15), and using (S.2)-(S.3), we obtain:

√
nS = 2


A′ ∂f(θ)′

∂θ
Wh2(h2 − f(θ))−B′ ∂g(β)′

∂β
Wh2(h2 − g(β))

Wh2(f(θ)− g(β)) + 0.5∂w(h2)′

∂h
J ′K(h2, f(θ), g(β))

Wh2(h2 − f(θ))

−Wh2(h2 − g(β))


′

(S.18)

×


√
n
(
ĥ1 − h1

)
√
n
(
ĥ2 − h2

)√
n
R

√
R
(
f̂(θ)− f(θ)

)√
n
R

√
R
(
ĝ(β)− f(β)

)

+ op(1).
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The results in (S.5)-(S.7) now follow by (S.1) and (S.4).

S.6 Derivation of the standard error formula in

(S.11)

When H0 is true, one can write

SM =
k∑
j=1

(
d(ĝj(β̂), ĥ2;Wĥ2

)− d(f̂j(θ̂), ĥ2;Wĥ2
)− d(gj(β), h2;Wh2) + d(fj(θ), h2;Wh2)

)
.

Assuming that the contribution of simulation uncertainty is negligible, it follows from

(S.18) that

√
nSM = 2

k∑
j=1

Qj

√
n

(
ĥ1 − h1

ĥ2 − h2

)
+ op(1),

where note that Qj is the same as the first two row-blocks of the multiplication matrix

appearing in (S.18). The result in (S.11) follows.

S.7 Robustness with respect to parameter λ

This section presents the pair-wise model comparisons and class-based comparison

results of the BKK models and LAMP models with various values for the consumption

share of participants, parameter λ. In particular, we consider two scenarios: (i) λ =

0.3, the results for which are given in Table 1; and (ii) λ = 0.7, the results for which

are in Table 2.
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Table 1: Test results from the comparison of models with λ=0.3

Model f
Model g BKK LAMP
(a) Volatilities FA BE CM FA BE CM
BKK, FA 0

BKK, BE 0.19*** 0
(0.00)

BKK, CM 0.20*** 0.02*** 0
(0.00) (0.00)

LAMP, FA 0.05*** -0.13*** -0.15*** 0
(0.00) (0.00) (0.00)

LAMP, BE 0.26*** 0.08*** 0.06*** 0.21*** 0
(0.00) (0.00) (0.00) (0.10)

LAMP, CM 0.28*** 0.10*** 0.08*** 0.23*** 0.02*** 0
(0.00) (0.00) (0.00) (0.00) (0.00)

(b) Correlations (with output and cross-country)
BKK, FA 0

BKK, BE 0.13 0
(0.77)

BKK, CM 0.05 -0.08*** 0
(0.91) (0.00)

LAMP, FA -0.21 -0.34 -0.26 0
(0.34) (0.58) (0.68)

LAMP, BE -0.45 -0.58*** -0.50** -0.24 0
(0.21) (0.01) (0.02) (0.62)

LAMP, CM -0.55 -0.69*** -0.60** -0.34 -0.10*** 0
(0.12) (0.01) (0.02) (0.46) (0.00)

(c) Overall
BKK, FA 0

BKK, BE 0.32 0
(0.47)

BKK, CM 0.25 -0.07*** 0
(0.57) (0.00)

LAMP, FA -0.16 -0.48 -0.41 0
(0.47) (0.44) (0.51)

LAMP, BE -0.18 -0.50** -0.44** -0.03 0
(0.60) (0.03) (0.05) (0.95)

LAMP, CM -0.27 -0.59** -0.52** -0.11 -0.08*** 0
(0.45) (0.02) (0.04) (0.81) (0.01)

LAMP - BKK -1.18*
class comparison (0.09)
Note: This Table reports the test statistics for comparison of the model in the row (model g) against the model in
the column (model f). Positive numbers for the test statistic indicate that, compared with the model in the column,
the model in the row provides a worse fit to the data moments. P-values are in the parentheses. * p-value≤0.10, **
p-value≤0.05, *** p-value≤0.01.
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Table 2: Test results from the comparison of models with λ=0.7

Model f
Model g BKK LAMP
(a) Volatilities FA BE CM FA BE CM
BKK, FA 0

BKK, BE 0.19*** 0
(0.00)

BKK, CM 0.20*** 0.02*** 0
(0.00) (0.00)

LAMP, FA 0.01*** -0.17*** -0.19*** 0
(0.00) (0.00) (0.00)

LAMP, BE 0.21*** 0.02*** 0.01*** 0.19*** 0
(0.00) (0.00) (0.00) (0.10)

LAMP, CM 0.23*** 0.04*** 0.02*** 0.21*** 0.02*** 0
(0.00) (0.00) (0.00) (0.00) (0.00)

(b) Correlations (with output and cross-country)
BKK, FA 0

BKK, BE 0.13 0
(0.77)

BKK, CM 0.05 -0.08*** 0
(0.91) (0.00)

LAMP, FA -0.05 -0.19 -0.10 0
(0.49) (0.71) (0.84)

LAMP, BE -0.07 -0.20*** -0.12** -0.02 0
(0.86) (0.00) (0.04) (0.97)

LAMP, CM -0.16 -0.29*** -0.21*** -0.11 -0.09*** 0
(0.70) (0.00) (0.00) (0.82) (0.00)

(c) Overall
BKK, FA 0

BKK, BE 0.32 0
(0.47)

BKK, CM 0.25 -0.07*** 0
(0.57) (0.00)

LAMP, FA -0.04 -0.36 -0.29 0
(0.61) (0.48) (0.57)

LAMP, BE 0.14 -0.18*** -0.11** 0.18 0
(0.74) (0.00) (0.05) (0.70)

LAMP, CM 0.07 -0.25*** -0.19*** 0.11 -0.07*** 0
(0.87) (0.00) (0.01) (0.82) (0.00)

LAMP - BKK -0.41**
class comparison (0.05)
Note: This Table reports the test statistics for comparison of the model in the row (model g) against the model in
the column (model f). Positive numbers for the test statistic indicate that, compared with the model in the column,
the model in the row provides a worse fit to the data moments. P-values are in the parentheses. * p-value≤0.10, **
p-value≤0.05, *** p-value≤0.01.
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