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Abstract

This paper proposes several testing procedures for comparison of misspec-

i�ed calibrated models. The proposed tests are of the Vuong-type (Vuong,

1989; Rivers and Vuong, 2002). In our framework, the econometrician selects

values for model�s parameters in order to match some characteristics of data

with those implied by the theoretical model. We assume that all competing

models are misspeci�ed, and suggest a test for the null hypothesis that they

provide equivalent �t to data characteristics, against the alternative that one of

the models is a better approximation. We consider both nested and non-nested

cases. We also relax the dependence of models� ranking on the choice of a

weight matrix by suggesting averaged and sup-norm procedures. The methods

are illustrated by comparing the cash-in-advance and portfolio adjustment cost

models in their ability to match the impulse responses of output and in�ation

to money growth shocks.
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1 Introduction

This paper proposes a method of formally comparing calibrated models. Calibra-

tionists often acknowledge that their models are misspeci�ed and will be rejected by

data if formally tested (Canova, 1994). Their objective is not to assess whether a

particular model is true, but rather which features of data it can be used to cap-

ture. Furthermore, calibrationists are often interested in learning which of several

competing models provides a better �t to data.

In a typical calibration exercise, the calibrationist selects values for a model�s pa-

rameters in order to match some characteristics of observed data with those implied

by the theoretical model. For example, a model can be calibrated to match empir-

ical moments, cross-correlations, or impulse responses. Such characteristics will be

referred to as properties of a reduced-form model or the reduced-form parameters,

since they can be consistently estimated from data without knowing the true data

generating process (DGP).

After choosing parameter values, a structural model is evaluated by comparing

model-implied reduced-form characteristics with those of actual data (Gregory and

Smith, 1991, 1993; Cogley and Nason, 1995; Kim and Pagan, 1995). However ac-

cording to the calibration approach, a model is only an approximation and therefore

should not be regarded as a null hypothesis to be statistically tested (Prescott, 1991).

Instead of testing whether a speci�cation is correct, one can evaluate a model by

comparing it against some benchmark model. This approach has been advocated in

Diebold and Mariano (1995), West (1996), White (2000), and other papers.

In this paper, we view assigning parameters�values in calibration as an example

of classical minimum distance (CMD) estimation. We then compare models by the

means of an asymptotic test. Following the approach of Vuong (1989) and Rivers and

Vuong (2002), RV hereafter, our null hypothesis states that two misspeci�ed models

provide an equivalent approximation to data. Vuong (1989) proposed such a test in

the maximum likelihood framework, and RV discussed it in a more general setting

allowing for a broad class of lack-of-�t criteria including that of GMM.

The contribution of our paper relative to RV is as follows. While RV focused solely

on non-nested models, the CMD framework allows us to analyze both non-nested and

nested cases. The nested case is particularly important because, if the null of model

equivalence is not rejected, one can replace a bigger model with a more parsimo-
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nious one. Furthermore, many hypotheses can be expressed in terms of parameter

restrictions and thus fall into the nested category. The nested and non-nested cases

also correspond to di¤erent asymptotic null-distributions. Focusing on the non-nested

case, RV describes generic conditions su¢ cient for the di¤erence between sample lack-

of-�t criteria of two models to have an asymptotically normal null distribution. We

derive a similar result for the non-nested case in our framework, however, we also

show that our test statistic has a mixed �2 asymptotic null-distribution in the nested

case.1

We also address the issue of choosing weights for reduced-form characteristics

when comparing models. When models are misspeci�ed, pseudo-true values of their

parameters and ranking of the models depend on the choice of the weighting scheme.

In this paper, we relax the dependence of model ranking on the choice of the weighting

scheme by suggesting averaged and sup-norm procedures. The averaged test corre-

sponds to the null hypothesis that two models have equal lack-of-�t on average. On

the other hand, according to the null hypothesis of the sup-norm test, one model

cannot outperform another for any choice of the weight matrix.

Comparison of misspeci�ed models has been studied recently from the Bayesian

perspective by Schorfheide (2000), and using a Kolmogorov-type test by Corradi and

Swanson (2007). Kan and Robotti (2009) use the Hansen-Jagannathan distance to

design a Vuong-type test for comparison of misspeci�ed asset pricing models. Mis-

speci�cation has been also addressed by Dridi et al. (2007) using indirect inference.

We apply our methodology to compare two standard monetary business cycle

models: the cash-in-advance (CIA) model, and the Lucas (1990) and Fuerst (1992)

model with portfolio adjustment costs (PAC). The two models have the same un-

derlying structure except for the information sets that agents possess when making

their decisions. We judge the performance of the models based on their ability to

replicate the response of in�ation and output growth to an unanticipated monetary

shock in the U.S. data. A structural vector autoregression (SVAR) is employed to

obtain model-free estimates of such impulse responses. We �nd that the null hypoth-

esis that CIA and PAC models have the same �t cannot be rejected. We therefore

conclude that the frictions underlying the PAC model do not play a signi�cant role

in approximating the in�ation-output dynamics.

The paper proceeds as follows. Section 2 introduces the framework. Section

1This is consistent with the results of Vuong (1989) obtained in the MLE framework.
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3 describes our basic tests for model comparison based on a quasi-likelihood ratio

(QLR) statistic. We discuss the distribution of the suggested statistic in the cases of

nested, strictly non-nested and overlapping models. Section 4 discusses the averaged

and sup-norm tests, and con�dence sets for weighting schemes. Section 5 illustrates

the technique with an empirical application. The proofs and additional details are

given in the supplement to this paper.2 We use the following notation. For a matrix

B, let kBk =
p
tr (B0B), where tr denotes trace. When B is symmetric and positive

de�nite, B1=2 denotes the symmetric square-root matrix.

2 De�nitions

Let Yn(!) be a data matrix of the sample size n de�ned on the probability space

(
;F ; P ). All random quantities in this paper are some functions of the data Yn.

We use h to denote an m-vector of reduced-form characteristics (parameters). Its

true value, h0 2 Rm, depends on the true unknown structural model of the economy
and its parameters. For example, h can be a vector of moments, cross-correlations,

impulse responses, etc. While the true structural model is unknown, we will assume

that the reduced-form parameter h can be estimated consistently from the data. Let

ĥn denote an estimator of h. We assume that ĥn has the following properties.

Assumption 2.1. (a) n1=2(ĥn�h0)!d N(0;�0), where �0 is positive de�nite m�m
matrix. (b) There is �̂n such that �̂n !p �0.

According to Assumption 2.1(a), ĥn is a consistent and asymptotically normal

estimator of h0. Part (b) of the assumption requires that �0 can be estimated con-

sistently from the data. The above assumptions are of high level and can be veri�ed

from more primitive conditions for mixing processes (White, 2001) or linear processes

(Phillips and Solo, 1992).

Let � 2 � � Rk be a vector of deep parameters corresponding to a structural

model speci�ed by the calibrationist. We assume that one can compute analytically

the value of the reduced-form parameters h given the model and a value of �. The

mapping from the space of � to the space of reduced-form parameters is given by the

2The supplement is available as Hnatkovska et al. (2011) from the UBC Working Papers series.
In the supplement, we also consider several extensions of our basic test, including the case when a
model is estimated using one set of reduced-form parameters and evaluated with respect to another.
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function f : � ! Rm, which we call the binding function using the terminology of

indirect inference (Gouriéroux et al., 1993).3 In the remainder of the paper, structural

models are referred to by their binding functions.

The estimator of � is denoted by �̂n and chosen to minimize the distance between

the sample reduced-form characteristics of the data, ĥn, and those implied by the

chosen structural model f . Let An be a possibly random m�m weight matrix. The

weight matrix can be nonrandom and is chosen by the calibrationist to put more

weight on more important reduced-form parameters. Alternatively, it can be data

dependent and, therefore, random.

Assumption 2.2. A0nAn !p A
0A, where A0A is of full rank.

The calibrated �, or the CMD estimator of �, is given by the value that minimizes

the weighted distance function:

�̂n (An) = argmin
�2�




An �ĥn � f (�)
�


2 : (2.1)

The following de�nition is similar to De�nitions 1 and 2 of Hall and Inoue (2003),

HI hereafter.

De�nition 2.1. A structural model f is misspeci�ed if inf�2� kh0 � f(�)k > 0.

Naturally, a structural model chosen by the calibrationist is correctly speci�ed

in the sense of De�nition 2.1 in the unlikely case that f is the true data generating

process. Also, model f can be correctly speci�ed according to De�nition 2.1 in the

case of exact identi�cation, i.e. when m = k, even if the structural model and its

binding function describe an incorrect DGP.4 Typically, the number of reduced-form

parameters available for calibration exceeds k, and therefore, the calibrationist can

always choose a binding function and reduced-form parameters so that a model is

overidenti�ed and thus misspeci�ed.

We assume that the calibrationist considers two competing structural models. The

second structural model is given by the binding function g and the vector of deep

parameters 
 2 � � Rl: Let 
̂n be the calibrated value of 
, where 
̂n is constructed

similarly to �̂n in (2.1): 
̂n(An) = argmin
2� kAn(ĥn � g(
))k2.
3If the binding function has to be computed by simulations, as it often happens in practice, one

can assume that the number of simulations, say �n increases with the sample size n but at a faster
rate so that n=�n ! 0. Under this assumption, all the results in the paper continue to hold.

4See the discussion of overidenti�cation and misspeci�cation in HI.
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Assumption 2.3. Models f and g are misspeci�ed according to De�nition 2.1.

Next, we de�ne pseudo-true values of the structural parameters � and 
. A pseudo-

true value minimizes the distance between h0 and the binding functions for a given

weight matrix A:

Assumption 2.4. There exists a unique �0 (A) 2 � such that for all � 2 �,

kA (h0 � f (�0 (A)))k � kA (h0 � f (�))k. There exists a unique 
0 (A) 2 � such

that for all 
 2 �, kA (h0 � g (
0 (A)))k � kA (h0 � g (
))k :

In the above assumption, the pseudo-true values are written as functions of A to

emphasize that di¤erent choices of the weight matrix may lead to di¤erent minimizers

of kA (h0 � f (�))k.5 For notational brevity, we may suppress the dependence of

pseudo-true values on A if there is no ambiguity regarding the choice of A. The

uniqueness of pseudo-true values is a standard assumption in the literature.6 When

the pseudo-true value lies in the interior of�, it uniquely solves the following equation,

provided that f is di¤erentiable:

@f (�0 (A))
0

@�
A0A (h0 � f (�0 (A))) = 0: (2.2)

Due to Assumption 2.2 on A, for �0 to be unique it is su¢ cient that @f (�0 (A)) =@�
0

has rank k.

Given two misspeci�ed models, the calibrationist�s objective is to choose the one

that provides a better A-weighted �t to the reduced-form parameter h0. We suggest

a testing procedure for the null hypothesis that the two models have equal �ts:

H0 : kA (h0 � f (�0 (A)))k = kA (h0 � g (
0 (A)))k : (2.3)

The null is tested against alternatives in which one of the models provides a better

�t. The calibrationist prefers model f if the following alternative is true:

Hf : kA (h0 � f (�0 (A)))k < kA (h0 � g (
0 (A)))k : (2.4)

Similarly, the calibrationist prefers model g when Hg : kA(h0�f(�0(A)))k > kA(h0�
5This point has been discussed in Maasoumi and Phillips (1982) and HI.
6See Assumption 3 of RV and Assumption 3 of HI.
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g(
0(A)))k is true. Note that di¤erent weighting schemes may correspond to a di¤er-
ent ranking of f and g.

In order to test the null hypothesis in (2.3), it is natural to consider a sample

counterpart of the di¤erence in �ts between the two competing models:

QLRn

�
�̂n (An) ; 
̂n (An)

�
=



An �ĥn � g (
̂n)

�


2 � 


An �ĥn � f
�
�̂n

��


2 : (2.5)

We make the following assumption.

Assumption 2.5. (a) � and � are compact. (b) �0(A) and 
0(A) lie in the interior
of � and � respectively. (c) f and g are continuous on � and � respectively. (d) The
binding functions f and g are twice continuously di¤erentiable in the neighborhoods

of �0(A) and 
0(A) respectively. (e) F0 and G0 are non-singular, where

F0 =
@f (�0(A))

0

@�
A0A

@f (�0(A))

@�0
�Mf;0; (2.6)

Mf;0 =
�
Ik 
 (h0 � f (�0(A)))

0A0A
� @

@�0
vec

�
@f (�0(A))

@�0

�
;

G0 =
@g (
0(A))

0

@

A0A

@g (
0(A))

@
0
�Mg;0; (2.7)

Mg;0 =
�
Il 
 (h0 � g (
0(A)))

0A0A
� @

@
0
vec

�
@g (
0(A))

@
0

�
:

One can show that under Assumptions 2.1, 2.2, 2.4, and 2.5(a)-(c), �̂n and 
̂n
consistently estimate the corresponding pseudo-true values. As a result, QLRn con-

sistently estimates kA(h0� g(
0(A)))k�kA(h0� f(�0(A)))k. Assumptions 2.5(c)-(e)
are used to derive the asymptotic null distribution of QLRn.7

The CMD estimator of � solves (@f(�̂n)0=@�)A0nAn(ĥn � f(�̂n)) = 0: Using the

mean value theorem twice to expand f(�̂n) and @f(�̂n)=@�
0, and taking into account

the population �rst-order condition (2.2), we obtain the following expansion for the

CMD estimators in the misspeci�ed case:8,9

7Assumption 2.5(e) is similar to Assumption 5 of HI.
8We also assume that n1=2(A0nAn �A0A) = Op(1).
9The result in (2.8) is similar to that of equation (9) in HI. However, in the case of CMD it

involves one term less than in the GMM case. This is due to the fact that, in the case of CMD, the
data enters the criterion function through h, and the parameters through the binding function. The
result in (2.8) is also similar to Assumptions 10 and 13 of RV.
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n1=2
�
�̂n � �0

�
= F�10

@f (�0)
0

@�
A0An1=2

�
ĥn � h0

�
+ F�10

@f (�0)
0

@�
n1=2 (A0nAn � A0A) (h0 � f (�0)) + op (1) : (2.8)

The expansion (2.8) shows that in the misspeci�ed case, the asymptotic distribution

of the CMD estimators and QLRn depends on that of the reduced-form parameters

and the weight matrices. In this paper, we will focus on the case An = A (�xed,

known weight matrices). In the supplement to this paper, we also consider the case

where n1=2 vec (A0nAn � A0A) is asymptotically normal. Such a situation arises when

A0nAn is a function of sample moments as in the case of Hansen-Jagannathan distance

(Kan and Robotti, 2009).

3 Model comparison

The distribution of the QLRn statistic in (2.5) depends on the relationship between

the two models. Following Vuong (1989), we consider (i) nested, (ii) strictly non-

nested, and (iii) overlapping models f and g: De�ne

F = fh 2 Rm : h = f (�) ; � 2 �g ; G = fh 2 Rm : h = g (
) ; 
 2 �g :

The relationship between the two structural models can be de�ned in terms of F and
G which represent the spaces spanned by f and g respectively for the reduced-form
parameter h.

De�nition 3.1. The two structural models f and g are said to be (a) nested if F � G
or G � F , (b) strictly non-nested if F \ G = ;, and (c) overlapping if F \ G 6= ;,
F 6� G, and G 6� F .

Remarks: (i) Note that the nested case is not necessarily a result of some restrictions
on the structural parameters. Models f and g can be very di¤erent in terms of their

underlying structures so that � and 
 are not directly comparable, and still be nested

with respect to the spaces they span for h. (ii) In the strictly non-nested case, for no
combination of structural parameters�values can model f give the same reduced-form

value h as model g. Thus, in the calibration context, the non-nested case appears to

be much more restrictive than the nested and overlapping cases.
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3.1 Nested models

Suppose that G � F . In this case, model g cannot provide a better �t than model
f . Therefore, the calibrationist is interested in testing H0 against Hf . Since models

are nested, and under Assumption 2.4 of unique pseudo-true values, the null hypoth-

esis can be equivalently stated as f(�0) = g(
0). Theorem 3.1 then describes the

asymptotic properties of QLRn in the nested case.

Lemma 3.1. Suppose that Assumption 2.4 holds, and models f and g are nested
according to De�nition 3.1. Then, under H0 in (2.3),f(�0) = g(
0).

Theorem 3.1. Suppose that An = A for all n � 1, A is of full rank, Assumptions 2.1,
2.3-2.5 hold, and G � F . (a) Under H0, nQLRn(�̂n; 
̂n) converges in distribution to

Z 0�
1=2
0 A0A (Wg;0 �Wf;0)A

0A�
1=2
0 Z, where Z � N (0; Im), Wf;0 = Wf;0(1)�Wf;0(2)�

Wf;0(3), and

Wf;0(1) =
@f (�0)

@�0
F

0�1
0

@f (�0)

@�

0
A0A

@f (�0)

@�0
F�10

@f (�0)
0

@�
;

Wf;0(2) =
@f (�0)

@�0

�
F

0�1
0 + F�10

� @f (�0)0
@�

;

Wf;0(3) =
@f (�0)

@�0
F

0�1
0

�
M 0
f;0 +Mf;0

�
F�10

@f (�0)
0

@�
:

The matrix Wg;0 is de�ned similarly to Wf;0 with �0, @f=@�, F0, and Mf;0 replaced

by 
0, @g=@
, G0, and Mg;0 respectively. (b) Under Hf , P (nQLRn(�̂n; 
̂n) > c)! 1

for all constants c > 0.

According to Theorem 3.1, nQLRn has a mixed �2 asymptotic distribution under

the null. This result is similar to the one established by Vuong (1989) for the MLE in

the case of nested models. The asymptotic distribution in part (a) is nonstandard and

depends on the unknown parameters h0, �0, 
0, and �0. However, this distribution

and its critical values can be approximated by simulations using consistent estimators

of the unknown parameters. First, let Ŵf;n and Ŵg;n be the consistent plug-in esti-

mators of Wf;0 and Wg;0 de�ned in part (a) of Theorem 3.1. To construct Ŵf;n and

Ŵg;n, one replaces h0, �0, 
0, and �0 with ĥn, �̂n, 
̂n, and �̂n respectively. Next, sim-

ulate Zr � N(0; Im) and calculate QLRnr = Z 0r�̂
1=2
n A0A(Ŵg;n�Ŵf;n)A

0A�̂
1=2
n Zr. The

asymptotic distribution of QLRnr (as n!1,) is as described in part (a) of Theorem
3.1. Repeating this for r = 1; : : : ; R with Zr being drawn independently across r�s, the
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simulated critical value c1��;n;R is the 1�� sample quantile of fQLRnr : r = 1; : : : ; Rg.
Thus, in the nested case, one rejects the null when nQLRn(�̂n; 
̂n) > c1��;n;R.

3.2 Strictly non-nested models

In the case of strictly non-nested models, the space of reduced-form parameters

spanned by f and that spanned by g have no common points. In this case, the

asymptotic null distribution of n1=2QLRn is normal.10 The asymptotic normality

is due to the presence of (f(�0) � g(
0))
0A0A(ĥn � h0) = Op(n

�1=2) in the asymp-

totic expansion for QLRn. When the models are nested, this term is absent because

f(�0) = g(
0) under H0 in the nested case.

Theorem 3.2. Suppose that An = A for all n � 1, and A has full rank. Suppose that
Assumptions 2.1, 2.3-2.5 hold, and F \ G = ;. (a) Under H0, n1=2QLRn(�̂n; 
̂n)!d

N(0; !20) with !0 = 2k�
1=2
0 A0A(f(�0)�g(
0))k. (b) UnderHf , P (n1=2QLRn(�̂n; 
̂n) >

c)! 1, and P (n1=2QLRn(�̂n; 
̂n) < �c)! 1 under Hg for all constants c > 0.

Note that the asymptotic variance !20 is strictly positive since f (�0) 6= g (
0) when

the models are non-nested.11 Let !̂n be the plug-in estimator of !0. One rejects the

null in favor of Hf when n1=2QLRn(�̂n; 
̂n)=!̂n > z1��=2, where z� is the � quantile of

the standard normal distribution. If n1=2QLRn(�̂n; 
̂n)=!̂n < �z1��=2, the null should
be rejected in favor of Hg.

3.3 Overlapping models

When f and g are overlapping, one can adopt a sequential testing procedure proposed

in Vuong (1989). In the �rst step, one tests whether f(�0) = g(
0). This hypothesis

is rejected when nQLRn exceeds a critical value from the mixed �2 distribution, say

c1��1, where �1 denotes the signi�cance level used in this step. If the hypothesis

f(�0) = g(
0) is not rejected, one concludes that the two models have the same �t

and the procedure stops. If the restriction f (�0) = g (
0) is rejected in the �rst step,

one continues to the second step.

Asymptotically, the restriction f(�0) = g(
0) can be rejected either because

f(�0) 6= g(
0) while the models have the same population lack of �t (H0 is true),

10This is consistent with Vuong (1989) and RV.
11This agrees with the conclusions in Section 6 of RV.

10



or because one of the models �ts the data better (Hf or Hg is true). In the second

step, one rejects H0 of equivalence of the two models when n1=2QLRn=!̂n > z1��2=2,

in which case f is the preferred model, or n1=2QLRn=!̂n < �z1��2=2, in which case
g is preferred. Here �2 denotes the signi�cance level in the second step. If H0 is

not rejected in the second step, one concludes that the two models are equivalent.

Vuong (1989) shows that the asymptotic signi�cance level of the sequential procedure

is max(�1; �2).

4 Averaged and sup-norm tests for model compar-

ison

We argued earlier that the choice of the weight matrix A plays a crucial role when

models are misspeci�ed. In this section, we propose testing procedures that take into

account models�relative performance for various weighting schemes.

Let A be a set of m � m weight matrices, B (A) be a �-�eld generated by open
subsets of A, and � be a probability measure on B (A). Let �(s)(A0A) denote the s-th
largest eigenvalue of A0A. We make the following assumption.12

Assumption 4.1. (a) A is compact. (b) For s = maxfk; lg + 1 and some � > 0,

infA2A �(s)(A
0A) > �. (c) Assumptions 2.4 and 2.5 hold for all A 2 A.

Remark. Part (b) of the above assumption states that uniformly over A, the weight
matrices must be at least of rankmaxfk; lg+1, so that f and g are both overidenti�ed
for any choice of A 2 A. To satisfy this condition, one can choose A such that all
its elements have full rank m, however, this is not necessary as we illustrate next.

Suppose that h consists of two groups of reduced-form parameters, h = (h01; h
0
2)
0,

where h1 is an m1-vector, h2 is an m2-vector, and m1 + m2 = m. Suppose further

that f provides a better �t to h1, and g provides a better �t to h2. In such a situation,

the econometrician might be interested in varying the relative weights of h1 and h2
in the overall �t of a model. For this purpose, A can be de�ned as follows. Let

[c; c] � [0; 1], A1 be a full rank m1�m1 matrix, and A2 be a full rank m2�m2 matrix

12We thank the referee for his comments and suggestions for Assumption 4.1 and the primitive
conditions below.
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such that kA1k = kA2k. Now, consider

A = fA(c) : c 2 [c; c]g ; where

A(c) =

 p
cA1 0

0
p
1� cA2

!
:

In this example, c determines the relative weight given to the �rst group of reduced-

form parameters, cA01A1, while the weight given to the second group is (1� c)A02A2.

When m1 > maxfk; lg and m2 > maxfk; lg, the two models can be estimated and
compared using h1 or h2 alone. In this case, one can use [c; c] = [0; 1], and while for

c = 0; 1 the matrix A(c) does not have a full rank, the model comparison problem is

well de�ned.

The null hypothesis of the averaged procedure is stated as follows:

Ha
0 :

Z
A

�
kA (h0 � g (
0 (A)))k

2 � kA (h0 � f (�0 (A)))k2
�
� (dA) = 0:

According to Ha
0 , the two models f and g provide equivalent approximations to h0

on average, where the average is taken in the class A with respect to the probabil-
ity measure �. For example, A may consist of a �nite number of matrices A with

� assigning equal weights to all A�s. Note that the pseudo-true values �0 (A) and


0 (A) continue to depend on A. The null hypothesis H
a
0 will be tested against the

alternatives

Ha
f :

Z
A

�
kA (h0 � g (
0 (A)))k

2 � kA (h0 � f (�0 (A)))k2
�
� (dA) > 0; or

Ha
g :

Z
A

�
kA (h0 � g (
0 (A)))k

2 � kA (h0 � f (�0 (A)))k2
�
� (dA) < 0:

The null hypothesis of the sup-norm procedure is given by

Hs
0 : sup

A2A

�
kA (h0 � g (
0 (A)))k

2 � kA (h0 � f (�0 (A)))k2
�
� 0:

According to Hs
0 , model f cannot outperform model g for any considered weight

matrix A 2 A. Thus, Hs
0 imposes a much stronger restriction than H

a
0 . The null H

s
0
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will be tested against the following alternative:

Hs
f : sup

A2A

�
kA (h0 � g (
0 (A)))k

2 � kA (h0 � f (�0 (A)))k2
�
> 0:

According to Hs
f , there is a weight matrix A such that model f outperforms model g.

Again, we consider the QLR statistic de�ned in (2.5), however, it is now explicitly

indexed by A:

QLRn

�
�̂n (A) ; 
̂n (A) ; A

�
=



A�ĥn � g (
̂n (A))

�


2 � 


A�ĥn � f
�
�̂n (A)

��


2 :
The averaged and sup-norm statistics are given by:

AQLRn =

Z
A
QLRn

�
�̂n (A) ; 
̂n (A) ; A

�
� (dA) ;

SQLRn = sup
A2A

QLRn

�
�̂n (A) ; 
̂n (A) ; A

�
:

The asymptotic null distributions and ranking of models according to AQLRn or

SQLRn depend on the choice of the measure �. The asymptotic null distributions of

the averaged and sup-norm statistics also depend on whether f and g are nested or

non-nested. When the models are nested, model g cannot outperform model f , and

the inequality in Hs
0 holds as an equality. We have the following result.

Theorem 4.1. Suppose that Assumptions 2.1, 2.3, 4.1 hold, and G � F . Let Z �
N (0; Im). For a given A 2 A, de�ne Wf;0 (A) and Wg;0 (A) as Wf;0 and Wg;0 re-

spectively in Theorem 3.1. (a) Under Ha
0 , nAQLRn !d Z

0�
1=2
0 (
R
A0A(Wg;0(A) �

Wf;0(A))A
0A�(dA))�

1=2
0 Z. (b) UnderHs

0 , nSQLRn !d supA2A(Z
0�
1=2
0 A0A(Wg;0(A)�

Wf;0(A))A
0A�

1=2
0 Z).

According to Theorem 4.1, when the models are nested, the asymptotic distrib-

ution of the averaged statistic is mixed �2. However, the weights are now given by

the average of matrices Wf;0 and Wg;0. Note that Wf;0, Wg;0, F0, Mf;0 depend on

A. Since Wf;0 (A) and Wg;0 (A) can be estimated consistently by the plug-in method,

the critical values of the mixed �2 distribution can be computed by simulations as

described in Section 3.1. The asymptotic null distribution of the sup-norm statistic

depends on the sup-norm transformation of the mixed �2 distribution. Its critical

values can be obtained similarly by simulations.

13



In the non-nested case, the asymptotic null distribution is a functional of a

Gaussian process. Note that when the models are non-nested, Hs
0 does not determine

the null distribution uniquely. It is a composite hypothesis, and the null distribu-

tion depends on whether the restriction is binding or not, while the least favorable

alternative, as usual, corresponds to the case where the restriction in H0 is binding.

Theorem 4.2. Suppose that Assumptions 2.1, 2.3, 4.1 hold, and F \ G = ;. Let
fX (A) 2 R : A 2 Ag be a mean zero Gaussian process such that the covariance of
X (A1) and X (A2), A1; A2 2 A, is !0(A1; A2), where !0(A1; A2) = 4(f(�0(A1)) �
g(
0(A1)))

0A01A1�0A
0
2A2(f(�0(A2)) � g(
0(A2))). (a) Under Ha

0 , n
1=2AQLRn !d

N(0;
R
A

R
A !0(A1; A2)�(dA1)�(dA2)). (b) Under H

s
0 , limn!1 P (n

1=2SQLRn > c) �
P (supA2AX(A) > c).

According to Theorem 4.2, the averaged statistic has a normal distribution. The

variance is given by the weighted average of variances and covariances of the QLR

statistics for di¤erent A�s. For the sup-norm statistic, the asymptotic distribution is

that of the sup-norm of the Gaussian process, and the critical values for a test based

on SQLRn can be obtained by simulations. In the case of overlapping models, one

can follow a sequential procedure similar to the one discussed in Section 3.3.13

5 Application

In this section we apply our method to two monetary macroeconomic models, the

cash-in-advance (CIA) model and the portfolio adjustment cost (PAC) model.14 We

compare the performance of the two models based on their ability to match the

impulse responses of output growth and in�ation to a monetary growth shock, which

comprise h in our application. We obtain a consistent estimate of h0 from an SVAR

model for GDP growth and in�ation. The identi�cation scheme employed for the

SVAR follows Blanchard and Quah (1989) with the identifying restriction that money

is neutral in the long run. This restriction is satis�ed by both CIA and PAC.

13In Section S.3 of the supplement, we extend the results of Theorem 4.1 and 4.2 to allow for
estimated weight matrices.

14Detailed discussions of these models can be found in Christiano (1991) and Christiano and
Eichenbaum (1992).
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5.1 CIA Model

The model economy is populated by a representative household, a �rm, and a �nancial

intermediary. At the beginning of period t the household owns the economy�s entire

money stock, Mt, and decides how to allocate it between purchases of consumption

goods and deposits in the �nancial intermediary,Mt�Qt; whereQt is money allocated
to purchases of consumption goods. Consumption purchases must be �nanced withQt
and wage earnings. Thus, the objective of the household is to choose real consumption,

Ct; working hours, Ht; and nominal deposit to solve the following problem:

max
fCt;Ht;Mt+1;Qtg

E0

" 1X
t=0

�t [(1� �) lnCt + � ln (1�Ht)]

#
;

subject to PtCt � Qt+WtHt; Qt �Mt, andMt+1 = (Qt+WtHt�PtCt)+RH;t(Mt�
Qt)+Ft+Bt: Here E0 denotes expectation at date 0, � is the subjective discount factor,
and � is the share of leisure in per period utility. Pt denotes economy�s price level,

while Wt and RH;t denote nominal wage rate and return on deposit. The household

also receives nominal pro�ts paid by the �rm, Ft, and the �nancial intermediary, Bt.

The production technology in the economy is Yt = K�
t (AtNt)1��, where Kt, Nt,

and At are capital stock, labor input, and labor-augmenting technology, respectively.
Firms must pay the total wage bill up-front to workers, so they borrowWtNt from the

�nancial intermediary. Loans must be repaid at the end of period t: The representative

�rm�s problem is

max
Ft;Kt+1;Nt;Lt

E0

" 1X
t=0

�t+1
Ft

Ct+1Pt+1

#
;

subject to Ft � Lt + Pt [Yt �Kt+1 + (1� �)Kt]�WtNt � LtRF;t; and WtNt � Lt:

The objective of the �nancial intermediary in this economy is simple. At the

beginning of each period, it loans out the household�s depositMt�Qt and the money
injection Xt received from the central bank to the �rm. At the end of period, it

collects the loan plus interest LtRF;t and pays the amount to the household. The

household, �rm and �nancial intermediary all take prices as given.

Technology At and money growth rate mt =Mt+1=Mt follow stochastic processes

lnAt =  +lnAt�1+�A;t, with �A;t � N(0; �2A), and lnmt = (1��) lnmss+� lnmt�1+

�M;t, with �M;t � N(0; �2M). Here mss is the steady state in�ation rate, and  ; � are

parameters.
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To solve the model, we �rst re-scale all real variables by technology level At,
prices by Mt=At; and nominal variables by Mt: Then we log-linearize the equilibrium

conditions around the deterministic steady state and solve the resulting system of

linear di¤erence equations. We use the solution to obtain the theoretical impulse

responses of the model. These impulse responses are conditional on the structural

model parameters [mss; �; �; �;  ; �; �; �
2
A; �

2
M ]

0.

5.2 PAC Model

The production function and stochastic processes governing technology and money

growth in the PAC model are the same as in the CIA model. The key di¤erence

between the two models is in the information sets that the household faces. In partic-

ular, in the PAC model the household�s contingency plan for deposit holdings is not a

function of period-t realizations of shocks. This rigidity of Qt implies that any positive

money shock must be absorbed by �rms. For �rms to be willing to do so voluntar-

ily, the interest rate must fall. To make this liquidity e¤ect persistent, Christiano

(1991) introduces the second distinct feature of the PAC model - the adjustment cost

~pt = �1 [exp (�2(Qt=Qt�1 �mss)) + exp (��2(Qt=Qt�1 �mss))� 2]. The household�s
problem in the PAC model is

max
fCt;Ht;Mt+1;Qt+1g

E0

" 1X
t=0

�t[(1� �) lnCt + � ln(1�Ht � ~pt)]
#
;

subject to the same sequence of constraints as in the CIA problem. The �rm�s problem

and the �nancial intermediary�s problem are identical to those in the CIA model.

We solve this model and calculate its theoretical impulse responses using the same

procedure as for CIA model. These impulse responses are conditional on the set of

structural model parameters [mss; �; �; �;  ; �; �; �
2
A; �

2
M ; �1; �2]

0.

5.3 Model Estimation and Comparison Results

As mentioned before, our vector h0 consists of output growth and in�ation impulse re-

sponses (seven periods each) to a money growth shock. We use the SVAR model with

four lags for the GDP per capita growth and in�ation series to obtain ĥn. The dataset

used in the empirical analysis contains U.S. GDP per capita growth rate and in�ation
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rate obtained from the Basic Economics database produced by DRI/McGraw-Hill for

the period of 1947:Q2-2009:Q2.15

In our comparison testing, we treat the two models as overlapping. This is because

the PAC model, on the one hand, is more restrictive than CIA due to our assumption

on the timing of households�decisions. On the other hand, PAC can generate richer

dynamics than the CIA model, due to adjustment costs.

To reduce the computation time, in our calibration exercise we �x the values

of some parameters. Following Christiano and Eichenbaum (1992), we set � = 0:36,

� = 1:03�1=4, � = 0:797, � = 0:012,  = 0:004, andmss = 0:012. We borrow the value

of �A = 0:014 from Christiano (1991). We calibrate the rest of the parameters. Note

that the presence of preset parameters does not impose an additional di¢ culty in our

framework since the binding functions are assumed to be misspeci�ed. Because our

procedure requires that the parameter vectors are de�ned on compact sets, we restrict

� 2 [0; 1] and �M 2 [0:0001; 0:01]. In the log-linearized PAC model, �1 and �2 only
enter through the combination �1�22. We draw on Christiano and Eichenbaum (1992)

to restrict �1�22 2 [10; 100]. To implement our test, �rst we estimate � = [�; �2M ]0 by
minimizing the distance between the theoretical impulse responses in the CIA model,

f(�), and the empirical impulse responses from the SVAR model, ĥn. Similarly,

we estimate 
 = [�; �2M ; �1�
2
2]
0 by minimizing the distance between the PAC-implied

impulse responses g(
) and ĥn. Both distances are computed using the identity weight

matrix: An = I14.16 Table 1 summarizes our parameter estimates.

Figure 1 plots the models� implied impulse responses of in�ation and output

growth. The top panel shows that both CIA and PAC models are somewhat suc-

cessful in replicating in�ation dynamics, while the bottom panel indicates that both

models lack in their ability to match the real-side dynamics.17 At the same time, the

PAC model does marginally better in �tting output impulse responses than the CIA

model.
15The GDP per capita series are obtained as a ratio of GDP series (GDP215 in the DRI database)

and population series (POP in the DRI database). For the price level, we choose the GDP de�ator
series (GDPD15 in the DRI database).

16We also verify that each of the models is misspeci�ed in the sense of De�nition 2.1. For this
purpose, we perform the usual overidentifying restrictions test. For model f , the test statistic is
given by min�2� n(ĥn � f(�))0�̂�1n (ĥn � f(�)) and has the �2m�k asymptotic null distribution. We
�nd that the test statistic is equal to 20.98 for the CIA model, and to 144.7 for the PAC model.
The corresponding p-values are 0.05 and 0.00, and we conclude that both models are misspeci�ed.

17These results agree with the �ndings of Nason and Cogley (1994).
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To determine whether this result is statistically signi�cant, we follow the two-step

procedure described in Section 3.3. In the �rst-step, we �nd nQLRn = 0:00098. The

�rst-step asymptotic null-distribution is mixed �214, and the simulated 5% and 10%

critical values are 0.00063 and 0.00044, respectively. The �rst-step null-hypothesis

f(�0) = g(
0) is rejected with the p-value 0.014. In the second step, one rejects the

null of the models�equivalence by comparing the t-statistic n1=2QLRn=(2k�̂1=2n f(�̂n)�
ĝ(
̂n)k) with the standard normal critical values. The resulting value for the t-statistic
is 0.59, and the null of the CIA and PAC equivalence is not rejected. Our �ndings

therefore indicate that the rigidities underlying the persistent liquidity e¤ect in the

PAC model do not play a signi�cant role in approximating the in�ation and output

impulse response dynamics.18

To account for potential di¤erences in models�performance for various weighting

schemes, we implement our averaged and sup-norm procedures of Section 4. In addi-

tion to the equal weights imposed by A = I14, we consider three additional weighting

schemes: (i) with all weight assigned to in�ation impulse responses; (ii) with all

weight assigned to the �rst period (on impact) impulse responses for output growth

and in�ation; (iii) with weight assigned to the �rst and second periods of output

growth and in�ation impulse responses. The choice of � is such that all alternative

weighting schemes are given equal weights.

Based on the averaged test, we �nd that the CIA and PAC models provide equiv-

alent approximations to the true h0 on average (nAQLRn = 0:00069 with the p-value

of 0.96 in the �rst step). Based on the sup-norm test, we �nd that the CIA model

cannot outperform the PAC model for any of the considered weight matrices in our

list (nSQLRn = 0:0016 the p-value of 0.97 in the �rst step).
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Table 1: CIA and PAC parameters�estimates and their standard errors

Parameter Range CIA estimates PAC estimates
� money shock persistence [0,1] 0.8997 0.9555

(0.00001) (0.0192)
�M std.dev. of money growth innovations [0.0001,0.004] 0.0022 0.00229

(0.0003) (0.0003)
�1�

2
2 adjustment cost parameter [10, 100] - 99.99

(0.9838)

Figure 1: Data and model-implied impulse responses

in�ation

output

CIA PAC

22


