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Abstract

This paper contains supplemental materials for Marmer and Shneyerov

(2010). We discuss here how the approach developed in the aforementioned

paper can be applied to conducting inference on the optimal reserve price in

first-price auctions, report additional simulations results, and provide a detailed

proof of the bootstrap result in Marmer and Shneyerov (2010).

S.1 Introduction

This paper contains supplemental materials for Marmer and Shneyerov (2010), MS

hereafter. Section S.2 discusses how the approach developed in MS can be applied to

conducting inference on the optimal reserve price in first-price auctions. Section S.3

contains the full set of the Monte Carlo simulations results of which only a summary

was reported in MS. In Section S.4, we provide a detailed proof of bootstrap Theorem

3 in MS.

The definitions and notation used in this paper are as introduced in MS.
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S.2 Inference on the optimal reserve price

In this section, we consider a problem of conducting inference on the optimal reserve

price. Several previous articles have studied that problem. Paarsch (1997) develops a

parametric approach and applies his estimator to timber auctions in British Columbia.

Haile and Tamer (2003) consider the problem of inference in an incomplete model of

English auction, derive nonparametric bounds on the reserve price and apply them to

the reserve price policy in the US Forest Service auctions. Closer to the subject of our

paper, Li, Perrigne, and Vuong (2003) develop a semiparametric method to estimate

the optimal reserve price. At a simplified level, their method essentially amounts to

re-formulating the problem as a maximum estimator of the seller’s expected profit.

Strong consistency of the estimator is shown, but its asymptotic distribution is as yet

unknown.

We follow Haile and Tamer (2003) and make the following mild technical assump-

tion on the distribution of valuations.1

Assumption S.1 Let c be the seller’s own valuation. The function (p− c) (1− F (p|x))

is x-a.e. strictly pseudo-concave in p on (v (x) , v̄ (x)).

Let r∗ (x) denote the optimal reserve price given the covariates value x. Under

Assumption S.1 (see the discussion in Haile and Tamer (2003)), r∗ (x) is found as the

unique solution to the optimal monopoly pricing problem, and is given by the unique

solution to the corresponding first-order condition:

r∗ (x)− 1− F (r∗ (x) |x)

f (r∗ (x) |x)
− c = 0. (S.1)

Remark. Even in the presence of a binding reserve price r (x) in the data, the

optimal reserve price r∗ (x) is still identifiable provided r∗ (x) > r (x), for the ratio

in (S.1) remains the same if we use the truncated distribution F ∗ (r∗ (x) |x) defined

in Section 5, and the associated density f ∗ (r∗ (x) |x), in place of F (r∗ (x) |x) and

f (r∗ (x) |x). See the discussion of this in Haile and Tamer (2003).

One approach to the inference on r∗ (x) is to estimate it as a solution r̂∗ (x) to

(S.1) using consistent estimators for f and F in place of the true unknown functions.

1This condition is implied by the standard monotone virtual valuation condition of Myerson
(1981). The optimal reserve price result was also obtained in Riley and Samuelson (1981).

2



However, a difficulty arises because, even though our estimator f̂ (v|x) is asymptot-

ically normal, it is not guaranteed to be a continuous function of v. We instead

take a direct approach and construct confidens sets (CSs) that do not require a point

estimate of r∗ (x).

As discussed in Chapter 3.5 of Lehmann and Romano (2005), a natural CS for

a parameter can be obtained by inverting a test of a series of simple hypotheses

concerning the value of that parameter.2 We construct CSs for the optimal reserve

price by inverting the test of the null hypotheses H0 (v) : r∗ (x) = v. Such hypotheses

can be tested by testing the optimal reserve price restriction (S.1) at r∗ (x) = v. Thus,

the CSs are formed by collecting all values v for which the test fails to rejects the null

that (S.1) holds at r∗ (x) = v.

Consider H0 (v) : r∗ (x) = v, and the following test statistic:

T (v|x) =
(
Lhd+3

)1/2

(
v − 1− F̂ (v|x)

f̂ (v|x)
− c

)
/

√√√√√(1− F̂ (v|x)
)2

f̂ 4 (v|x)
V̂f (v, x),

where F̂ is defined in (17) in MS, and V̂f (v, x) is a consistent plug-in estimator of the

asymptotic variance of f̂ (v|x), see MS Theorem 2. By MS Theorem 2 and Lemma

1(h), T (r∗ (x) |x) →d N (0, 1). Furthermore, due to uniqueness of the solution to

(S.1), for any t > 0, P (|T (v|x)| > t|r∗ (x) 6= v)→ 1. A CS for r∗ with the asymptotic

coverage probability 1 − α is formed by collecting all v’s such that a test based on

T (v|x) fails to reject the null at the significance level α:

CS1−α (x) =
{
v ∈ Λ̂ (x) : |T (v|x)| ≤ z1−α/2

}
,

where zτ is the τ quantile of the standard normal distribution. Asymptotically

CS1−α (x) has a correct coverage probability since by construction we have that

P (r∗ (x) ∈ CS1−α (x)) = P
(
|T (r∗ (x) |x)| ≤ z1−α/2

)
→ 1− α, provided that r∗ (x) ∈

Λ (x) = [Q (τ1|x) , Q (τ2|x)].

When the seller’s own evaluation c is unknown, one can treat a CS as a function

2CSs obtained by test inversion have been used in the econometrics literature, for example, in
the context of instrumental variable regression with weak instruments (Andrews and Stock, 2005),
for constructing CSs for the date of a structural break (Elliott and Müller, 2007), and in the case of
set identified models (Chernozhukov, Hong, and Tamer, 2007); see also the references on page 1268
of Chernozhukov, Hong, and Tamer (2007).
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of c and, using the above approach, construct conditional CSs for chosen values of c.

S.3 Monte Carlo results

In this section, we evaluate the accuracy of the asymptotic normal approximation es-

tablished in Theorem 2 in MS and that of the bootstrap percentile method discussed

in Section 4 in MS. In particular, it is interesting to see whether the boundary effect

creates substantial size distortions. We also report here additional simulations results

on comparison of our estimator with the estimator of GPV. In addition to the results

presented in MS, we also report the results for v = 0.2, 0.3, 0.7, 0.8 and n = 2, 4, 6, 7.

The finite sample performance of the two estimators is compared in terms of bias,

mean squared error (MSE), and median absolute deviation. The simulations frame-

work is the same as in Section 6 in MS.

Tables S.1-S.3 report the simulated coverage probabilities for 99%, 95%, and 90%

asymptotic confidence intervals (CIs) constructed as

f̂ (v)± z1−α/2

√
Ṽf (v) / (Lh3

2),

where z1−α/2 denotes the 1 − α/2 quantile of the standard normal distribution, and

Ṽf (v) the second-order corrected estimator of the asymptotic variance of f̂ (v) de-

scribed in Section 3 in MS:

Ṽf (v) = V̂f (v) + h2
2

 3f̂ (v)

ĝ
(
q̂
(
F̂ (v)

)) − 2nf̂ 2 (v)

(n− 1) ĝ2
(
q̂
(
F̂ (v)

))
2

V̂g,0

(
q̂
(
F̂ (v)

))
,

V̂f (v) =
K1F̂

2 (v) f̂ 4 (v)

n (n− 1)2 ĝ5
(
q̂
(
F̂ (v)

)) .
In the case of the Uniform [0, 1] distribution (α = 1, Table S.1), we observe some

deviation of the simulated coverage probabilities from the nominal values when the

PDF is estimated near the upper boundary and the number of bidders is small (n =

2, 3). There is also some deviation of the simulated coverage probabilities from the

nominal values for large n and v near the lower boundary of the support. Thus, as

one can expect the normal approximation may breakdown near the boundaries of the

support. However, away from the boundaries, as the results in Table S.1 indicate, the
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normal approximation works well and the simulated coverage probabilities are close

to their nominal values.

Similar results have been observed in the case of α = 2 (Table S.2) and α = 1/2

(Table S.3). When α = 2, the boundary effect distorting coverage probabilities is

somewhat more pronounced near the lower boundary of the support, and less so near

the upper boundary. An opposite situation is observed for α = 1/2: we see more

distortion near the upper boundary and less near the lower boundary of the support.

This can be explained by the fact that the PDF is increasing in the case of α = 2, so

there is relatively more mass near v = 1, and it is decreasing when α = 1/2, so there

is relatively less mass near v = 0. We observe good coverage probabilities away from

the boundaries.

Tables S.4-S.6 report the coverage probabilities of the percentile bootstrap CIs.

The bootstrap percentile confidence intervals are constructed as described in Section

4 in MS. The number of bootstrap samples used to compute φ†τ in (23) in MS is

M = 199. The number of Monte Carlo replications used for the bootstrap experiments

is 300.3 When α = 1, as reported in Table S.4, for the bootstrap percentile CIs

we observe some size distortion only due to the right boundary effect and only for

n = 2. In all other cases, the bootstrap percentile CIs are found to be very accurate.

With a few exceptions, the bootstrap percentile CIs outperform the CIs based on the

traditional normal approximation.

Similar results are found for α = 2 and α = 1/2, see Tables S.5 and S.6. We

find that the bootstrap percentile confidence intervals (CIs) have superior accuracy

comparing to the CIs based on the traditional normal approximation. Based on these

findings, we recommend using the bootstrap percentile method for the inference on

the PDF of auction valuations.

We now turn to comparison of our estimator with the GPV’s estimator. Table

S.7 reports the bias, MSE, and median absolute deviation of the two estimators for

α = 1. In most cases, the GPV’s estimator shows less bias. However neither estimator

dominates the other in terms of MSE or median absolute deviation: our quantile-based

(QB) estimator appears to be more efficient for small numbers of bidders (n = 2, 3, 4),

and GPV’s is more efficient when n = 5, 6, and 7. The GPV’s estimator is relatively

more efficient when the PDF is upward sloping (α = 2) as the results Table S.8

3We use a smaller number of replications here because the bootstrap Monte Carlo simulations
are significantly more CPU-time consuming.
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indicate. However, according to the results in Table S.9, the QB estimator dominates

GPV’s in the majority of cases when the PDF is downward-sloping (α = 1/2).

Tables S.7, S.8, and S.9 also report the average (across replications) standard

error for our QB estimator. The variance of the estimator increases with v, since it

depends on F (v). This fact is also reflected in the MSE values that increase with v.

Interestingly, one can see the same pattern for the MSE of the GPV estimator, which

suggests that the GPV variance depends on v as well.

S.4 Proof of bootstrap Theorem 3 in MS

To simplify the notion, we will suppress the subscript indicating the bootstrap sample

number for bootstrap objects (m). The bootstrap analogues of the original sample

statistics are denoted by the superscript †.

We use Φ (·) to denote the standard normal CDF. Let P † denote probability

conditional on the original sample {(b1l, . . . , bnll, nl, xl) : l = 1, . . . , L}. We say ζL =

o†p (λL) if P † (|ζL/λL| > ε)→p 0 for all ε > 0 as L→∞. We say ζL = O†p(λL) if for all

ε > 0 there is ∆ε > 0 such that for all L ≥ Lε, P (P †(|ζL/λL| ≥ ∆ε) > ε) < ε. We use

E† and V ar† to denote expectation and variance under P † respectively. Let π† denote

the distribution of n†l implied by P †, i.e. π†(n) = P †(n†l = n) = L−1
∑L

l=1 1(nl = n) =

π̂ (n), where π(n) = P (nl = n). Lastly, for two CDFs H1 and H2, let d∞(H1, H2)

denote the sup-norm distance between H1 and H2:

d∞(H1, H2) = sup
u∈R

∣∣H1 (u)−H2 (u)
∣∣ .

Our proof uses the following two simple lemmas concerning the stochastic order

(with respect to P †) of the bootstrap statistics. Let θ̂L be a statistic computed using

the data in the original sample, and let θ̂†L be the bootstrap analogue of θ̂L.

Lemma S.1 (a) Suppose that θ̂L = θ + op (δL) and θ̂†L = θ̂L + o†p (δL). Then, θ̂†L =

θ + o†p (δL).

(b) Suppose that θ̂L = θ +Op (δL) and θ̂†L = θ̂L +O†p (δL). Then, θ̂†L = θ +O†p (δL).

Proof of Lemma S.1. For part (a), since θ̂L is not random under P †,

P †
(
δ−1
L

∣∣∣θ̂†L − θ∣∣∣ > ε
)
≤ P †

(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ P †

(
δ−1
L

∣∣∣θ̂†L − θ̂L∣∣∣ > ε

2

)
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= 1
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
+ op (1) .

For the first summand, we have that for all ε, η > 0,

P
(

1
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
> η
)

= P
(
δ−1
L

∣∣∣θ̂L − θ∣∣∣ > ε

2

)
→ 0.

The proof of part (b) is similar. �

Lemma S.2 Suppose that E†(θ̂†L)2 = Op(λ
2
L), then θ̂†L = O†p(λL).

Proof of Lemma S.2. Since E†(θ̂†L)2 = Op(λ
2
L), for all ε > 0 there is ∆ε > 0 such

that P (E†(θ̂†L)2 > ∆2
ελ

2
L) < ε. Let ∆̃2

ε = ∆2
ε/ε. Then, we can write

P (E†(θ̂†L)2 > ∆̃2
εελ

2
L) < ε (S.2)

for all L large enough. By Markov’s inequality,

P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
≤
E†
(
θ̂†L

)2

λ2
L∆̃2

ε

.

Thus, for all ε > 0 there is ∆̃ε, such that for all L large enough,

P

(
P †

(∣∣∣∣∣ θ̂†LλL
∣∣∣∣∣ ≥ ∆̃ε

)
> ε

)
≤ P

E†
(
θ̂†L

)2

∆̃2
ελ

2
L

> ε

 < ε,

where the last inequality is by (S.2). �

Define

H†g,L (u) = P †
((
Lhd+3

)1/2 (
ĝ†(1)(b|n, x)− ĝ(1)(b|n, x)

)
≤ u

)
,

Note that H†g,L (u) depends on x and b. We have the following result.

Lemma S.3 Let [b1 (n, x) , b2 (n, x)] be as in (19) in MS. Suppose that Assumptions

1, 2, and 3 with k = 1 hold. Then, for all b ∈ [b1 (n, x) , b2 (n, x)], x ∈ Interior (X )

and n ∈ N , d∞(H†g,L (u) ,Φ(u/V
1/2
g,1 (b, n, x)))→p 0.
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Proof of Lemma S.3. The result of the lemma follows from Theorem 1 in Mam-

men (1992) since: (i) ĝ(1) (b|n, x) is a linear estimator; (ii) by Lemma 2(a) in MS,

(Lhd+3)1/2(ĝ(1)(b|n, x) − g(1)(b|n, x)) →d N(0, Vg,1(b, n, x)); (iii) d∞ is a metric; and

(iv) due to the under smoothing condition in Assumption 3. �

Next, by the results in MS Lemma 1, Lemma S.1, and Lemma S.4 below, we have

that for x ∈ Interior(X ), n ∈ N , and v ∈ Λ̂(x),

f̂ † (v|n, x)− f̂ (v|x) =
F (v|x) f 2 (v|n, x)

(n− 1) g3 (q (F (v|x) |n, x) |n, x)

×
(
ĝ†(1) (q (F (v|x) |n, x))− ĝ(1) (q (F (v|x) |n, x))

)
+ o†p

(
Lhd+3

)−1/2
. (S.3)

Note that by Lemma S.3 and (S.3),

H†f,L (u)→p Φ

(
u

V
1/2
f (v, n, x)

)
,

where Vf (v, n, x) is defined in Theorem 2 in MS. Furthermore, by Pólya’s Theorem,

the convergence is uniform in u. The result of the theorem for H†f,L then follows by

the triangular inequality d∞(Hf,L, H
†
f,L) ≤ d∞(Hf,L,Φ) + d∞(H†f,L,Φ)→p 0.

Lemma S.4 Suppose that MS Assumptions 1, 2, and 3 with k = 1 hold. Then, for

all x ∈ Interior(X ) and n ∈ N ,

(a) π̂† (n|x) = π̂ (n|x) +O†p
(
Lhd

)−1/2
.

(b) ϕ̂† (x) = ϕ̂ (x) +O†p
(
Lhd

)−1/2
.

(c) supb∈[b(n,x),b̄(n,x)] |Ĝ
† (b|n, x)− Ĝ (b|n, x) | = O†p

(
Lhd

logL

)−1/2

.

(d) supτ∈[ε,1−ε] |q̂† (τ |n, x)−q (τ |n, x) | = O†p

((
Lhd

logL

)−1/2

+ hR
)

, for all 0 < ε < 1/2.

(e) supτ∈[0,1](limt↓τ q̂
† (t|n, x)− q̂† (τ |n, x)) = O†p

(
Lhd

log(Lhd)

)−1

.

(f) supb∈[b1(n,x),b2(n,x)] |ĝ(k)† (b|n, x)− ĝ(k) (b|n, x) | = O†p

(
Lhd+1+2k

logL

)−1/2

, k = 0, . . . , R.

(g) supτ∈[τ1−ε,τ2+ε] |Q̂† (τ |n, x)−Q (τ |x) | = O†p

((
Lhd+1

logL

)−1/2

+ hR
)

, for some ε > 0

such that τ1 − ε > 0 and τ2 + ε < 1.
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(h) supv∈Λ̂(x) |F̂ † (v|n, x)− F (v|x) | = O†p

((
Lhd+1

logL

)−1/2

+ hR
)

.

Proof of Lemma S.4. We prove part (b) first. Since (Lhd)1/2 (ϕ̂ (x)− Eϕ (x)) is

asymptotically normal by a standard result for kernel density estimators, by Theorem

1 in Mammen (1992), (Lhd)1/2
(
ϕ̂† (x)− ϕ̂ (x)

)
= O†p(1). The result in part (b)

follows.

For part (a), write

π̂ (n|x) = π̂ (n, x) ϕ̂ (x) , where

π̂ (n, x) =
1

L

L∑
l=1

1 (nl = n)Kh (x− xl) .

By the same argument as in the proof of part (b), (Lhd)1/2
(
π̂† (n, x)− π̂ (n, x)

)
is

asymptotically normal. By the Taylor expansion of π̂† (n|x), the result in part (b),

and since ϕ̂ (x) is bounded away from zero with probability approaching one by As-

sumption 1(b),

(
Lhd

)1/2 (
π̂† (n|x)− π̂ (n|x)

)
=

1

ϕ̂ (x)

(
Lhd

)1/2 (
π̂† (n, x)− π̂ (n, x)

)
− π̂† (n, x)

(ϕ̂ (x))2

(
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

)
+ o

((
Lhd

)1/2 (
ϕ̂† (x)− ϕ̂ (x)

))
=O†p (1) .

We prove part (c) next. The proof is based on the proof of Lemma B.1 in Newey

(1994). For fixed x ∈ Interior(X ) and n ∈ N , write

Ĝ (bn, x) = Ĝ (b|n, x) π̂ (n|x) ϕ̂ (x) , so that

Ĝ (b, n, x) =
1

nL

L∑
l=1

nl∑
i=1

Til, with

Til = 1 (bil ≤ b) 1 (nl = n)K∗h (xl − x) , (S.4)
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and let

Ĝ† (b, n, x) =
1

nL

L∑
l=1

nl∑
i=1

T †il (b) ,

T †il (b) = 1
(
b†il ≤ b

)
1
(
n†l = n

)
K∗h

(
x†l − x

)
.

Next, for chosen n and x, let

I =
[
b (n, x) , b̄ (n, x)

]
,

I = ∪JL
k=1Ik,

where the sub-intervals Ik’s are non-overlapping and of length

sL =
logL

L
. (S.5)

Denote as ck the center of Ik. Note that I, Ik, ck depend on n and x. Denote as κ(b)

the interval containing b. Since

Ĝ (b, n, x) = E†T †il(b),

we can write

Ĝ† (b, n, x)− Ĝ (b, n, x) = A†L (b)−B†L (b) + C†L (b) , where

A†L (b) =
1

nL

L∑
l=1

nl∑
i=1

(
T †il (b)− T

†
il

(
cκ(b)

))
,

B†L (b) =
1

nL

L∑
l=1

nl∑
i=1

(
E†T †il (b)− E

†T †il
(
cκ(b)

))
,

C†L (b) =
1

nL

L∑
l=1

nl∑
i=1

(
T †il
(
cκ(b)

)
− E†T †il

(
cκ(b)

))
.

In the above decomposition, A†L(b) is the average of the deviations of T †il (b) from

its value computed using the center of the interval containing b, and B†L(b) is the

expected value under P † of A†L(b). The terms supb∈I |A
†
L (b) | and supb∈I |B

†
L (b) | are

small when sL is small.
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For A†L we have∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d 1

(
n†l = n

) ∣∣∣1(b†il ≤ b
)
− 1

(
b†il ≤ cκ(b)

)∣∣∣
≤ h−d (supK)d 1

(
n†l = n

)
1
(
b†il ∈ Iκ(b)

)
, (S.6)

and therefore,

∣∣∣A†L (b)
∣∣∣ ≤ h−d (supK)d

1

nL

L∑
l=1

n∑
i=1

1
(
n†l = n

)
1
(
b†il ∈ Iκ(b)

)
. (S.7)

Next,

E†

(
1

nL

L∑
l=1

n∑
i=1

1
(
n†l = n

)
1
(
b†il ∈ Ik

)
− P †

(
b†il ∈ Ik|n

†
l = n

)
π† (n)

)2

≤

≤
P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n)

nL
, (S.8)

and by Lemma S.2,

1

nL

L∑
l=1

nl∑
i=1

1
(
n†l = n

)
1
(
b†il ∈ Ik

)

= P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n) +O†p

P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n)

L

1/2

= P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n)

1 +O†p

 1

P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n)L

1/2
 . (S.9)

Now, by a similar argument,

P †
(
b†il ∈ Ik|n

†
l = n

)
π† (n)

=
1

nL

L∑
l=1

nl∑
i=1

1 (nl = n) 1 (bil ∈ Ik)
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= P (bil ∈ Ik|nl = n)π (n)

(
1 +Op

(
1

P (bil ∈ Ik|nl = n) π (n)L

)1/2
)

≤ sup
k=1,...,JL

P (bil ∈ Ik|nl = n) π (n)

×

(
1 +Op

(
1

infk=1,...,JL
P (bil ∈ Ik|nl = n)π (n)L

)1/2
)
. (S.10)

Furthermore, for all Ik’s(
inf

b∈I,x∈X
g (b|n, x)

)
sL ≤ P (bil ∈ Ik|nl = n) ≤

(
sup

b∈I,x∈X
g (b|n, x)

)
sL. (S.11)

Equations (S.7)-(S.11) together imply that

∣∣∣∣sup
b∈I

A†L (b)

∣∣∣∣ = O†p

(
h−dsL

(
1 +Op

(
1

sLL

)1/2
))

= O†p

(
logL

Lhd

)
, (S.12)

where the last equality is by (S.5).

By (S.6), (S.10), and (S.11), for B†L (b) we have∣∣∣∣sup
b∈I

B†L (b)

∣∣∣∣ ≤ sup
b∈I

E†
∣∣∣T †il (b)− T †il (cκ(b)

)∣∣∣
≤ h−d (supK)d π† (n) sup

k=1,...,JL

P †
(
b†il ∈ Ik|n

†
l = n

)
= O†p

(
logL

Lhd

)
. (S.13)

Note that C†L(b) depends on b only through ck’s, and therefore

sup
b∈I
|C†L(b)| ≤ max

k=1,...,JL

|C†L(ck)|. (S.14)

A Bonferroni inequality implies that for any ∆ > 0,

P †

((
Lhd

logL

)1/2

max
k=1,...,JL

|C†L(ck)| > ∆

)
≤

12



≤
JL∑
k=1

P †

(∣∣∣∣∣
L∑
l=1

nl∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆nL

(
logL

Lhd

)1/2
)
. (S.15)

By (S.4), |T †il(ck)| ≤ h−d(supK)d and∣∣∣T †il (ck)− E†T †il (ck)∣∣∣ ≤ 2(supK)dh−d.

Further, by (S.8)-(S.11), there is a constant 0 < D1 <∞ such that

V ar†
(
T †il (ck)

)
≤ D1h

−2dsL (1 + op (1))

= D1h
−d (logL/

(
Lhd

))
(1 + op (1)) .

We therefore can apply Bernstein’s inequality (Pollard, 1984, page 193) to obtain

P †

(∣∣∣∣∣
L∑
l=1

nl∑
i=1

(
T †il (ck)− E

†T †il (ck)
)∣∣∣∣∣ > ∆nL

(
logL

Lhd

)1/2
)

≤ 2 exp

(
−1

2

∆2n2L2 logL
Lhd

nLD1h−d (1 + op (1)) logL
Lhd + (2/3) ∆n(supK)dh−dL

(
logL
Lhd

)1/2

)

= 2 exp

(
−1

2

∆2n (logL)1/2 (Lhd)1/2

D1 (logL/ (Lhd))1/2 (1 + op (1)) + (2/3) ∆(supK)d

)

= 2 exp

(
− ∆n

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
, (S.16)

where the equality in the last line is due to Lhd/ logL → ∞. The inequalities in

(S.14)-(S.16) together with (S.5) imply that there is a constant 0 < D2 < ∞ such

that

P †

((
Lhd

logL

)1/2

sup
b∈I
|C†L(b)| > ∆

)

≤ 2JL exp

(
− ∆n

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2s

−1
L exp

(
− ∆n

(4/3) (supK)d + op (1)
(logL)1/2 (Lhd)1/2

)
≤ D2 exp

(
logL

(
1− ∆n

(4/3) (supK)d + op (1)

(
Lhd

logL

)1/2
))
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= op (1) ,

where the equality in the last line is by Lhd/ logL → ∞. By a similar argument as

in the proof of Lemma S.2,

sup
b∈I
|C†L(b)| = o†p

(
Lhd

logL

)−1/2

. (S.17)

The result of part (c) follows from (S.12), (S.13), and (S.17).

The proof of part (d) is similar to that of Lemma 1(d) in MS. First, by similar

arguments as in the proof of Lemma 1(d), one can show that b(n, x) ≤ q̂†(ε|n, x) ≤
q̂†(1− ε|n, x) ≤ b̄(n, x) with probability P † approaching one (in probability). Second,

one can show that uniformly over τ ∈ [ε, 1− ε],

Ĝ†
(
q̂†(τ |n, x)|n, x

)
= τ +O†p

(
Lhd

)−1

Lastly,

G
(
q̂†(τ |n, x)|n, x

)
− Ĝ†

(
q̂†(τ |n, x)|n, x

)
= G

(
q̂†(τ |n, x)|n, x

)
− τ +O†p

(
Lhd

)−1

= G
(
q̂†(τ |n, x)|n, x

)
−G (q (τ |n, x) |n, x) +O†p

(
Lhd

)−1

= g
(
q̃† (τ |n, x) |n, x

) (
q̂†(τ |n, x)− q (τ |n, x)

)
+O†p

(
Lhd

)−1
,

where q̃† denotes the mean value, or

q̂†(τ |n, x)− q (τ |n, x)

=
G
(
q̂†(τ |n, x)|n, x

)
− Ĝ†

(
q̂†(τ |n, x)|n, x

)
g (q̃† (τ |n, x) |n, x)

+O†p
(
Lhd

)−1

=
G
(
q̂†(τ |n, x)|n, x

)
− Ĝ

(
q̂†(τ |n, x)|n, x

)
g (q̃† (τ |n, x) |n, x)

+
Ĝ
(
q̂†(τ |n, x)|n, x

)
− Ĝ†

(
q̂†(τ |n, x)|n, x

)
g (q̃† (τ |n, x) |n, x)

+O†p
(
Lhd

)−1
,

and the desired result follows.

The proof of part (e) is similar to that of Lemma 1(e). The proof of part (f) is

similar to the proof of part (c) and relies on the fact that, according to Assumption

14



2 in MS, the derivatives of K are Lipschitz. The proof of parts (g) and (h) is similar

to that of Lemma 1(g) and (h). �
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Table S.1: Simulated coverage probabilities of the normal approximation CIs for
the PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 1
(Uniform [0,1] distribution)

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.982 0.975 0.965 0.951 0.909 0.914 0.883
0.95 0.947 0.937 0.926 0.898 0.835 0.838 0.791
0.90 0.882 0.891 0.881 0.860 0.805 0.782 0.754

n = 3
0.99 0.983 0.984 0.983 0.970 0.949 0.948 0.936
0.95 0.936 0.944 0.948 0.932 0.894 0.896 0.876
0.90 0.869 0.895 0.902 0.893 0.847 0.851 0.820

n = 4
0.99 0.975 0.982 0.990 0.978 0.966 0.960 0.956
0.95 0.922 0.945 0.956 0.940 0.912 0.919 0.910
0.90 0.851 0.885 0.894 0.893 0.874 0.881 0.867

n = 5
0.99 0.972 0.977 0.987 0.982 0.974 0.967 0.966
0.95 0.911 0.937 0.949 0.941 0.921 0.932 0.919
0.90 0.842 0.878 0.888 0.888 0.882 0.883 0.885

n = 6
0.99 0.969 0.976 0.987 0.981 0.976 0.973 0.978
0.95 0.898 0.932 0.940 0.937 0.927 0.933 0.925
0.90 0.829 0.877 0.881 0.885 0.881 0.881 0.884

n = 7
0.99 0.967 0.973 0.989 0.980 0.974 0.975 0.983
0.95 0.893 0.926 0.932 0.929 0.926 0.933 0.931
0.90 0.823 0.875 0.874 0.883 0.878 0.868 0.883
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Table S.2: Simulated coverage probabilities of the normal approximation CIs for
the PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 2

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.964 0.949 0.965 0.942 0.933 0.943 0.931
0.95 0.911 0.901 0.910 0.877 0.879 0.878 0.857
0.90 0.855 0.860 0.868 0.831 0.843 0.845 0.788

n = 3
0.99 0.958 0.968 0.980 0.978 0.964 0.969 0.969
0.95 0.897 0.900 0.927 0.916 0.925 0.928 0.931
0.90 0.817 0.850 0.876 0.865 0.883 0.879 0.874

n = 4
0.99 0.954 0.970 0.973 0.981 0.979 0.977 0.979
0.95 0.881 0.890 0.926 0.927 0.929 0.938 0.939
0.90 0.797 0.830 0.874 0.867 0.880 0.890 0.896

n = 5
0.99 0.956 0.961 0.971 0.981 0.982 0.981 0.979
0.95 0.868 0.883 0.917 0.930 0.927 0.935 0.935
0.90 0.791 0.820 0.850 0.870 0.865 0.889 0.887

n = 6
0.99 0.952 0.957 0.970 0.983 0.984 0.983 0.980
0.95 0.861 0.887 0.903 0.918 0.919 0.932 0.936
0.90 0.789 0.813 0.835 0.862 0.853 0.870 0.880

n = 7
0.99 0.953 0.960 0.975 0.977 0.981 0.979 0.978
0.95 0.859 0.882 0.889 0.915 0.910 0.925 0.932
0.90 0.792 0.810 0.824 0.855 0.845 0.858 0.860
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Table S.3: Simulated coverage probabilities of the normal approximation CIs for
the PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 1/2

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.976 0.966 0.937 0.899 0.877 0.817 0.780
0.95 0.935 0.915 0.875 0.827 0.794 0.716 0.698
0.90 0.876 0.870 0.818 0.772 0.738 0.656 0.625

n = 3
0.99 0.983 0.984 0.954 0.926 0.908 0.875 0.849
0.95 0.948 0.933 0.901 0.871 0.853 0.796 0.772
0.90 0.890 0.886 0.861 0.829 0.807 0.735 0.716

n = 4
0.99 0.984 0.987 0.967 0.951 0.933 0.907 0.880
0.95 0.954 0.946 0.921 0.895 0.883 0.834 0.819
0.90 0.890 0.892 0.878 0.855 0.835 0.792 0.764

n = 5
0.99 0.985 0.988 0.977 0.963 0.952 0.930 0.908
0.95 0.950 0.949 0.935 0.913 0.900 0.860 0.845
0.90 0.891 0.898 0.884 0.876 0.863 0.823 0.797

n = 6
0.99 0.984 0.991 0.982 0.966 0.959 0.941 0.932
0.95 0.944 0.950 0.936 0.920 0.913 0.889 0.869
0.90 0.889 0.903 0.886 0.884 0.881 0.839 0.821

n = 7
0.99 0.982 0.990 0.983 0.973 0.962 0.949 0.943
0.95 0.940 0.951 0.936 0.925 0.925 0.899 0.893
0.90 0.886 0.903 0.884 0.887 0.890 0.861 0.842
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Table S.4: Simulated coverage probabilities of the bootstrap percentile CIs for
PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 1
(Uniform [0,1] distribution)

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.997 0.980 0.997 0.987 0.990 0.993 0.987
0.95 0.957 0.957 0.953 0.930 0.940 0.937 0.923
0.90 0.890 0.913 0.913 0.887 0.897 0.840 0.827

n = 3
0.99 1.000 0.993 0.997 0.987 0.987 0.993 0.993
0.95 0.940 0.960 0.957 0.937 0.953 0.957 0.933
0.90 0.890 0.910 0.917 0.887 0.900 0.863 0.880

n = 4
0.99 1.000 0.990 0.993 0.980 0.987 0.993 0.990
0.95 0.953 0.963 0.963 0.930 0.957 0.957 0.937
0.90 0.870 0.907 0.917 0.887 0.900 0.903 0.890

n = 5
0.99 0.997 0.990 0.993 0.987 0.987 0.993 0.987
0.95 0.947 0.950 0.963 0.927 0.957 0.960 0.933
0.90 0.873 0.913 0.910 0.873 0.897 0.900 0.893

n = 6
0.99 0.997 0.993 0.993 0.980 0.990 0.990 0.987
0.95 0.953 0.950 0.967 0.923 0.957 0.947 0.943
0.90 0.883 0.920 0.913 0.870 0.907 0.880 0.887

n = 7
0.99 0.990 0.990 0.993 0.977 0.993 0.987 0.990
0.95 0.947 0.953 0.963 0.917 0.957 0.950 0.933
0.90 0.883 0.923 0.903 0.863 0.897 0.887 0.883
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Table S.5: Simulated coverage probabilities of the bootstrap percentile CIs for
PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 2

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.983 0.987 0.980 0.990 0.987 0.987 0.990
0.95 0.943 0.953 0.943 0.953 0.933 0.927 0.927
0.90 0.893 0.903 0.887 0.923 0.877 0.877 0.877

n = 3
0.99 0.987 0.977 0.983 0.987 0.993 0.993 0.993
0.95 0.950 0.937 0.943 0.957 0.963 0.930 0.940
0.90 0.900 0.897 0.880 0.930 0.917 0.893 0.897

n = 4
0.99 0.990 0.980 0.980 0.987 0.993 0.993 0.993
0.95 0.937 0.940 0.940 0.953 0.963 0.920 0.947
0.90 0.907 0.903 0.867 0.920 0.907 0.873 0.893

n = 5
0.99 0.987 0.987 0.990 0.990 0.997 0.997 0.997
0.95 0.950 0.930 0.923 0.953 0.960 0.913 0.953
0.90 0.910 0.900 0.880 0.913 0.917 0.873 0.903

n = 6
0.99 0.990 0.987 0.987 0.987 0.993 0.990 0.997
0.95 0.953 0.937 0.930 0.953 0.950 0.930 0.950
0.90 0.920 0.900 0.887 0.907 0.917 0.873 0.907

n = 7
0.99 0.987 0.987 0.987 0.990 0.997 0.990 0.997
0.95 0.947 0.947 0.937 0.953 0.957 0.933 0.957
0.90 0.910 0.883 0.890 0.903 0.903 0.877 0.907
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Table S.6: Simulated coverage probabilities of the bootstrap percentile CIs for
PDF of valuations for different points of density estimation (v), numbers of bidders
(n) and auctions (L), sample size nL = 4200, and the distribution parameter α = 1/2

v
confidence level 0.2 0.3 0.4 0.5 0.6 0.7 0.8

n = 2
0.99 0.993 0.993 0.980 0.987 0.980 0.973 0.983
0.95 0.933 0.943 0.930 0.907 0.900 0.883 0.910
0.90 0.870 0.917 0.897 0.813 0.803 0.753 0.803

n = 3
0.99 0.997 0.993 0.983 0.983 0.977 0.980 0.980
0.95 0.937 0.957 0.943 0.927 0.917 0.913 0.917
0.90 0.890 0.927 0.900 0.843 0.820 0.787 0.840

n = 4
0.99 0.997 0.987 0.987 0.990 0.980 0.983 0.983
0.95 0.943 0.960 0.953 0.937 0.933 0.927 0.940
0.90 0.893 0.907 0.910 0.863 0.847 0.830 0.843

n = 5
0.99 0.993 0.987 0.987 0.993 0.983 0.980 0.977
0.95 0.960 0.953 0.963 0.933 0.943 0.950 0.930
0.90 0.900 0.927 0.903 0.873 0.877 0.860 0.873

n = 6
0.99 0.993 0.987 0.983 0.993 0.987 0.983 0.980
0.95 0.953 0.953 0.960 0.943 0.953 0.943 0.933
0.90 0.900 0.913 0.897 0.873 0.893 0.883 0.887

n = 7
0.99 0.993 0.987 0.987 0.993 0.983 0.987 0.977
0.95 0.957 0.953 0.957 0.947 0.957 0.957 0.923
0.90 0.913 0.917 0.897 0.873 0.907 0.890 0.900

22



Table S.7: Bias, MSE and median absolute deviation of the quantile-based (QB) and GPV
estimators, and the average standard error (second-order corrected) of the QB estimator, for
different points of density estimations (v), numbers of bidders (n) and auctions (L), sample
size nL = 4200, and the distribution parameter α = 1 (Uniform [0,1] distribution)

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 2
0.2 -0.0025 0.0030 0.0126 0.0218 0.0909 0.1186 0.1073
0.3 -0.0191 -0.0022 0.0216 0.0439 0.1178 0.1683 0.1519
0.4 -0.0173 0.0099 0.0405 0.0768 0.1556 0.2189 0.2004
0.5 -0.0270 0.0227 0.0560 0.1177 0.1801 0.2696 0.2471
0.6 -0.0743 -0.0068 0.0764 0.1571 0.2123 0.3141 0.2752
0.7 -0.0722 0.0195 0.1027 0.2061 0.2405 0.3681 0.3312
0.8 -0.0917 0.0061 0.2016 0.2366 0.2744 0.3959 0.4143

n = 3
0.2 0.0004 0.0025 0.0077 0.0082 0.0710 0.0731 0.0793
0.3 -0.0111 -0.0035 0.0114 0.0145 0.0851 0.0970 0.1073
0.4 -0.0063 0.0045 0.0194 0.0245 0.1094 0.1245 0.1382
0.5 -0.0056 0.0147 0.0284 0.0371 0.1299 0.1522 0.1701
0.6 -0.0342 -0.0059 0.0402 0.0519 0.1556 0.1813 0.1947
0.7 -0.0264 0.0114 0.0503 0.0720 0.1781 0.2161 0.2287
0.8 -0.0433 0.0017 0.0613 0.0857 0.1953 0.2372 0.2578

n = 4
0.2 0.0013 0.0021 0.0059 0.0050 0.0619 0.0567 0.0667
0.3 -0.0084 -0.0039 0.0077 0.0077 0.0697 0.0696 0.0860
0.4 -0.0031 0.0023 0.0121 0.0124 0.0871 0.0886 0.1079
0.5 0.0004 0.0110 0.0175 0.0183 0.1033 0.1071 0.1311
0.6 -0.0204 -0.0044 0.0248 0.0256 0.1226 0.1275 0.1505
0.7 -0.0115 0.0082 0.0315 0.0360 0.1415 0.1514 0.1764
0.8 -0.0233 0.0002 0.0380 0.0429 0.1545 0.1660 0.1982
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Table S.7: Continued (α = 1)

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 5
0.2 0.0016 0.0019 0.0050 0.0037 0.0570 0.0490 0.0600
0.3 -0.0072 -0.0040 0.0060 0.0052 0.0611 0.0565 0.0741
0.4 -0.0017 0.0013 0.0087 0.0078 0.0744 0.0703 0.0905
0.5 0.0026 0.0088 0.0124 0.0113 0.0877 0.0843 0.1083
0.6 -0.0138 -0.0035 0.0171 0.0156 0.1026 0.0997 0.1241
0.7 -0.0051 0.0064 0.0220 0.0217 0.1182 0.1170 0.1444
0.8 -0.0147 -0.0003 0.0262 0.0259 0.1278 0.1284 0.1615

n = 6
0.2 0.0018 0.0018 0.0046 0.0032 0.0540 0.0448 0.0560
0.3 -0.0065 -0.0040 0.0051 0.0039 0.0559 0.0493 0.0667
0.4 -0.0010 0.0007 0.0069 0.0057 0.0665 0.0598 0.0795
0.5 0.0037 0.0074 0.0096 0.0079 0.0774 0.0708 0.0937
0.6 -0.0101 -0.0029 0.0129 0.0108 0.0895 0.0831 0.1068
0.7 -0.0020 0.0053 0.0167 0.0148 0.1026 0.0961 0.1231
0.8 -0.0100 -0.0005 0.0195 0.0175 0.1105 0.1055 0.1374

n = 7
0.2 0.0019 0.0017 0.0043 0.0028 0.0522 0.0423 0.0535
0.3 -0.0061 -0.0040 0.0045 0.0033 0.0526 0.0449 0.0618
0.4 -0.0006 0.0004 0.0059 0.0045 0.0613 0.0533 0.0721
0.5 0.0042 0.0064 0.0079 0.0061 0.0704 0.0620 0.0836
0.6 -0.0077 -0.0024 0.0103 0.0082 0.0805 0.0723 0.0947
0.7 -0.0004 0.0045 0.0133 0.0109 0.0917 0.0824 0.1082
0.8 -0.0075 -0.0005 0.0152 0.0128 0.0977 0.0903 0.1202
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Table S.8: Bias, MSE and median absolute deviation of the quantile-based (QB) and GPV
estimators, and the average standard error (second-order corrected) of the QB estimator, for
different points of density estimations (v), numbers of bidders (n) and auctions (L), sample
size nL = 4200, and the distribution parameter α = 2

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 2
0.2 -0.0024 0.0008 0.0043 0.0048 0.0508 0.0555 0.0588
0.3 -0.0153 -0.0056 0.0126 0.0159 0.0867 0.1010 0.1028
0.4 -0.0144 0.0053 0.0268 0.0337 0.1257 0.1465 0.1596
0.5 -0.0380 -0.0097 0.0477 0.0620 0.1702 0.1983 0.2173
0.6 -0.0443 0.0027 0.0727 0.1015 0.2129 0.2588 0.2855
0.7 -0.0562 0.0197 0.1197 0.1621 0.2602 0.3228 0.3617
0.8 -0.0912 -0.0110 0.2400 0.2360 0.3379 0.3920 0.4430

n = 3
0.2 -0.0013 0.0003 0.0022 0.0019 0.0377 0.0346 0.0391
0.3 -0.0072 -0.0034 0.0057 0.0051 0.0595 0.0569 0.0660
0.4 -0.0037 0.0028 0.0113 0.0106 0.0837 0.0817 0.0995
0.5 -0.0166 -0.0084 0.0194 0.0188 0.1116 0.1091 0.1345
0.6 -0.0137 0.0029 0.0310 0.0299 0.1401 0.1404 0.1779
0.7 -0.0103 0.0133 0.0499 0.0478 0.1716 0.1735 0.2242
0.8 -0.0384 -0.0052 0.0730 0.0733 0.2136 0.2172 0.2656

n = 4
0.2 -0.0012 0.0001 0.0018 0.0013 0.0337 0.0288 0.0332
0.3 -0.0049 -0.0024 0.0039 0.0029 0.0494 0.0431 0.0523
0.4 -0.0015 0.0018 0.0071 0.0057 0.0669 0.0602 0.0755
0.5 -0.0103 -0.0066 0.0113 0.0095 0.0858 0.0779 0.1007
0.6 -0.0065 0.0019 0.0182 0.0150 0.1077 0.0990 0.1311
0.7 -0.0015 0.0099 0.0281 0.0232 0.1309 0.1207 0.1637
0.8 -0.0186 -0.0037 0.0423 0.0356 0.1623 0.1507 0.1957
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Table S.8: Continued (α = 2)

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 5
0.2 -0.0012 -0.0001 0.0016 0.0011 0.0322 0.0265 0.0311
0.3 -0.0039 -0.0019 0.0032 0.0022 0.0447 0.0376 0.0459
0.4 -0.0008 0.0014 0.0054 0.0040 0.0585 0.0503 0.0635
0.5 -0.0075 -0.0054 0.0080 0.0062 0.0721 0.0629 0.0831
0.6 -0.0041 0.0011 0.0127 0.0097 0.0905 0.0794 0.1062
0.7 0.0012 0.0079 0.0190 0.0144 0.1085 0.0949 0.1312
0.8 -0.0120 -0.0030 0.0277 0.0217 0.1320 0.1172 0.1566

n = 6
0.2 -0.0014 -0.0002 0.0016 0.0011 0.0315 0.0255 0.0302
0.3 -0.0033 -0.0016 0.0028 0.0019 0.0424 0.0347 0.0426
0.4 -0.0006 0.0011 0.0046 0.0032 0.0538 0.0451 0.0569
0.5 -0.0058 -0.0046 0.0064 0.0047 0.0641 0.0547 0.0729
0.6 -0.0030 0.0006 0.0100 0.0072 0.0800 0.0683 0.0914
0.7 0.0023 0.0066 0.0144 0.0103 0.0947 0.0804 0.1115
0.8 -0.0087 -0.0026 0.0203 0.0151 0.1134 0.0975 0.1324

n = 7
0.2 -0.0014 -0.0002 0.0016 0.0010 0.0312 0.0249 0.0299
0.3 -0.0029 -0.0014 0.0026 0.0017 0.0411 0.0331 0.0407
0.4 -0.0004 0.0009 0.0041 0.0028 0.0509 0.0421 0.0529
0.5 -0.0048 -0.0040 0.0055 0.0039 0.0591 0.0497 0.0664
0.6 -0.0024 0.0001 0.0084 0.0058 0.0732 0.0613 0.0818
0.7 0.0028 0.0057 0.0117 0.0080 0.0858 0.0713 0.0986
0.8 -0.0068 -0.0023 0.0161 0.0115 0.1011 0.0848 0.1163
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Table S.9: Bias, MSE and median absolute deviation of the quantile-based (QB) and GPV
estimators, and the average standard error (second-order corrected) of the QB estimator, for
different points of density estimations (v), numbers of bidders (n) and auctions (L), sample
size nL = 4200, and the distribution parameter α = 1/2

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 2
0.2 -0.0186 -0.0102 0.0220 0.0576 0.1195 0.1891 0.1497
0.3 -0.0201 0.0018 0.0343 0.1059 0.1479 0.2512 0.1886
0.4 -0.0458 -0.0190 0.0706 0.1409 0.1737 0.2902 0.2269
0.5 -0.0625 0.0010 0.0548 0.1800 0.1790 0.3330 0.2486
0.6 -0.0706 -0.0137 0.5800 0.1700 0.2100 0.3238 0.7302
0.7 -0.1047 0.0020 0.0756 0.1771 0.2107 0.3397 0.2954
0.8 -0.1042 0.0107 0.2375 0.1719 0.2342 0.3332 0.5659

n = 3
0.2 -0.0124 -0.0040 0.0144 0.0241 0.0976 0.1247 0.1194
0.3 -0.0110 -0.0009 0.0213 0.0412 0.1163 0.1631 0.1463
0.4 -0.0302 -0.0110 0.0299 0.0572 0.1353 0.1892 0.1694
0.5 -0.0323 0.0030 0.0352 0.0770 0.1482 0.2242 0.1963
0.6 -0.0596 -0.0094 0.0393 0.0781 0.1518 0.2214 0.2091
0.7 -0.0763 0.0053 0.1213 0.0948 0.1771 0.2495 0.2785
0.8 -0.0742 0.0149 0.0984 0.0997 0.1841 0.2539 0.2962

n = 4
0.2 -0.0089 -0.0006 0.0109 0.0136 0.0848 0.0946 0.1017
0.3 -0.0070 -0.0004 0.0146 0.0219 0.0969 0.1193 0.1212
0.4 -0.0199 -0.0072 0.0206 0.0308 0.1140 0.1393 0.1399
0.5 -0.0146 0.0032 0.0278 0.0418 0.1287 0.1653 0.1646
0.6 -0.0393 -0.0061 0.0284 0.0432 0.1301 0.1662 0.1750
0.7 -0.0438 0.0048 0.0469 0.0565 0.1466 0.1927 0.2027
0.8 -0.0530 0.0128 0.0455 0.0627 0.1534 0.2018 0.2164

27



Table S.9: Continued (α = 1/2)

Bias MSE Med abs deviation
v QB GPV QB GPV QB GPV Std err QB

n = 5
0.2 -0.0067 0.0015 0.0089 0.0092 0.0768 0.0780 0.0903
0.3 -0.0046 0.0004 0.0110 0.0137 0.0842 0.0946 0.1048
0.4 -0.0142 -0.0053 0.0156 0.0195 0.0992 0.1106 0.1201
0.5 -0.0077 0.0035 0.0208 0.0261 0.1130 0.1304 0.1400
0.6 -0.0278 -0.0039 0.0211 0.0273 0.1136 0.1320 0.1500
0.7 -0.0299 0.0037 0.0292 0.0366 0.1277 0.1549 0.1699
0.8 -0.0363 0.0102 0.0329 0.0419 0.1353 0.1649 0.1838

n = 6
0.2 -0.0052 0.0028 0.0076 0.0069 0.0712 0.0678 0.0824
0.3 -0.0030 0.0012 0.0087 0.0096 0.0753 0.0792 0.0934
0.4 -0.0107 -0.0042 0.0124 0.0136 0.0886 0.0925 0.1059
0.5 -0.0046 0.0037 0.0162 0.0180 0.1005 0.1079 0.1221
0.6 -0.0206 -0.0026 0.0164 0.0189 0.1009 0.1097 0.1316
0.7 -0.0213 0.0029 0.0216 0.0255 0.1142 0.1291 0.1478
0.8 -0.0257 0.0084 0.0249 0.0295 0.1206 0.1383 0.1601

n = 7
0.2 -0.0041 0.0038 0.0068 0.0056 0.0672 0.0611 0.0767
0.3 -0.0019 0.0018 0.0073 0.0072 0.0689 0.0688 0.0851
0.4 -0.0086 -0.0034 0.0103 0.0101 0.0806 0.0800 0.0954
0.5 -0.0029 0.0037 0.0131 0.0132 0.0907 0.0925 0.1088
0.6 -0.0159 -0.0019 0.0132 0.0139 0.0908 0.0940 0.1176
0.7 -0.0156 0.0025 0.0171 0.0188 0.1027 0.1106 0.1313
0.8 -0.0185 0.0072 0.0202 0.0218 0.1094 0.1186 0.1427
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