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Abstract:

The standard real–options model predicts that increased uncertainty discourages investment.

When projects are large and take time to build, however, that prediction can be reversed. We

investigate the investment/uncertainty relationship empirically using historical data on opening

dates of new U.S. copper mines — large, irreversible projects with substantial construction lags.

Both the timing of the decision to go forward and the price thresholds that trigger that decision

are assessed. In particular, we build upon a reduced form analysis to construct a structural model

of entry. We find that, in this market, greater uncertainty encourages investment and lowers the

price thresholds for many mines.
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1 Introduction

Many theoretical models and empirical studies support the hypothesis that higher uncertainty dis-

courages investment. Nevertheless, in some circumstances the opposite can be true — uncertainty

can promote investment. Moreover, since the policy implications between the two situations differ,

it is important to understand the circumstances under which the counterintuitive result prevails.

We examine this issue in the context of a real option.

The standard real options model of investment timing predicts that, since waiting allows in-

vestors to obtain new information about market conditions, when those conditions are volatile,

investors possess a valuable call option that is lost when an irreversible decision is made.2 How-

ever, Bar-Ilan and Strange (1996) show that, when it takes time to build and funds must be

committed up front, and when there is flexibility at the completion date, investors also possess a

valuable put option. Since those two forces work in opposite directions — the first discouraging

and the second encouraging investment — it is impossible to predict theoretically which will pre-

vail. Moreover, there is little empirical work on large irreversible projects that demonstrates that

reversal of the standard result is a reality and not just a theoretical possibility.3

The ideal setting for assessing the prediction that uncertainty can encourage investment re-

quires data on projects where i) the investor makes a 0/1 decision to go ahead or to wait, ii) there

are substantial investment lags, iii) there is some flexibility upon completion, and iv) there is con-

siderable uncertainty. This study uses data on investment in U.S. copper mining — the opening of

new mines — over the 1835 to 1986 period. Copper mines are large irreversible projects that take

time to build. Moreover, the size of the processing facility, the smelter or leaching plant, fixes the

scale of the project several years in advance of completion. When completion nears, however, it

is possible to abandon the mine, postpone the opening, or sell it at a loss. Finally, copper prices,

like commodity prices in general, are notoriously volatile.

Since we consider a single industry, many factors that would vary across industries can be

ignored. Furthermore, since that industry produces a homogeneous product, there is a well defined

output price and variation in that price is the principal source of uncertainty for investors. Finally,

assessing go/no go decisions rather than investment flows leads to a cleaner test of the real options

models. Unfortunately, however, there are also disadvantages to our approach. Indeed, within an

industry, investment in very large–scale projects is apt to be an infrequent event. When this is

true, the data must span a long time period, 150 years in our case, which implies that imperfect

proxies for some of the key variables must be used.

Two aspects of the investment problem are assessed: the timing of the irreversible decision

and the price thresholds that trigger investment. With both the standard model and the model

2 See, e.g., Dixit and Pindyck (1994)
3 A few studies have found a positive relationship between uncertainty and investment (e.g., Mohn and Misund

(2007) for oil and gas investment and Stein and Stone (2013) for investment in R&D). However, those studies assess
investment flows (I/K) rather than irreversible projects that are 0/1 decisions.
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with investment lags, projects are initiated when their net present value exceeds their investment

cost plus their option value. Moreover, there exists a threshold or critical value of the random

variable, in this case price, that triggers investment. In other words, investment is initiated when

the market price exceeds the threshold price.

The standard model can be solved analytically to yield interesting comparative statics for the

timing of investment and the price thresholds. Unfortunately, this is not true of the model with

investment lags, which can only be used to determine the circumstances under which the standard

predictions are more likely to be reversed.

We approach the empirical problem in two ways. First, we do not impose the restrictions that

are implied by either theoretical model. Instead, empirical comparative statics are obtained by

assuming that both aspects of the problem, the timing and the thresholds, are functions of the

‘parameters’ of the theoretical models, most of which are allowed to vary with time. Although

a structural model provides a direct link between theory and findings, as with all structural

estimation, inference is apt to be sensitive to the assumptions that are required to produce a

tractable model. In addition, estimating equations that are suitable for assessing more than one

theoretical model are needed.

Second, the knowledge that we have gained from the reduced form estimations is used to

specify a structural model that conforms to the empirical regularities that we have uncovered.

The structural model (due to Bar-Ilan and Strange, 1996) is described by a system of nonlinear

equations determining the trigger price for investment. To estimate the structural model, one

has to solve the equations at every iteration of numerical optimization of the likelihood function,

which turned out to be extremely time consuming and impractical. To circumvent this problem,

we utilize a spline approximation of the trigger function, which allows us to drastically reduce

computation time without an impact on the asymptotic properties of the maximum likelihood

estimator.

Our research makes several contributions. First, we have constructed a detailed historical

data set on U.S. copper mining that contains not only entry dates but also geographic locations

and technological, geological, and geochemical characteristics of each mine. Second, we specify

a structural empirical model of investment with time to build4 and we provide a novel method

of estimating that model. Third, we provide clean evidence that it is possible for uncertainty

to encourage investment when it takes time to build, evidence that has heretofore been lacking.

Finally, we list factors that are apt to contribute to a reversal of the standard result.

In the following sections, the theoretical models, previous empirical work that assesses those

models, and the U.S. copper industry are discussed, followed by a presentation of the data, the

empirical specifications, and the empirical findings.

4 Aguirregabiria and Luengo (2016) estimate a structural model of entry in the copper market. However, they
do not assess investment and uncertainty or time to build.
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2 The Theory and Tests

2.1 The Theoretical Models

The standard real options model of irreversible investment is based on the assumption that a

project comes on line immediately after the decision to invest is made.5 This means that, when

conditions are uncertain, waiting allows the investor to gain additional information about market

conditions. If the news is good, the investor can enter the market immediately, whereas if it is

bad, an unfortunate irreversible decision will have been avoided. Moreover, when uncertainty

increases, a low price becomes more likely, which raises the value of waiting. The value of delay,

or the option value, is therefore a consequence of an asymmetry between the effects of good and

bad news.

The simplest model involves only entry (investment). However, Dixit (1989) develops a two

state model with both entry and exit. In particular, a firm can be either inactive or active, an

inactive firm can enter by incurring a fixed entry cost, and an active firm can exit by incurring

a fixed exit cost. Moreover, both entry and exit are instantaneous. The simultaneous solution

to the two option problem yields two trigger prices, a high threshold that triggers entry and a

low threshold that triggers exit. Furthermore, the high threshold is strictly greater than the low

threshold, and increased uncertainty raises the high trigger, lowers the low trigger, causes the gap

to widen, and augments inertia.

With time to build, there is a lag between the initial decision to invest and the completion of

the project. The Bar-Ilan and Strange (1996) model introduces time to build into the Dixit two

state setup.6 Moreover, unlike the standard model, where an increase in uncertainty raises the

value without affecting the opportunity cost of delay, with their model, the opportunity cost of

delay also increases with uncertainty. In particular, if a firm delays and the news is good, it cannot

benefit from the favorable conditions unless it has already initiated the investment process. The

costs of delay therefore rise with increases in the probability of good news. On the other hand, the

possibility of abandonment truncates the downside risk of bad news. In other words, in addition

to the call option, investors possess a valuable put option. Moreover, abandonment introduces a

convexity that causes the expected value of being active in a future period to rise with uncertainty.7

Although the net effect of uncertainty depends on the relative sizes of the costs and benefits of

5 For early papers, see, e.g., Brennan and Schwartz (1985) and McDonald and Siegel (1987), and for a compre-
hensive treatment, see Dixit and Pindyck (1994).

6 Madj and Pindyck also develop a time to build model. In their model, which has no exit, decisions are sequential
and, as new information concerning the completed project’s value arrives, plans can be costlessly altered. However,
there is a maximum rate at which investment can occur. With their model, investors possess compound call options
that cause the option value to increase, augment inertia, and reinforce the standard predictions.

7 Convexity of the returns to investment links the time–to–build model of Bar Ilan and Strange to the neoclassical
models of Oi (1961), Hartman (1972), and Abel (1983) in which uncertainty increases investment. In those models,
convexity arises due to ex post adjustment of factors. In Stiglitz and Weiss (1981) convexity is introduced by the
possibility of bankruptcy that truncates the consequences of downside risk.
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delay, it is possible for greater uncertainty to hasten investment.8

2.2 Tests of the Theory

Empirical tests of the investment/uncertainty relationship can be partitioned into four groups that

depend on the type of data used: aggregate, industry, firm, or project. We do not discuss the first

two types but simply note that most aggregate and industry studies find a significant negative

relationship between investment and uncertainty.9

There is a large literature in the third group that employs panel data on capital expenditures by

firms,10 and much of that research uses Compustat data on U.S. manufacturing enterprises. Fur-

thermore, uncertainty (σ) is typically measured as the annualized standard deviation of industry

or firm stock market returns calculated from daily data.

An advantage to using stock market returns is that stocks represent claims on firms’ future

profits. Moreover, firm–level returns are measures of the total uncertainty facing a firm. A

disadvantage to using stock returns is that they are very noisy and can be influenced by bubbles,

fads, and the activities of noise traders. Finally, the use of firm returns introduces an endogeneity

problem, since current investment decisions will affect a firm’s expected future profitability. Panel

data instruments are often used to overcome this problem.

Most researchers who use firm–level data find a significant negative relationship between in-

vestment and uncertainty, either directly, indirectly through the effect of uncertainty on Tobin’s q

(Leahy and Whited (1996)), or at higher levels of demand (Bloom et al. (2007)). Those findings

are not surprising. In particular, when deciding on investment flows, a firm makes a sequence of

decisions that evaluate the incremental or marginal unit of capital, whereas time–to–build models

of the sort that we have in mind are more appropriate for lumpy or 0/1 decisions. Moreover, there

are few zero values in annual investment data at the firm or industry level.

There is also a sizeable literature in the fourth group. An advantage of project level data is that

such data are purged of, for example, expenditures that are maintenance driven or that are under-

taken to comply with environmental regulations. Furthermore, with project data, expenditures

are zero in most years, and discrete data facilitate a clean test of timing.

Not surprisingly, the data, models, and measures of uncertainty that are used in project level

studies are more varied. Most researchers assess decisions in the natural–resource industries, oil

and gas or mining. For example, Hurn and Wright (1994) and Kellogg (2014) look at oil and gas

well drilling in the U.K. and U.S., respectively, Favero et al. (1994) assess oil field development,

Dunne and Mu (2010) consider refinery expansions, and Moel and Tufano (2002) investigate

flexible operation of gold mines (temporary closures and reopenings). In addition, Bulan et al.

8 Appendix A contains an example that is constructed to fit the copper industry.
9 The earlier papers are surveyed in Carruth et al. (2000).

10 Examples include Leahy and Whited (1996), Bell and Campa (1997), Bulan (2005), Folta et al. (2006), Bloom
et al. (2007), and Stein and Stone (2013).
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(2009) study condominium development. The measures of volatility used in those studies include

residuals from a random walk model of price (Hurn and Wright; Favaro, Pesaran, and Sharma), the

standard deviation of percent changes in price (Moel and Tufano; Bulan, Mayer, and Sommeville),

the standard deviation of forward refinery margins (Dunne and Mu), and price volatility from

futures options (Kellog).

The findings from the discrete choice studies concerning the investment uncertainty relationship

are also mixed. In particular, Dunne and Mu and Kellogg find significant negative relationships;

Hurn and Wright and Moel and Tufano find negative relationships that are not significant; Bulan,

Mayer, and Somerville find a significant negative relationship for idiosyncratic but not for market

uncertainty;11 and Favaro, Pesaran, and Sharma obtain results that are mixed in both sign and

significance and that depend on the model used.

It is not surprising that studies of well drilling, which use high frequency data, find a negative

investment/uncertainty relationship. Moreover, compared to greenfield development of large new

projects, flexible operations and expansions are more marginal decisions. On the other hand,

development of new condos and oil fields fit the time–to–build assumptions more closely. Perhaps

that is why the conclusions from research into those markets are more mixed

3 The U.S. Copper Industry

Archaeological evidence suggests that Native Americans mined copper in Michigan from at least

3,000 B.C. until as late as the sixteenth century and traded it throughout the Mississippi Valley

and the Southeast. By the time that Europeans arrived in Michigan, however, not only was

copper no longer mined but the location of the early mines had been forgotten. For this reason,

the earliest successful colonial copper mine was not in Michigan but was instead developed in

Simsbury, Connecticut in 1707. Other colonial mines were subsequently opened in New Jersey,

Pennsylvania, and Vermont.

It was more than a century later in the early 1840s when Michigan once again became a major

producer of copper. In 1841, when deposits were found in the Upper Michigan peninsula, the

“Michigan copper fever” — the first American copper rush — began, and by 1880 Michigan was

producing 84% of U.S. copper and the U.S. was producing about 20% of world copper.

Michigan’s heyday lasted until the about 1890 when Montana became the biggest U.S. copper

producing region. However, Montana’s reign as the top producer was short lived. Indeed, by

1910 Arizona had caught up and by 1920 not only was its production triple that of Montana,

but also the U.S. accounted for about 80% of world copper output. Unlike the mines of Montana

and Michigan, which were underground, most of the mines in the Southwest, which also includes

Nevada, New Mexico, and Utah, were surface or strip mines. Although the United States is no

longer the dominant producing country, having long been surpassed by Chile and later by other

11 Note that the standard real option model predicts a negative relationship for both.
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countries, the Southwest is still the dominant copper producing region of the U.S.

The production of copper metal from ores consists of four stages: mining, concentrating,

smelting, and refining, with the output of the first being ore and the last pure metal. Most copper

ores are either oxides (compounds with oxygen) or sulfides (compounds with sulfur). However,

most of the copper mined in Michigan was native ore or pure metal. Copper ores often contain

as little as 0.5% metal. For this reason, ores are rarely shipped but are instead processed in

situ. Most sulfide ores are treated in a froth flotation plant that uses heat to concentrate the raw

material. Oxide ores, in contrast, are usually leached, which is an alternative to smelting that

involves treatment with sulfuric acid.

The scale of a mine, particularly a strip mine, is usually not well defined. In particular, strip

mining involves the use steam shovels to remove surface material, and the scale of the mining

operation depends to a large extent on the number of shovels. Instead, the processing facility,

smelter or leaching plant, determines a mine’s capacity. For this reason, the empirical analysis

assesses the time to build the processing facility.

A positive relationship between uncertainty and investment requires some form of flexibility

upon completion of a project. We illustrate flexibility with examples of abandonment and post-

ponement. In 1968, Magma acquired the Kalamazoo ore body and began development several

years later. Production was scheduled to commence in 1979. However, Infomine.com, a mineral

data base, still lists the status of Kalamazoo as unknown. Postponement, which also limits down-

side risk, is more common than abandonment. For example, in early 2013 when copper prices fell,

Chile’s Copper Commission announced that a number of mining projects that were scheduled to

come online that year would be postponed. Seven of the delayed projects were copper properties,

some greenfield developments and some expansions of existing facilities. Similar delayed openings

occurred in Canada (due to low prices) and in Peru (due to social unrest).

4 The Data

4.1 The Basic Data

The data begin in 1835 or earliest available year and end in 1986. 1986 was chosen to avoid

construction delays that were due to environmental regulations. Indeed, mineral processing wastes,

including wastes from smelting and refining, have been regulated since the mid 1980’s. Specifically,

processing facilities that generate non–exempt hazardous waste must obtain a permit, and the

permitting process has delayed many recent projects substantially. In addition, the U.S. producer

price of copper, which is assumed to be the price that triggers investment, ceased to be published

in 1986.

Industry and economy–wide variables include the U.S. producer price of copper (PRICE), U.S.
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industrial production (INDP), the U.S. wholesale price index (WPI, 1967=1),12 the consumer

price index (CPI, 1983 = 1), and nominal interest rates, (NINR). PRICE was deflated by the

wholesale price index to form a real price (RPRICE).

Individual mine data were obtained from a search involving history books, company reports,

newspaper articles, the internet, state geological surveys’ files, and the files of the copper com-

modity specialist at the U.S. Geological Survey (USGS). Mines were selected only if copper was

listed as the principal commodity. In particular, we assume that entry responds to the price of

the principal commodity rather than to the prices of byproducts.

The data include a total of 441 copper mines; 353 or 80% have entry dates, and of those with

entry dates, 340 or 96% entered after 1835.13 The data contain all of the substantial mines and

account for a very large fraction of U.S. production during the entire period. Montana is least well

covered. Unfortunately, when consolidation of the Montana mines occurred, much of the history

of the smaller mines was lost.

We classify mines according to their mining method, underground (UND) or strip (STRIP); ore

type, oxide (OX), sulfide (SUL) or native (NAT); and deposit type, porphyry (POR), pipe, vein

or replacement (PVR), massive sulfide (MS), or other (OTH, which is principally Lake Superior),

where ore type denotes the geochemical composition of the ore, whereas deposit type denotes

the geological occurrence of the deposit. The classifications are not partitions of the data into

mutually exclusive categories. For example, many mines contain both oxide and sulfide ores. To

a large extent, these classifications determine both the type of processing facility and the unit

investment and operating costs.

We also collected mine locations, which are used to classify mines into five geographic regions:

the East (E), Michigan (M), the Southwest (SW), the West (W), and Alaska (A). Mines within

those regions are not only spatially related but are also similar with respect to their characteristics.

The Eastern region extends from the Ozark Mountains along the Appalachian trail to the far

Northeast. Most of the Michigan mines are on the Upper Peninsula but a few are in Wisconsin.

The Southwest includes Colorado as well as the major mining states, Arizona, Nevada, New

Mexico, and Utah, and the Western region contains all other mines in the contiguous U.S. Finally,

the Alaskan region consists of the mines in that state. Figure 1 shows the locations of the mines

and regions. We constructed five indicator variables, Ri that equal 1 if mine i is in region R, R =

EAST, MICH, SW, WEST, and ALAS, and 0 otherwise.

In addition, some mines are classified as major or highly profitable. This classification is

based on information obtained from the sources that were used to obtain entry dates and mine

characteristics. The set of major mines was also verified through consultation with USGS copper

specialists. There are 34 major mines.

12 The WPI later became the Producer Price Index.
13 Exit dates for some mines are also available. However, those data were not used for two reasons. First, the

exit data are highly incomplete, and second, a mine might close because it runs out of ore, not because the price
is low.
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Figure 1: Locations of U.S. Copper Mines
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There were a number of significant technological breakthroughs during the period that changed

mining and processing costs. Probably the most important occurred in Bingham, Utah in 1906,

when the steam shovel was introduced in the first modern open pit mine. By lowering the cutoff

or lowest economical grade, this innovation increased reserves substantially and facilitated the

development of mass mining. The second most important development was the introduction of

froth flotation in Butte, Montana in 1911. That process, which is used to concentrate sulfide ores,
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lowered the cost of processing the deposits in Montana and many parts of the Southwest. The

third breakthrough, the introduction of the solvent extraction electrowinning (SX-EW) technol-

ogy for leaching oxide ores, was first used commercially in the U.S. in Arizona in 1968. Those

breakthroughs are modeled as potential profitability shifts.

A number of aggregate economic events were identified — major wars, copper cartels, U.S.

government copper price controls, and the Great Depression. In particular, indicator variables

were created that equal one during the periods of the events. The following wars are considered:

the U.S. Civil War, World Wars I and II, the Korean War, and the War in Vietnam. Copper cartels

are those that were identified by Herfindahl (1959) as well as CIPEC, which occurred somewhat

later, and copper price controls were in place in the U.S. during World War II and the War in

Vietnam.

4.2 The Key Variables

Price

Price, P , which is the principal source of uncertainty, is the state variable in the theoretical

real options model. We assume that the real price follows an exogenous stochastic process with

drift µ and variance of percentage changes σ2,

dP = µPdt+ σPdz, (1)

where z is a Wiener process. Investors are assumed to be price takers. Although some mines

turned out to be very large, for most of the period, reserves became known only gradually as

production progressed.14 Indeed, there were many disappointing as well as satisfying surprises.

Moreover, the price of copper is determined in a world market.

For the baseline specifications, µ, the drift in price, is set exogenously, an assumption that is

relaxed in some estimations. Moreover, although percentage changes in price range between -19

and + 23%, the average is statistically indistinguishable from zero. µ is therefore set equal to zero

for the baseline.

Measuring expected uncertainty

The uncertainty measure, the standard deviation of returns σ, is perhaps the most important

variable in the model. For this reason, several measures of σ were assessed, all of which are

motivated by a discrete approximation to equation (1). The first, which is the most straight

forward, is the standard deviation of percentage changes in real prices (SIGPDP) calculated from

three years of past data,. A fairly short time horizon is used because it is desirable to have

substantial time series variation in the variables, particularly in the investment timing equations.

We also experimented with the standard deviation of the residuals from an equation of the form,

14 Modern exploratory techniques are much better, and this is another reason for considering entry only up to
1986.
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(Pt+1 − Pt)/Pt = a1 + b1Pt + u1t, which nests a geometric Brownian motion and a mean reverting

process. However, the results were virtually identical to those obtained from the simpler measure.

The second measure, the coefficient of variation of the natural logarithm of real price (SIGLNP),

also calculated from three years of data, is less standard. The coefficient of variation was chosen

because it purges the measure of σ of possible dependence on the level of P . In particular, all else

equal, the standard deviation will be higher when prices are higher.15

Investors are assumed to forecast future uncertainty, σt+h, from current and past values.16

We assume that investors use a GARCH model to forecast volatility h periods ahead, and we

experimented with a GARCH volatility model using different values of h, the time to build, and

different lag structures, j. When this was done, the results were very consistent. In particular,

when we estimated an equation of the form σt = a+ b0σt−h+ b1σt−h−1 + . . .+ bjσt−h−j +uσt, which

is a GARCH volatility forecasting model with residuals set equal to their means, we found that of

the b coefficients only b0 was significant, regardless of the values of h and j.17 For this reason, in

the empirical model σt−h is the forecast of σt.

Although we experimented with many measures of uncertainty and report results from two,

none of the conclusions depend on the measure of uncertainty that was used.

Company acquisition and the investment lag

The time between a company’s acquisition of a deposit and first production from that deposit

must also be determined. This is the period between the purchase of a real option and realizing the

gains from exercising that option. However, one must divide that period into two subperiods, the

investment waiting phase and the construction waiting phase. During the first, the investor must

decide whether to exercise the option or not, and, in the years prior to the irreversible decision, the

option was not exercised. During the second, in contrast, the investor must wait before realizing

any gains from the decision to invest. The commencement of construction of the beneficiation

facility – usually a flotation plant or leaching operation – is chosen as the divide between the two

periods.

Fortunately, the U.S. Bureau of Mines published an information circular that assesses the

time to develop selected U.S. copper mines (Burgin (1976)). That circular estimates that, in

their sample, the average time between acquisition and production is about six years, whereas the

average construction time is about two years (see Burgin (1976, table 1)). We assume that the

option was acquired at least three years prior to its exercise and that h, the time to build is two.

However, sensitivity analyses with respect to those important variables are performed.

Measuring costs

15 The standard deviation of the residuals from the regression ln(Pt) = a2 + b2ln(Pt−1) + u2t, which is an
alternative approximation to equation (1), was also tried but was not substantially different.

16 A disadvantage to using 150 years of data is that data on stock returns or futures and options contracts are
not available for the early period.

17 This is what one would expect if returns were a random walk.
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Cost variables must also be included.18 The mine characteristics – mining method, ore type,

deposit type, and the presence of byproducts – are the principal measures. Unfortunately, those

characteristics do not vary over time. This means that, although the indicator variables are apt

to shift the price thresholds, they are not likely to influence the timing decision. Cumulative

investment in the region is therefore used as a time varying cost proxy. In particular, the number

of mines that were opened in the region in previous years (CMOR) was constructed based on the

hypothesis that, as mines open, local infrastructure such as transportation improves and skilled

labor becomes more abundant. An alternative measure, the number of mines that were opened in

the U.S. in previous years (CMO) is also used to evaluate whether industry wide factors, such as

the development of better mining equipment, are better determinants of cost.

Measuring the discount rate

Our preferred measure of ρ is the real interest rate (RINR, in %). However, data on nominal

interest rates were found only as far back as 1857, and even those data are inaccurate in the early

years. Moreover, variables must be lagged h years. Unfortunately, 20% of the mines entered during

the missing years. Rather than throw out such a large fraction of the data, for the baseline spec-

ifications, we use a proxy for real interest rates, the growth in industrial production (GRINDP).

In particular, lower real interest rates should be associated with higher growth. Moreover, the

two variables are significantly negatively correlated in the data. However, since GRINDP is also

a proxy for demand growth and factor price changes, as a check on the baseline specifications,

equations that use the smaller number of mines are estimated with RINR.

Summary Statistics

Table 1, which contains descriptive statistics for the aggregate time series variables, shows that

there is substantial variation in all of them. In particular, real price, the source of uncertainty, is

highly variable with a standard deviation that is nearly twice the mean.19

Table 2 contains means of the mine–characteristic variables, all of which are indicators. It shows

that the Southwest has the greatest number of mines, followed by Michigan. It also shows that the

majority of mines are underground, and that about 70% of the mines contain byproducts, usually

gold, silver, lead, zinc, or molybdenum. Finally, note that the indicators for mining method, ore

type, and deposit type do not sum to one due to overlaps.

18 Although there are three costs, w unit operating cost, k unit investment cost, and ` unit exit cost, we do not
distinguish between the three in the reduced form estimations.

19 There is no obvious trend in real price that could account for this fact.
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Table 1: Summary Statistics, 152 Years

Variable Description Mean Stan. Dev. Minimum Maximum

PRICE Nominal copper price 25.9 18.2 5.6 101.4

RPRICE Real copper price 47.3 22.4 16 8 108.6

SIGPDP Stan.Dev. % change in RPRICE 12.4 8.9 0.19 40.7

SIGPLNP Ceof.Var. ln(RPRICE) 2.67 1.94 0.17 9.0

INDP U.S. industrial production 364.7 518.0 2.03 1841

GRINDP % change in INDP 5.01 8.99 -23.1 27.4

CMO Cumulative national mine openings 193 114 0 339

CMOR Cumulative regional mine openings 56.5 49.1 0 174

NINR Nominal interest rate 5.56 2.44 2.53 14.2

RINR Real interest rate 3.65 5.96 -15 04 18.57

WPI Wholesale price index 0.66 0.64 0.24 3.11

CPI Consumer price index 0.21 0.21 0.07 1.10

BETA Systematic risk 0.36 0.38 -0.47 1.21

152 years

130 observations on interest rates, 106 observations on beta

WPI = 1 in 1967, CPI = 1 in 1983

Table 2: Means of Mine Characteristic Dummies, 340 Mines

Region: East Michigan S. West West Alaska

(EAST) (MICH) (SWEST) (WEST) (ALAS)

0.07 0.28 0.51 0.10 0.04

Mining Method : UND STRIP

0.86 0.24

Ore Type: OX SUL NAT

0.32 0.65 0.29

Deposit Type: POR PVR MS OTH

0.25 0.51 0.11 0.22

Byproducts: BYP

0.69
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5 Empirical Specification, Reduced Form

5.1 The Timing of Investment

When investors purchase properties, they acquire valuable real options, and in each subsequent

period, they must decide whether or not to exercise those options. According to theory, an option

will be exercised and construction will be initiated in period t if Pt ≥ PH
it , where PH is the

upper threshold or trigger price. Furthermore, after the option has been exercised, production

will commence after h years, where h is the time to build. On the other hand, investors will chose

not to exercise their options in period t if Pt < PH
it .

With our data, the year when the option was exercised is not observed. Instead, the year, ti,

when a mine i began production is observed and it is assumed that the decision to invest was

made in period ti − h. In addition, it is known that the option was not exercised prior to the

exercise date.

Formally, assume that PH
it = PH(xit) + uit is the trigger price in period t, where x is a vector

of observed covariates and u is due to the influence of unobserved covariates that are independent

from x. Let Dit = 1 if mine i came on line in period t and 0 otherwise. In particular, Dit = 1

implies that Pt−h ≥ PH
it−h. Furthermore, Dit will equal zero in periods t − h − j, j = 1, . . . , ji,

where ji equals t− h minus the acquisition date. It then follows that

PROB[Dit = 1 | xit−h] = PROB[Pt−h−PH(xit−h)−uit−h ≥ 0 | xit−h] = G[Pt−h−PH(xit−h)], (2)

where G(.) is the CDF of u. We assume that G(.) is the standard normal.

For the reduced form model, Pt − PH(xit) is approximated with a linear function of P and x.

We do this because we wish to explore the data before imposing more structure. In particular, we

simply wish to assess the sign of the investment/uncertainty relationship in a context in which a

sign reversal (i.e., a positive relationship) is quite likely.

Unfortunately, the date when the company acquired the property, and thus ji, is not observed.

Based on information from Burgin (1976), for the baseline specifications we assume that ji is

greater than or equal to j̄ = 3 for all i.20 This assumption has the advantage that the popula-

tion and sample choice frequencies are approximately the same. However, sensitivity checks are

performed using different values of j̄. When this is done, each observation where choice J was

made is weighted with weights that equal the ratio of the population frequency for choice J to the

sample frequency for that choice.21

It is important to emphasize that we are not assuming that the all properties were acquired

j̄ years prior to the initiation of construction. To illustrate, suppose that j̄ = 3 and ji = 5 for

some mine i. Even though ji > j̄, the inequalities that we rely on, Pt−h−m < PH
i,t−h−m, m = 1, 2, 3,

20 In the context of mining, Harchaoui and Lasserre (2001) take our approach and assume that j̄ = 4, which is
one year longer than the baseline j̄ here.

21 Manski and Lerman (1977) recommend this choice of weights in the context of choice based sampling.
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are still true. Moreover, even if ji < j̄, someone owned the property in prior years and did not

develop it.

Finally, we have assumed thus far that uit is a draw from an i.i.d. normal. However, the i.i.d.

assumption is not very palatable here. Indeed, mines and regions can differ in systematic ways.

For example, initial reserves differ by mine, transport can be easily accessible for some locations

but not for others, and labor costs can differ by region. We model this possibility by changing the

trigger price equation to

PH
it = PH(xit) + ei + εit, ei|xi ∼ N [0, σ2

e ], (3)

where ei is a random effect and εit has a standard normal distribution.

The estimating equation for the timing of investment is then

PROB[Dit = 1 | Pt−h, xit−h, ei] = Φ(αPt−h + βTxit−h + ei), (4)

where Φ is the CDF of a standard normal.

Consistent estimation of a random effects probit requires strong assumptions that are un-

likely to be met here. Nevertheless, as Wooldridge (2010, p.613) points out, one can relax the

strict exogeneity and conditional independence assumptions. In particular, under the assumptions

embodied in equations (3) and (4) only, one can obtain consistent estimates of the population–

averaged parameters of this model as a pooled probit of Dit on Pt and xit.
22 However, when ei

is truly present, robust inference is needed to account for serial dependence.23

5.2 The Price Thresholds

To obtain an equation for the price thresholds, PH , we make use of the fact that market prices

evolve continuously. Suppose that construction was initiated in period t and completed in t + h.

This means that, the market price was less than the trigger price during the entire t − 1 period

and greater than or equal to the trigger in period t, which implies that the two must have been

equal at some point during period t. However, rather than being measured on the decision day,

Pt is a yearly average. Nevertheless, measurement error from this source is expected to be zero on

average. We therefore assume that, if a decision to invest was made in period t, Pt = PH
it + νit,

where ν has a zero mean.

The estimating equation for the price threshold is then

Pt = PH
it + νit = PH(xit) + νit = γTxit + vit, (5)

where v is due not only to measurement error but also to the unobservables. As with the timing

equation, we take a linear approximation to this equation.

22 Since the signs and not the magnitudes of the parameters are of interest here, the population averaged
parameters, βe = β/(1 + σ2

e)1/2 suffice.
23 The robust variance matrix for this case can be found in Wooldridge (2010) equation (13.53).
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Although v follows a mean zero distribution, PH is observed only when a decision to go ahead

was made. In other words, PH is observed only when it was equal to P for the first time. This

implies that, in the subsample where PH is observed, the conditional distribution of v is not zero.

Following Harchaoui and Lasserre (2001), we assume that v is normally distributed and apply

a Heckman (1979) correction to equation (5). For identification purposes, in addition to x, the

selection or investment equation should contain instruments, z, that explain entry but are not

correlated with PH . We hypothesize that there are short–run commodity market shocks that

affect the prices of all mineral commodities but not the thresholds and use the prices of lead and

pig iron as instruments. The threshold and selection equations can be estimated by maximum

likelihood and, for the latter, observations when a decision was made and for three years previous

to that decision are used.

6 Reduced Form Results

This section presents the baseline specifications and assesses the sensitivity of the baseline re-

gressions to changes in specification. In particular, the alternative regressions are designed to

investigate whether the baseline findings concerning the relationship between investment and un-

certainty are robust. The results for the timing of investment are presented first, followed by those

for the thresholds. However, the two approaches should be viewed as two methods of assessing

the same phenomenon rather than as two independent decisions.

6.1 The Timing of Investment

6.1.1 Baseline regressions

Table 3 contains the baseline probit specifications based on equation (4). In that and subsequent

tables, unless noted otherwise, all explanatory variables are lagged two years. The first two

columns in the table are specifications with only price and a measure of uncertainty (forecasts of

uncertainty using SIGPDP or SIGLNP), whereas the remaining four columns also include other

explanatory variables. Furthermore the cost lowering variable in columns (3) and (4), cumulative

openings in each region, varies by region, whereas that in columns (5) and (6), cumulative openings

in the nation, does not.

The table shows that, regardless of the measure of uncertainty, in all specifications the coef-

ficient of that variable is positive and significant at 1%. Although this finding contradicts the

prediction of the standard real–options model with immediate entry, it can be explained by the

model with time to build. Indeed, with time to build, increased uncertainty can encourage invest-

ment.

In addition, a high real copper price and higher growth in industrial production encourage

investment. However, the price effect is not always significant at conventional levels. Finally, cu-
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Table 3: Baseline Probit Regressions

Dependent variable: Indicator = 1 when mine opens

(1) (2) (3) (4) (5) (6)

Regional Regional National National

RPRICE .0019 .0025 .0043∗∗ .0037∗ .0083∗∗∗ .0086∗∗∗

(.0018) (.0081) (.0021) (.0021) (.0030) (.0030)

σ̂ (SIGPDP) .013∗∗∗ .015∗∗∗ .014∗∗∗

(.0044) (.0044) (.0045)

σ̂ (SIGLNP) .070∗∗∗ .071∗∗∗ .070∗∗∗

(.0207) (.0208) (.0211)

GRINDP .015∗∗∗ .012∗∗∗ .016∗∗∗ .016∗∗∗

(.0047) (.0045) (.0049) (.0047)

CMOR .0017∗ .0014

(.0009) (.0009)

CMO .0017∗∗∗ .0016∗∗∗

(.0007) (.0007)

CONST -0.94∗∗∗ -0.99∗∗∗ -1.28∗∗∗ -1.20∗∗∗ -1.66∗∗∗ -1.67∗∗∗

(0.127) (0.132) (0.180) (0.172) (0.272) (0.270)

ln(pslh) -757.9 -756.9 -751.4 -752.3 -750.0 -749.5

Explanatory variables lagged 2 years

σ̂ is forecast volatility using the volatility measure in ()

Population averaged parameters from a random effects probit

Robust standard errors in parentheses

*, **, and *** denote significance at 10, 5, and 1 percent

Regional (national) means regional (national) cost–lowering variable

ln(pslh) is log pseudolikelihood

1356 observations

mulative mine openings, both by region and at the national level, encourage investment, probably

through their cost–lowering effect. However, the national variable has greater explanatory power.

6.1.2 The time to build

The time to build, h, is clearly an important parameter, and we have used an exogenous estimate.

In particular, we have assumed that it takes two years to build a processing facility. In this

subsection, the sensitivity of the investment/uncertainty relationship to variations in h is assessed.

Table 4 shows specifications of the baseline equation with different values of h. With the first,

h equals one year, with the second it equals two (the baseline), and with the third it equals three.
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Table 4: Probit Regressions with Different Times to Build (h)

Dependent variable: Indicator = 1 when mine opens

(1) (2) (3)

h = 1 h = 2 h = 3

RPRICE .0064∗∗ .0086∗∗∗ .0041

(.0029) (.0030) (.0030)

σ̂ (SIGLNP) .065∗∗∗ .070∗∗∗ .043∗

(.0207) (.0211) (.0225)

GRINDP .008∗ .016∗∗∗ .013∗∗∗

(.0046) (.0047) (.0046)

CMO .0012∗ .0016∗∗ .0010

(.0006) (.0007) (.0007)

CONST -1.43∗∗∗ -1.67∗∗∗ -1.22∗∗∗

(0.267) (0.270) (0.267)

ln(pslh) -756.0 -749.5 -755.9

Explanatory variables lagged h years

σ̂ is forecast volatility using the volatility measure in ()

Population averaged parameters from a random effects probit

Robust standard errors in parentheses

*, **, and *** denote significance at 10, 5, and 1 percent

ln(pslh) is the log pseudolikelihood

1356 observations

In other words, the explanatory variables are lagged h years with h = 1, 2, or 3.

The log pseudolikelihoods at the base of the table measure goodness of fit, and it is clear that

h = 2, the value that we have assumed, provides the best fit. For this reason, in what follows a two

year construction time is assumed. However, regardless of the value of h, the effect of uncertainty

on entry is positive. Furthermore, the coefficient of the uncertainty measure is significant or

marginally so in all three regressions.

6.1.3 The number of years during which the option was not exercised

The number of years during which the option was not exercised is also an important variable. We

have assumed that it was not exercised for at least three years prior to the investment decision

(i.e., j̄ = 3). We now experiment with assuming that the option was not exercised for at least 2

and 4 years prior to the construction phase. Since there must be a period of deposit evaluation and

construction planning post acquisition, it is unlikely construction began one year after purchase.
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Table 5: Probit Regressions with Different Assumptions About j̄a

Dependent variable: Indicator = 1 when mine opens

(1) (2) (3) (4) (5)

j̄ = 2 j̄ = 2 j̄ = 3 j̄ = 4 j̄ = 4

Weighted Both Weighted

RPRICE .0080∗∗ .0078∗∗ .0086∗∗∗ .0089∗∗∗ .0092∗∗∗

(.0033) (.0031) (.0030) (.0028) (.0029)

σ̂ (SIGLNP) .073∗∗∗ .070∗∗∗ .070∗∗∗ .075∗∗∗ .077∗∗∗

(.0232) (.0224) (.0211) (.0199) (.0205)

GRINDP .016∗∗∗ .015∗∗∗ .016∗∗∗ .018∗∗∗ .019∗∗∗

(.0051) (.0050) (.0047) (.0044) (.0045)

CMO .0014∗∗ .0014∗∗ .0016∗∗ .0018∗∗∗ .0018∗∗∗

(.0007) (.0007) (.0007) (.0006) (.0006)

CONST -1.37∗∗∗ -1.59∗∗∗ -1.67∗∗∗ -1.90∗∗∗ -1.77∗∗∗

(0.294) (0.284) (0.270) (0.255) (0.263)

Number of obs. 1017 1017 1356 1695 1695

a The option was not exercised for at least j̄ years

Explanatory variables lagged 2 years

σ̂ is forecast volatility using the volatility measure in ()

Population averaged parameters from a random effects probit

Robust standard errors in parentheses

*, **, and *** denote significance at 10, 5, and 1 percent

Both means that weighted is the same as unweighted

Weights for each choice are ratios of population to sample frequencies

Table 5 contains specifications of the investment timing equation with different values of j̄.

With the first two columns j̄ =2, with the third j̄ =3 (the baseline), and with (4) and (5) j̄

= 4. For each value of j̄, the first specification is an unweighted probit, whereas the second is

weighted, where the weight for each choice is the frequency with which that choice was made

in the population divided by the frequency in the sample. Note that, when j̄ = 3, population

and sample frequencies are the same, implying that weighted = unweighted. The table shows

that the estimates in all five columns are very similar and that the conclusions concerning the

investment/uncertainty relationship are unaffected by variations in j̄.

6.1.4 Alternative specifications

We experimented with a very large number of alternative specifications. Indeed, we wanted to

be confident that the positive relationship between investment and uncertainty was not due to
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omission of a common causal factor. First, however, we assessed the exogeneity of copper price

using an instrumental variables linear probability model with the prices of lead and pig iron as

instruments. Tests of exogeneity, as well as of the overidentifying restrictions, failed to reject in

all specifications that we estimated. The results can be found in table 8 in appendix C.

With the alternative specifications, the following variables were added to the baseline regres-

sions: regional fixed effects, mine characteristics (mining method, ore type, and deposit type),

technological breakthroughs (open pit mining, froth flotation, and solvent extraction electrowin-

ning), aggregate economic events (cartels, wars, the great depression, and price controls), time

varying betas (a correction for risk), time varying alphas (the rate of growth of price), and alter-

native proxies for costs and interest rates. The results from these estimations are shown in tables

9–14 in appendix C.

Not surprisingly, the coefficients of the regional fixed effects, mine characteristics, and tech-

nological breakthroughs are not significant at conventional levels, either on their own or jointly.

Indeed, those variables do not change during the decision period and should therefore not affect

decisions. Of the aggregate economic events, only the coefficient of war is significant. In partic-

ular, wars encourage investment, which can be explained by the fact that, during several wars,

there were subsidies to mining investments. The coefficients of time varying betas and alphas are

also not significant. Finally, none of the alternative proxies are superior to those in the original

regressions.

The most important conclusion, however, is that no alternative specification overturned our

finding concerning investment and uncertainty. Indeed, that relationship was estimated to be

positive and significant in all specifications.

6.2 The Price Thresholds

The assessment of the price thresholds is based on equation (5). In particular, we assume that, if

production began in year t, PH was equal to P in year t−h. Furthermore, since PH is only observed

when a positive decision was made, selectivity is a potential problem and most specifications that

are reported are corrected for that bias. Finally, the selection equation in the two–step procedure

includes the prices of lead and pig iron as instruments that affect P but not PH .

With the exception of price, the timing and threshold equations should contain the same

variables (compare equations (4) and (5)). However, their coefficients should be opposite in sign.

Indeed, any variable that lowers the price threshold should encourage investment.

6.2.1 Baseline thresholds

Table 6 contains the baseline specifications. The first two columns in that table were estimated by

OLS whereas columns (3) and (4) were estimated by maximum likelihood using Heckman’s two–

step procedure. In addition, the specifications in columns (1) and (3) use the volatility forecasts
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based on SIGLNP, whereas those in (2) and (4) use forecasts based on SIGPDP.

Wald tests strongly reject the null hypothesis that the errors in the two equations are uncorre-

lated and, in fact, the correlation is negative. Furthermore, the p–values indicate that the inverse

Mills ratio is highly significant in the threshold equation. Selectivity is therefore a problem, and

the OLS coefficients are biased.

The table shows that, regardless of uncertainty measure used, the corrected coefficients are

larger than the uncorrected and tend to be more significant. In addition, as predicted, the signs

of the coefficients in the threshold and selection equations are opposite, with the former negative

and the latter positive. Finally, the negative and significant coefficients of volatility forecasts

using SIGLNP and SIGPDP indicate that increased uncertainty lowers the thresholds and makes

investment more likely. As before, this finding is inconsistent with the standard real options model

but can be rationalized by a model with time to build.

6.2.2 Alternative specifications

As with the timing equations, we estimated a large number of alternative specifications for the

thresholds and discuss four here. The first sensitivity exercise assesses potential regional variation

and, in contrast to the timing of investment, we find significant variation in the price thresholds

across regions. In particular, relative to Michigan, not only is the investment trigger price lower

in all other regions but also it falls as one moves west. These differences in thresholds, which are

shown in table 15 in appendix C, are probably due to regional cost differences.

Although there are regional differences in trigger prices, it is unlikely that the regions are

different per se. Instead it is more likely that the mines in different regions have distinctive

characteristics. We therefore dig deeper into why the regions differ. In particular, threshold

equations with mine characteristics instead of regional fixed effects were estimated. In contrast to

the comparable timing equations, many coefficients of the characteristics are now significant. In

particular, the thresholds are lower when ores are not native and when deposits are not of the type

found on the upper peninsula, which explains why thresholds are higher in Michigan. In addition,

although thresholds do not differ between underground and strip mines, not surprisingly, they are

lower when a property contains byproducts. Finally, when all of the characteristics are included

in a single equation, only the coefficients for sulfide deposits and byproducts remain significant.

These regressions are shown in table 16 in appendix C.

We also assessed the technology variables and found that, in contrast to the comparable timing

equations, the introduction of open pit mining and froth flotation lowered the thresholds signif-

icantly. On the other hand the introduction of SX-EW did not. The latter finding is probably

due to the fact that the principal effect of the SX-EW technology was to raise output, through

its ability to process waste dumps, not investment. These regressions are shown in table 17 in

appendix C.

Lastly, economic events that influence the aggregate economy or the copper industry were
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Table 6: Baseline Threshold Regressions

Dependent variable: PH

(1) (2) (3) (4)

OLS OLS Corrected Corrected

σ̂ (SIGLNP) -1.83∗∗∗ -3.07∗∗∗

(.428) (.631)

σ̂ (SIGPDP) -.231∗∗ -.581∗∗∗

(.100) (.135)

GRINDP -.152 -.141 -.505∗∗∗ -.528∗∗∗

(.123) (.126) (.156) (.160)

CMOR -.228∗∗∗ -.238∗∗∗ -.233∗∗∗ -.245∗∗∗

(.017) (.018) (.026) (.026)

CONST 72.8∗∗∗ 71.2∗∗∗ 116.4∗∗∗ 116.6∗∗∗

(2.73) (3.03) (3.07) (3.27)

Selection equations

σ̂ (SIGLNP) .101∗∗∗

(.0200)

σ̂ (SIGPDP) .020∗∗∗

(.0043)

GRINDP .0058 .0068

(.0048) (.0049)

CMOR .0034∗∗∗ .0037∗∗∗

(.0007) (.0007)

Wald test: 281 354

p–value IMR: 0.00 0.00

PH is the entry price threshold

PH and explanatory variables lagged 2 years

σ̂ is forecast volatility using the volatility measure in ()

Maximum likelihood estimates

Robust standard errors in parentheses

*, **, and *** denote significance at 10, 5, and 1 percent

Corrected means a correction for sample selection bias

Selection equations include instruments and a constant

H0 for Wald test: independent errors

H0 for p–value: no selection

339 observations for threshold equation, 1356 for selection equation
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assessed. As with the timing equation, it is not clear if, conditional on price and the growth

in industrial production, those events should affect the thresholds. Furthermore, if they do, the

direction of the effects is not obvious. We found that only the coefficient of the cartel variable

was significant at conventional levels, both by itself and when combined with the other aggregate

variables. Moreover, the coefficient of that variable is negative, implying that cartels encourage

investment. This might at first seem counterintuitive. However, although copper cartels were able

to raise prices, they were not very successful at limiting output. For example, Herfindahl (1959,

p. 74) states that, during the short–lived Secrétan cartel, “the high price of copper induced an

increase in world copper output of about a sixth from 1887 to 1888. Most of this increase came

from the United States.” In fact, the history of the copper industry provides many lessons in how

not to manage a cartel. These regressions are shown in table 18 in appendix C.

Finally, as with all of the sensitivity assessments of the timing equation, the coefficients of the

forecast uncertainty measure remain negative and highly significant in all versions of the threshold

equations. Our basic finding concerning the relationship between uncertainty and investment is

therefore never overturned.

7 The Structural Entry Model

In this section, we use our data to estimate the structural time-to-build entry model of Bar-

Ilan and Strange (1996). Depending on fixed and variable costs of production, as well as other

parameters, the Bar-Ilan and Strange model can give different predictions concerning the effect of

uncertainty on entry, including those where an increase in uncertainty stimulates entry and where

it has the opposite effect. Moreover, the effect of uncertainty on entry can be nonmonotone. We

assess which of those patterns fits the historical data for the U.S. copper industry as a whole as

well as for individual mines.

7.1 The Theoretical Model

In Bar-Ilan and Strange’s (1996) model, a firm must pay a fixed cost k to start a construction

process that takes h periods to complete. Thus, if investment begins in period t, production of 1

unit of output per period will start in period t+h, and can go on forever or until the firm decides

to exit. The cost of exit is denoted `, and unlike in the Bar-Ilan and Strange model, we allow

it to be negative, i.e. the firm can recover a portion of its initial investment when exiting. This

assumption is plausible in the context of the copper industry, as one can resell equipment and land

can be resold for alternative uses. The constant marginal operating cost is fixed at w. Finally, the

output price is assumed to follow the geometric Brownian motion process in equation (1).

A firm can be in one of three states: i) inactive, ii) in the process of construction, and iii)
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active and producing.24 The transition (entry and exit) is controlled by two trigger prices: the

upper trigger PH , and the lower trigger PL. Specifically, an inactive firm starts construction when

the output price Pt ≥ PH and a producing firm decides to exit when Pt < PL.

In the original model, exit can be triggered only by the output price falling below PL. However,

in the case of mining firms, one also has to account for the possibility of exhaustion of deposits.

We therefore apply different discount rates depending on a firm’s state. In the case of inactive

firms, we apply the discount rate ρ ≥ 0. In the case of active firms, the discount rate becomes

ρ+ λ, where λ ≥ 0 can be interpreted as the probability of exhaustion.

Bar-Ilan and Strange show that the values of inactive and active firms are given by V0(P ) =

BP β and V1(P ) = APα + P/(ρ + λ − µ) − w/ρ respectively, where A and B are constants to be

determined by the model’s solution, and for m = 2µ/σ2, r0 = 2ρ/σ2 and r1 = 2(ρ+ λ)/σ2,

β = 0.5
(
(1−m) +

√
(1−m)2 + 4r0

)
, (6)

α = 0.5
(
(1−m)−

√
(1−m)2 + 4r1

)
. (7)

Note that we have incorporated different discount rates for active and inactive firms in the above

equations.

Define

uH = uH(PH , PL, σ2) = (logPL − logPH − (µ− 0.5σ2)h)/(σ
√
h), (8)

and let φ and Φ denote the standard normal PDF and CDF respectively. The trigger prices PH

and PL, as well as the constants A and B, are determined by the following system of four nonlinear

equations. Equation (9) below is obtained by matching the firm’s value between the inactive and

construction states, and equation (10) is its corresponding smooth-pasting condition. Similarly,

equations (11) and (12) are the value-matching and smooth-pasting conditions respectively for

PL, i.e. for exiting firms.

B(PH)β =(1− Φ(uH − ασ
√
h))A(PH)αeλh

+ (1− Φ(uH − σ
√
h))

PHe−(ρ−µ)h

ρ+ λ− µ

− (1− Φ(uH))
we−ρh

ρ+ λ

+ Φ(uH − βσ
√
h)B(PH)β

− Φ(uH)`e−ρh − ke−ρh. (9)

βB(PH)β−1 =(1− Φ(uH − ασ
√
h))Aα(PH)α−1eλh + A(PH)α−1eλhφ(uH − ασ

√
h)

1

σ
√
h

+ (1− Φ(uH − σ
√
h))

e−(ρ−µ)h

ρ+ λ− µ
+ φ(uH − σ

√
h)

e−(ρ−µ)h

σ
√
h(ρ+ λ− µ)

24 Due to lack of data, we do not model flexible operation. Although mines can close temporarily, most operate
at capacity when open.
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− φ(uH)

PHσ
√
h

we−ρh

ρ+ λ

+ Φ(uH − βσ
√
h)Bβ(PH)β−1 − φ(uH − βσ

√
h)
B(PH)β−1

σ
√
h

+ φ(uH)
`e−ρh

PHσ
√
h
. (10)

A(PL)α =B(PL)β − `− PL

ρ+ λ− µ
+

w

ρ+ λ
. (11)

Aα(PL)α−1 =Bβ(PL)β−1 − 1

ρ+ λ− µ
. (12)

Our equations (9)–(12) differ from the original equations (22)–(25) in Bar-Ilan and Strange

(1996) in two respects. Firstly, ρ was replaced with ρ + λ in certain terms due to different

discounting in the case of active and inactive firms. This also introduced the factor eλh in the first

two equations. Secondly, we implemented the corrections from Aguerrevere (1998) to the solution

of the Bar-Ilan and Strange model.25

The solution to equations (9)–(12) determines the trigger prices in terms of the fixed cost k,

the variable cost w, the exit cost `, the construction lag h, the discount factor ρ, the probability of

exhaustion λ, and the parameters µ and σ of the geometric Brownian motion. In our estimation,

we keep h, ρ, λ, and µ fixed. Hence, one can view PH as a function of the remaining four variables,

PH = PH(k, w, `, σ). (13)

Our main interest is the effect of σ on the entry trigger PH given the values of the cost parameters

k, w, and ` for our historical data on mine openings.

7.2 The Empirical Model

As with the reduced form analysis, we set µ (the drift in the geometric Brownian motion) equal

to zero, and h (the time to build) equal to 2 years. We also set ρ, the discount rate, equal to 0.05.

Many discount rates have been employed in the real options literature. For example, Dixit (1989)

uses 0.025, whereas Kellogg (2014) uses 0.1. We chose an intermediate rate.

The parameter λ that augments the discount rate and is a proxy for reserve uncertainty must

also be set. We have no data on reserves but it is clear that initial estimates are highly imprecise

and subject to error. Indeed, not only can discoveries occur as extraction proceeds but also reserve

estimates can be revised downwards.26 We set λ equal to 0.02, which corresponds to exhaustion

25 As discussed in Aguerrevere (1998), Bar-Ilan and Strange (1996) omitted the
√
h term next to σ in a number

of expressions. Aguerrevere’s corrections affect equations (22) and (23) in Bar-Ilan and Strange (1996) as well
as the numerical results. With the original set of equations, PH can, for example, increase, decrease, and then
increase again. With the corrected model, the relationship is well behaved, either increasing for low volatility and
then decreasing for high or the opposite. Note that the smooth-pasting condition for PH in Aguerrevere (1998)
contains a typo: Φ(uH)le−ρh in the last line of equation (23) therein must be deleted.

26 Slade (2001) documents reserve uncertainty. and shows that changes are both positive and negative.
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after 50 years. Expected lifetimes, however, are shorter since mines can close for other reasons

such as price dropping below the threshold.

Unfortunately, the costs k, w, and `, are not directly observable. We therefore assume that the

costs are determined by mine and industry observable characteristics as follows:

kit = exp(x′k,itθk), wit = exp(x′w,itθw), `it = ϕ(x′`,itθ`)kit, (14)

where xk,it, xw,it and x`,it are the values of the observable cost shifters for mine i in period t for k,

w, and `, respectively, and θk, θw, and θ` are the unknown parameters to be estimated. Finally,

−1 < ϕ(u) < 1 is a smooth function. Note that the exit cost ` is modeled as a fraction of the entry

cost k. Thus, when ϕ is negative, a mine can recover a certain portion of the fixed investment

cost when exiting.

Identification of the parameters θk, θw, θ` requires the costs, k, w, and `, to be identifiable

from the data on entries. In other words, from observing entries (and therefore the threshold

price for entry PH) one should be able to identify the costs. Such a problem has been studied

recently in Aguirregabiria and Suzuki (2014) in a discrete time setting. They found that, in the

absence of additional information, multiple costs (fixed and variable) cannot be identified from

a single equation describing the entry decision. In our framework, unlike in Aguirregabiria and

Suzuki (2014), such an additional source of identification is provided by the observable variation

in volatility σ.27

The identification argument goes as follows. Since the cost shifters are observable, one can

select several (three or more) episodes of entry with the same levels (over the episodes) of the costs

k, w, and `, and with different levels of volatility σ. This will produce a system (of three or more

equations): PH
j = PH(k, w, `, σj), j = 1, . . . , J, J ≥ 3. The system identifies k, w, ` since PH

j and

σj are observable. Once k, w, ` are identified, one can identify the coefficients θK , θW , θ` using the

variation in cost shifters and the equations in (14).

While the equation for PH(k, w, `, σ) is nonlinear in the cost parameters k, w, and ` (and thus

nonlinear in the cost shifters) and is therefore identified, we found that in practice, when estimating

the model with finite data, it is important to have exclusion restrictions for the cost equations. We

describe our choice of the shifters and the exclusion restrictions below in the empirical subsection.

Besides the factors affecting entry decisions through PH , we assume that there is an additional

idiosyncratic unobserved factor εit, which we interpret as measurement error. As with the reduced

form, measurement error is due to the fact that we only observe the year when the prices were

equal, not the exact date. As before, we assume that, with the addition of measurement error,

the threshold equation holds exactly (see section 5.2).28 Since each firm will enter at a different

time in the calendar year, εit should be idiosyncratic. Hence in our empirical model, inactive firm

27We thank Victor Aguirregabiria for pointing this out to us.
28 Note that here we specify the threshold equation in logarithmic form. We do this for tractability of the

structural calculations.
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i starts construction in period t if

logPt = logPH(kit, wit, `it, σt) + εit. (15)

Collect xk,it, xw,it, and x`,it into a single vector of shifters xit. Also, let θ = (θ′k, θ
′
w, θ

′
`)
′, and

define the entry trigger function as

pH(xit, σt; θ) = logPH
(

exp(x′k,itθk), exp(x′w,itθw), ϕ(x′`,itθ`) exp(x′k,itθk), σt
)
. (16)

Let DCit denote the construction initiation indicator for firm i, i.e. DCit = 1 if mine i starts con-

struction in period t, and 0 otherwise.29 Assuming a log-normal distribution for the idiosyncratic

components, i.e. when εit ∼ N(0, ω2), the log-likelihood function is given by

− 0.5
∑
i,t

(
log(2πω2) +

logPt − pH(xit, σt; θ)

ω

)
×DCit

+
∑
i,t

log

(
1− Φ

(
logPt − pH(xit, σt; θ)

ω

))
× (1−DCit). (17)

Note that the expression on the second line is a Heckman-type selection correction for equation

(15) holding as an equality only during entry periods.

Theoretically, given data on DCit, Pt, σt and the cost shifters xit, the likelihood function can

be maximized numerically to obtain maximum likelihood estimates (MLEs) of the parameters θ

and ω2. However, this straightforward approach would require solving numerically for the trigger

value PH for each observation and each candidate value for the MLE of θ and ω2 at each iteration

of a numerical optimization routine. Thus, at each MLE iteration, one would have to solve a

system of nonlinear equations determining PH with a new set of parameters. As a result, such a

straightforward computation of the MLE becomes extremely time consuming and impractical (or

even infeasible).

To circumvent the numerical optimization problem, we therefore first approximate the upper

trigger function PH(k, w, `, σ) using a large grid of predetermined points for the costs and the

level of uncertainty σ. In other words, we first solve equations (9)–(12) to determine the values of

the trigger PH over a large set of points for (k, w, `, σ) preselected from a compact set, and then

apply interpolation techniques to approximate the function PH(k, w, `, σ) on the entire set. We

then replace PH(k, w, `, σ) with its approximation when computing the log-likelihood.

We use polynomial splines for our interpolation problem, as they are fast, efficient, and conve-

niently available with various numerical computing software packages such as Matlab. Moreover,

splines provide accurate approximations as long as the function of interest is sufficiently smooth.

Let ∆ denote the mesh size associated with preselected points (knots). Suppose that the approx-

imated function is at least s times continuously differentiable, where s ≤ m− 1 with m denoting

29DCit = Dit - h, where D is the entry indicator used in the reduced form analysis.

26



the order of polynomial splines. The uniform approximation error of splines is of order O(∆s)

(see Schumaker (2007), Corollary 6.21 and Theorem 12.7). Moreover, the derivatives of a spline

approximation simultaneously approximate the derivatives of the function of interest, however the

rate of uniform approximation is slower and given by O(∆s−r), where r is the derivative’s order

(Schumaker, 2007, Corollary 6.21). The last fact is particularly important in our framework, since

the derivatives of the upper trigger function determine the asymptotic distribution of the MLE

and its standard errors. Thus, in the case of a d-dimensional approximation problem and N pre-

selected points, one can expect that the first derivative of the function of interest is uniformly

approximated on a compact set with an error of order O(N−(s−1)/d). Note also that the spline

approximation of the upper trigger PH is a deterministic problem and does not involve any latent

variables. Therefore, when the overall sample size is n, and n1/2×N−(s−1)/d is negligible, replacing

the true trigger function with its polynomial spline approximation in the log-likelihood is not going

to affect consistency and the asymptotic distribution of the MLE. In such a case, one can proceed

as if the true trigger function was used in construction of the log-likelihood. Since in our applica-

tion the sample size is of order 103, d = 4, and the trigger function is smooth, the requirement on

the number of knots for spline interpolation can be easily satisfied with cubic splines (s ≤ 3) and

a reasonably small grid of points for k, w, `, and σ.

7.3 Structural Estimation Results

In this section, we report the estimation results for the empirical version of the real options model

with time to build that is described above.

In all our attempted specifications, the predicted exit cost `it was estimated as negative. Hence

for the results reported here, we further restricted the function ϕ, which determines the exit cost

` as a fraction of the entry cost k in (14), to be between −1 and 0. Specifically, we chose ϕ to

be the negative logistic function: ϕ(x) = −(1 + exp(−x))−1, which means that we are estimating

exit values, not costs.

To construct a spline approximation of the upper threshold function PH(k, w, `, σ), we used

Matlab’s command ‘griddedInterpolant’ with the option (‘spline’), which implements cubic

spline interpolation using not-a-knot end conditions.30 The total number of points in our grid is

2,227,500.

We must specify the variables that are included in the structural cost equations (14). One of

the criteria for the choice of the shifters was that the predicted values for the three cost variables

30 The interpolation grid was constructed as follows: 30 logarithmically spaced points between 0.001 and 0.17
for σ2; 55 logarithmically spaced points between 0 and 7 for k; 27 linearly spaced points between 0.2 and 1.2 for w;
50 logarithmically spaced points between -1 and 0 for the ϕ (the exit value as a fraction of the entry cost).We used
logarithmic spacing for σ2 as the PH function has more curvature for small values of σ2 (see Figure 3 below) and
is approximately linear for larger values of σ2; therefore, including relatively more grid points for smaller values of
σ2 improves the approximation of the function. For similar reasons, we also used logarithmic spacing for k and ϕ.
In the case of w, linearly spaced grid points approximate the function well.
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would display enough variation and would be away from their respective boundary grid values. It

turns out that having sufficient exclusion restrictions plays a crucial role in attaining that goal.

Since one can obtain very similar values for the price threshold PH using different combinations of

the three costs, we observed that including the same cost shifters in all three equations, or more

generally having insufficient exclusion restrictions, would push one of the implied costs toward the

boundary values of its grid (typically, k towards 0). Thus, it is important to have variation in the

cost shifters that affects one of the costs but not the others.

Most of the variables that we include in the cost equations are mine characteristics, which are

discrete. However, we found that it was important to have at least one continuous variable in

each equation that was excluded from the others. We chose to include the growth of industrial

production (GRINDP) in the unit investment cost (k) equation. The principal effect of that

variable, which is our proxy for real interest rates due to the negative correlation between the two

(see section 4.2), is expected to be lower investment cost.31 Furthermore, a cost lowering effect

would be consistent with the reduced form estimates, where higher growth stimulates entry and

lowers the thresholds. Here we assume that the interest rate effect operates through investment.

For the the unit operating cost equation (w), we chose cumulative discoveries in the region

(CMOR). We hypothesize that as more mines are discovered, skilled workers will arrive and

infrastructure will be developed, which should lower regional operating (in particular labor) cost.

This would also be consistent with the reduced form finding that cumulative discoveries lower the

regional thresholds.32

We must also specify a continuous variable that affects ϕ, the fraction of k that is recoverable

upon exit, and that variable should be related to the outside option. Most mines are located in

rural areas and, at least in the early years, agriculture was the only other rural economic activity.

We therefore chose to include a farm value variable in the equation for ϕ. That variable is the

logarithm of a real farm product price index (LFARMP). Unlike the other two variables, one

cannot predict the sign of the coefficient of this one. Indeed, it depends on whether agriculture

and mining are substitutes or complements. If when agriculture is doing well it leads to overall

rural development, the sign should be positive. If, on the other hand, a booming agricultural

sector draws resources away from the mining sector, the sign would be negative.

It is clearly impossible to include all of the mine characteristics – mining, ore, and deposit

types — in the structural equations and our choices were guided by the reduced form findings.

Furthermore, it is difficult to predict the directions of the effects of those variables. For example, we

do not know if investment costs are higher or lower for sulfide ores. We also include one technology

variable, OPEN, for the advent of open–pit mining, which should lower fixed and variable costs.

Finally, we include an indicator MAJOR in the equation for ϕ. That variable equals one if the

mine turns out to be important, and we hypothesize that, although it is not known when entry

31 In doing this, we are assuming that the real interest rate differs from the firms’ subjective discount factor, ρ.
32 Cumulative discoveries in the country, not the region should affect k by providing better capital at lower cost.

28



occurs, it will affect resale value.

Table 7 reports the estimates of the parameters on the cost shifters in the three equations in

(14).33 In the table, the reported standard errors are robust to misspecification and clustered by

mine. Moreover, the explanatory variables are lagged twice (i.e., h = 2). The table shows that

most coefficients are highly significant.

Consider first the continuous variables. We find that the growth of industrial production lowers

unit investment cost k and that cumulative discoveries in the region lower unit operating cost w,

as hypothesized. We also find that high agricultural prices have a negative effect on resale values,

which implies that the two activities are substitutes.

Turning to the discrete variables, as mentioned above, we have little intuition concerning the

direction of the effects of most of those variables. However, the presence of byproducts (BYP) is

estimated to increase investment cost, probably because the facility must be more complex, and to

lower operating costs, probably due to the shared nature of the facilities, which seems reasonable.

Furthermore, the technology variable for the advent of open pit mining (OPEN) lowers both fixed

and variable costs, as hypothesized. Lastly, a major mine (MAJOR) has a higher unit resale value.

As noted earlier, reversal of the standard result is more apt to happen when the resale value

is closer to the initial investment. The parameter ϕ in Table 7 is therefore a measure of that

effect. In particular, the table shows that, relative to the initial investment, the resale value is

higher for major mines and when alternative investments are performing poorly, and it is lower

for multi–metal mines.

Figure 2 shows the temporal behavior of the cost values implied (or predicted) by the model.

The average predicted value of the unit entry cost k is 1.81, the minimum and maximum values

are 0.42 and 6.56 respectively, and the standard deviation is 0.85. Panel (a) of Figure 2 shows

that there is a positive linear trend in the entry cost (with the slope coefficient 0.01). The average

predicted value of the unit variable cost w is 0.60, its minimum and maximum values are 0.2

and 1.16 respectively, and the standard deviation is 0.27. Figure 2(b) shows that the variable

cost has a negative time trend (with the slope coefficient -0.01). It is clear that the industry

has become more capital intensive over time, with changes in fixed and variable costs tending to

offset one another. Finally, Figure 2(c) displays the implied exit cost (or the negative of the resale

value since all implied exit cost values are negative) as a fraction of the entry cost k (ϕ). The

average predicted fraction is -0.97; the minimum and maximum predicted fractions are -0.99 and

-0.80 respectively; the standard deviation is 0.03. Resale values seem unrealistically high and we

discuss possible reasons in the next subsection.

Our main interest is in the effect of price uncertainty on investment, and the next set of figures

describe the model–implied relationship between the trigger prices PH and PL and the volatility

σ2. Figure 3 shows the relationship between the trigger PH and volatility σ2 at the average values

33 We used Matlab’s implementation of the particle swarm algorithm (particleswarm) followed by the
‘fminsearch’ command to optimize the log-likelihood function (with the PH function approximated by splines
as described earlier).
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Table 7: Structural Model Parameters:

Equations for Investment Cost k, Operating Cost

w, and Exit Value ϕ as a Fraction of k

(1) (2) (3)

k w ϕ

GRINDP -0.029∗∗∗

(0.005)

CMOR -0.476∗∗∗

(0.009)

LFARMP -10.72∗∗∗

(0.047)

SUL 0.805∗∗∗ -0.363∗∗∗

(0.013) (0.009)

PVR 0.020∗

(0.011)

UNDER -0.403∗∗∗ -0.019

(0.008) (0.014)

BYP 0.136∗∗∗ -0.182∗∗∗ -0.220∗∗∗

(0.008) (0.010) (0.007)

OPEN -0.136∗∗∗ -0.381∗∗∗

(0.013) (0.014)

MAJOR 0.230∗∗∗

(0.036)

CONST 0.415∗∗∗ 0.145∗∗∗ 23.61∗∗∗

(0.010) (0.005) (0.136)

k is unit investment cost; w is unit operating cost

ϕ is a decreasing with values between -1 and 0. Since

ϕ < 0, it can be viewed as exit value

Explanatory variables are lagged two years except for

OPEN in the w equation

Robust standard errors clustered by mine in parentheses

*, **, and *** denote significance at 10, 5, and 1 percent

Maximum likelihood estimates

1696 observations
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Figure 2: Structural Model: Predicted Costs per Unit of Output
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Figure 3: Structural Model: The Relationship Between the Entry Trigger PH and the

Volatility σ2 at the average model-implied values of the costs (k = 1.81, w = 0.60,

` = −0.97) and the distribution of the volatility σ2
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of k, w and ` implied by the model. The curve has an inverted U-shape with both increasing and

decreasing portions. The figure also shows the distribution of the volatility σ2 in our dataset,

which implies that approximately 58% of the observations fall into the decreasing portion of the

curve where increased volatility reduces the entry threshold price and therefore stimulates entry.

Figure 3, which is constructed using average costs, masks considerable heterogeneity across

mines. To illustrate this heterogeneity, we display the relationship between the trigger price and

the volatility of individual mines. Figure 4 contains plots of PH against σ2 for the major mines

in our dataset, where the trigger price PH is computed at model implied values of the costs k, w,

and ` for each of the mines. While the patterns are quite heterogeneous due to the variation in

costs, the figure shows that, for a substantial number of mines, the trigger PH is decreasing with

volatility over all ranges of uncertainty, σ2. Both Figures 3 and 4 show that the phenomenon of

increased volatility stimulating investment is prevalent in our data. Moreover, it is an important

feature.

Lastly, we consider the effect of volatility on the exit trigger PL. The theoretical results con-

cerning the behavior of PL are standard; in particular, PL falls with increased volatility. However,

with the model with time to build, the range PH−PL, the region of inertia or hysteresis, can con-

tract when σ2 rises. This should be contrasted with the predictions from the Dixit (1989) model,

where the region always expands. We find that, at the average model-implied costs, the range

PH−PL remains constant over most values of σ2 (see Figure 5 in appendix D). However, there are

values of the cost variables that imply decreasing hysteresis as volatility increases. Furthermore,
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Figure 4: Structural Model: The Relationship Between the Entry Trigger PH and the

Volatility σ2 for the Major Mines
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the two curves can coincide at high volatility, implying that there is no inertia.

7.4 The Exit Cost Puzzle

The fact that exit costs are estimated to be negative is not really surprising. Indeed, during most

of the period studied, environmental regulation was virtually nonexistent. Furthermore, the land

and facilities must have had some alternative uses. However, the fact that we find that investors

could recoup the lion’s share of their investment upon exiting is puzzling. In this subsection, we

provide three explanations for this counterintuitive result. The first two are related to the fact

that market volatility might have been higher than measured volatility, whereas the last involves

unmeasured flexibility.

With a real option, investors compare the upfront investment plus the value of the options

that are relinquished upon entry (the entry cost) to the expected discounted cash flow plus the

expected discounted exit value (the entry benefit) and they invest if the former is smaller than

the latter. Suppose that the options are systematically overvalued. Then the model would predict

too much delay relative to what is observed. One way of matching model predictions to data is

to increase the exit value. In other words, if the costs are overvalued, equality can be restored by

overvaluing the benefits. We ask here what could lead to systematic overvaluation of the combined

options.

First consider volatility. If market conditions are such that one is in the region in which higher

uncertainty encourages investment, then anything that systematically undervalues volatility also
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overvalues the cost of entry and causes the thresholds to be too high. There are at least two factors

that could cause our measure of volatility to be too low. The first is related to capital structure.

If the upfront cost is financed through a mix of debt and equity, then the volatility of the equity

holders’ (the decision makers) payoff is higher than overall volatility, since they are the residual

claimants.

The second is related to costs. Suppose that operating costs are uncertain and uncorrelated

with price34 and that, prior to investment, investors know the distribution of costs but not their

idiosyncratic realization. Then, although the parameters of the cost distribution will affect the up-

per threshold (they will be constant parameters in our model), cost realizations will not. Ex post,

however, the volatility of cash flows, which depends on cost realizations, will be underestimated.

Next, consider unmeasured flexibility. We have assumed that, once a decision to enter has

been made, there is no flexibility until the project is complete. In reality, however, if bad news is

received during the construction phase, small modifications can be made to downsize the project.

Just as flexibility to expand in the Majd and Pindyck (1986) model leads to a sequence of call

options that strengthens the standard result (i.e., construction is further delayed), the ability to

downsize during construction leads to a sequence of put options that strengthens the Bar-Ilan and

Strange (1996) results (i.e., construction is further advanced).

Unfortunately, there is no independent variation in our data that allows us to identify the

effects of these factors. With all three explanations, however, one expects to see less inertia than

would be predicted by a model that neglects these factors. Since our estimation attempts to match

predicted and observed entry, one way of doing this is to overestimate the value of exit. It should

be noted, however, that none of these factors can overturn our findings. In fact, they serve to

strengthen the finding that uncertainty tends to encourage investment in this market.

8 Conclusions

Investment in copper mining provides an ideal laboratory in which to test the predictions of the

theory of real options with time to build. Indeed, projects are large, prices are highly variable,

investment is infrequent, and completion takes several years. This setting allows us to present

the first clean empirical evidence that uncertainty can encourage investment when it takes time

to build. As with the Dixit (1989) model, we find that, when uncertainty is low, increases in

uncertainty tend to raise the price that triggers investment. This in turn discourages investment

and leads to increased hysteresis. However, after some point (some level of uncertainty) further

increases lower the upper price threshold, which encourages investment and can cause the region

of inaction to shrink.

There are, of course, other models that predict a positive relationship between uncertainty

34 Since costs are idiosyncratic or regional and price is determined in a world market, the assumption that the
two are uncorrelated seems reasonable.
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and investment. For example, Oi (1961), Hartman (1972), and Abel (1983) show that, with

convex adjustment costs, uncertainty encourages investment because ex post adjustment between

fixed and variable factors causes profit functions to be convex.35 With such models, however,

one expects to see frequent marginal adjustments to the capital stock, the pattern that is often

observed in aggregate accounting data. With our data, in contrast, investment is an infrequent

and lumpy event.

In addition, a model with endogenous learning by doing (e.g., Roberts and Weitzman (1981))

might predict a positive relationship between investment and uncertainty, since uncertainty en-

hances learning as construction progresses. However, the basic intuition of the Bar Ilan and

Strange model — that an asymmetry between good and bad news at the completion stage limits

downside but not upside risk — would still hold in that context, and learning about costs would

only strengthen their results.

Does this mean that, from a policy point of view, one should be less concerned about the

possibility that uncertainty will inhibit growth in this and similar industries? Not necessarily.

We provide evidence that uncertainty affects the timing of investment. However, given that all

of the mines in the data eventually entered the market, it is not possible to say that uncertainty

encouraged the volume of investment. In fact, real options models do not describe investment

per se, but rather the critical threshold that is required to trigger investment. In particular, it

is possible that, although increased volatility encouraged investment in projects that were at the

planning stage, at the same time it reallocated resources from industries that experienced high

levels of uncertainty to more stable ones. This might explain why, using more aggregate data,

Slade (2015) finds evidence that higher uncertainty reduces the number of copper mines that open

each year.36

The policy implications that can be drawn from our study are of a different sort. Specifically, it

is possible that programs that are designed to reduce volatility and stimulate investment, such as

buying and selling from stockpiles, could actually have the opposite effect on projects like mining

investments that have long gestation lags. In addition, the positive relationship between invest-

ment and uncertainty that we find could help explain chronic excess capacity in some industries.

In particular, investors might choose to overbuild in order not to be out of the market when con-

ditions improve. For example, in spite of the fact that steel prices have been unusually volatile in

the last decade, the steel industry has been plagued by excess capacity. As the chairman of the

OECD’ Steel Committee stated in 2014, “New investments continue at a rapid pace in many parts

of the world, despite high levels of excess capacity and slower demand growth.” A similar story

35 See also the summary in Caballero (1991).
36 Even with the standard model, one cannot claim that increased uncertainty delays investment. To illustrate,

although an increase in volatility raises the threshold, it also raises the probability that the price will hit some
arbitrary level in some arbitrary time period. Since more extreme price realizations are expected, even though the
threshold is higher, price might hit the threshold sooner. Thus, with both models, one cannot say whether the
expected time until the threshold is hit goes up or down when volatility increases. We owe this point to Robert
Pindyck.
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can be told to explain the global excess capacity in container shipping that has been experienced

recently.37

The investment/uncertainty issue has recently surfaced in another area — the debate about

the relative merits of price versus quantity based regulation of renewable energy. For example,

feed–in tariffs are price driven incentives whereas quotas are quantity driven, and both are used

by E.U. member states. Although most economists prefer price based schemes, there are many

factors to consider in making this choice. One of those is the level of uncertainty and its effect on

investment. In particular, with feed–in tariffs, price and investment risks are low whereas, with

quotas, they are high (Hass et al., 2011). Furthermore, even within price based systems, risks

differ. For example, Goulder and Schein (2013) note that, compared to cap–and–trade, a carbon

tax is associated with lower price volatility. Since renewable energy sources take time to build,

from a policy point of view, understanding how such investments respond to uncertainty is crucial.

The relationship between investment and uncertainty is clearly important, as witnessed by the

volume of theoretical and empirical research into the subject. Nevertheless, Dixit and Pindyck

(1994) noted that “Time to build (and related delays) is usually ignored in theoretical and empirical

models of investment, but as Kydland and Prescott (1982) have shown, it can have important

macroeconomic implications.” It is therefore surprising that investment lags have not received

more attention.
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Appendices For Online Publication

A An Example

A fairly standard real options model that is tailored to fit the copper industry is set up before

time to build is introduced. We consider the decision to open a single mine in a competitive

environment and assume that mining is characterized by constant returns to scale up to capacity,

Q̄. It is thus optimal to produce at capacity or not at all. In addition, fixed investment cost, k̃, is

assumed to be proportional to capacity, k̃ = kQ̄, where k is per unit investment cost. The mine’s

size therefore cancels out and the problem is cast in per unit terms.

We assume that price variation is the principal source of uncertainty. Let P be price, an

exogenous stochastic process, µ be the drift in P , and σ2 be the variance of percentage changes

in P . As is customary, the stochastic process for price is assumed to be

dP = µPdt+ σPdz, (18)

where z is a Wiener process. In addition, let w be average variable (equal marginal) operating

cost, ρ be the firm’s discount rate and δ = ρ− µ, which is positive by assumption (otherwise the

option would never be exercised).

The project lasts forever and produces unless it is exogenously closed. Let λ be the constant

per period probability of closure.38 Closure could be due to, for example, exhaustion of reserves,

obsolescence of the capital equipment due to the arrival of a new processing technology, or devel-

opment of a cheaper substitute for the output. With the first possibility, λ is a proxy for reserve

uncertainty. We have no data on reserves but it is clear that initial estimates are highly imprecise

and subject to error. Indeed, not only can discoveries occur as extraction proceeds but also reserve

estimates can be revised downwards.39

At time t, an investor can pay an amount k to obtain a project whose value will be V1(P ).

Consider the value of the project once it is open (i.e., when the firm is active). Price appreciates

at the rate µ and is discounted at the rate ρ + λ, the discount rate plus the closure probability.

The expected present value of per–unit revenues is thus Pt/(ρ + λ − µ). Unit costs, w, which

are certain,40 are discounted at the rate ρ + λ. The expected value of an open project is then

V1(Pt) = Pt/(ρ + λ − µ) − w/(ρ + λ). A net present value (NPV) calculation, which ignores the

38 In fact, mines can optimally close, reopen, and eventually exit. See, e.g., Brennan and Schwartz (1985) for
a theoretical model and Moel and Tufano (2002) and Slade (2001) for empirical assessments. Unfortunately, We
have no data on temporary suspension, idling, and reopening.

39 See Slade (2001) for an analysis of reserve uncertainty in the copper industry.
40 It is straight forward to allow costs to increase or decrease at a known constant rate. Moreover, a model with

uncertain costs is available from the authors upon request. That model has two new parameters, σw, a measure
of cost uncertainty and ρpw, a measure of the covariation between prices and costs. If those two parameters are
constant, then our empirical model incorporates cost uncertainty.
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option value, would thus yield the rule: invest if

Pt ≥ PNPV = (ρ+ λ− µ)[
w

ρ+ λ
+ k], (19)

where PNPV is the NPV threshold.

V0(P ), the value of a mine prior to investment when the firm is inactive, includes an option

value, which is the value of delay. At time 0, the decision maker wants to choose the exercise time,

t∗, to maximize the expected value of [V0(Pt) − k]e−ρt. This problem, which is fairly standard,

results in a threshold, PH such that investment is undertaken if Pt ≥ PH . Standard real–option

calculations can be used to show that one should invest if

Pt ≥ PH =
β

β − 1
(ρ+ λ− µ)[

w

ρ+ λ
+ k], (20)

where

β = 1/2− µ/σ2 +
√

[1/2− µ/σ2]2 + 2ρ/σ2. (21)

A comparison of (2) and (3) shows that β/(β−1) > 1 is the markup that determines the wedge

between the present value of revenues and costs. This wedge is due to the fact that the exercise

date can be chosen optimally.

Comparative statics with respect to the model parameters show that increases in σ, w, k, λ,

and ρ raise the threshold and thus delay investment, whereas increases in δ cause the threshold

to fall and thus hasten investment. However, w, k, and λ do not affect β or the option markup.

When time to build is introduced, the standard model must be modified. First, as with the

Dixit (1989) two state model, exit can occur at a cost `. In addition, however, there is a third

stage that separates the inactive and actives stages. Specifically, let h > 0 be the time that must

elapse between initiation and completion of a project — the time to build — and, as before, let k

be the fixed entry cost. Specifically, k is committed when the project is initiated and paid when

it is completed.

The introduction of time to build changes the problem in a number of ways. First, as with

the Dixit model, one must consider the value of the project prior to the irreversible decision,

V0(P ), when the firm is inactive, as well as after the project is complete, V1(P ), when the firm

is active. Now, however, there is a third value function, V2(P, θ), the value of the project during

the construction stage. In this stage, the value function depends not only on P but also on a

parameter, θ, the time remaining until completion, with 0 ≤ θ < h. As with the Dixit model, the

solution to this problem yields two thresholds an upper trigger price, PH , that induces an inactive

firm to initiate construction and a lower trigger price, PL, that induces an active firm to abandon

the completed project. Finally, no trigger price is associated with the construction phase because

it can be shown that it never pays to abandon during that phase.

Only in rather uninteresting special cases can one obtain an analytic solution to the model

with time to build. For example, the investment lag has no real effect on the decision to invest
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if there is no abandonment, in which case there is no put option, or if there is no uncertainty, in

which case there is neither a put nor a call option. For more interesting cases, one must resort to

numerical solutions. Bar-Ilan and Strange (1996) use numerical methods to show that investment

lags lower the deterrent effect of uncertainty and, under some conditions, can hasten investment.

They also note that the effect of uncertainty on the lower trigger price is standard.

Theoretical comparative statics with respect to the length of the lag are ambiguous. In par-

ticular, a larger h increases the option value, through a higher variance of the return, but it also

increases the opportunity cost of investment, through a higher expected value of the project. Nev-

ertheless, with Bar Ilan and Strange’s numerical simulations, the cost effect tends to dominate the

value–of–information effect, and a longer lag leads to less inertia.

B The Data

This appendix contains a description of the historic mine, industry, and economy–wide data. The

time–series data, which were obtained from the following sources, are described first.

Time–Series Data Sources

• FRB: Federal Reserve Statistical Release – Historical Data. Downloaded from the Internet.

• BLS: U.S. Bureau of Labor Statistics – Historic Data. Downloaded from the Internet.

• HS: Carter, S.B. et. al. Historical Statistics of the United States, Earliest Times to the

Present, Millennial Edition, Cambridge University Press.

• HS2: Historical Statistics of the United States, Department of Commerce, Bureau of Labor

Statistics.

• MAN: Manthy, R.S., 1978, Natural–Resource Commodities, A Century of Statistics, Johns

Hopkins University Press.

• MY: U.S. Bureau of Mines, Minerals Yearbook, various years. Early volumes are called

Mineral Resources of the United States and were compiled by the U.S. Geological Survey.

• SHIL: Shiller, R.J., Stock Price Data, Annual, Available on Shiller’s web page.

Time–Series Data Series

• PRICE: Copper price in cents/lb. Sources: HS: 1835–1869, MAN: 1870–1973, MY: 1974–

1986. In the early years, prices varied by region. We use the prices that HS reports. In

particular, the price of sheathing is reported for the years 1835 to 1859 and of Lake copper

for the years 1860 to 1869. For later years price is the U.S. Producer price.
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• INDP: An index of U.S. industrial production, 1905 = 100. Source: HS: 1835–1918, FRB:

1919–1986.

• NINR: Nominal interest rates in %. Source: HS2: 1857–1970, FRB: 1971–1986. These data

are an index of yields of American railroad bonds for the years 1857–1918, and Moody’s

Corporate Aaa bond yields for the years 1919–1986.

• WPI: The U.S. wholesale price index, which later became the U.S. producer price index,

1967 = 1. Source: MAN: 1870–1973, BLS: 1974–1986. For the years prior to 1870, values

were obtained by regressing WPI on the consumer price index (CPI) and backcasting.

• CPI: The U.S. consumer price index, 1983=1. Source: HS: 1835–1986.

• PLEAD: Price of lead in cents/pound, Source: HS: 1835–1986.

• PIRON: Price of pig iron in cents/pound. Source: HS: 1835–1986.

• PFARM: Price of farm products, an index with 1926=1, Source: HS: 1835–1986

• S&PR: Return on the Standard and Poor Composite Index. Source: SHIL: 1871–1986

The real interest rate (RINR, in %) is calculated from the nominal interest rate using the

Fisher equation,

ρt = [(1 +
nt

100
)

CPIt
CPIt+1

− 1] ∗ 100, (22)

where n is the nominal interest rate in %, and CPI is the consumer price index.

Percentage changes in any variable x are calculated as (xt+1 − xt)/xt.

Mine Data

Individual mine data were obtained from a search involving history books, company reports,

newspaper articles, the internet, and the files of copper commodity specialists at the U.S. Geo-

logical Survey (USGS). Mines were selected only if copper was listed as the principal commodity.

The date of entry is the year when production started. Unfortunately, this date is not consistently

reported for some of the early mines. Whenever possible, the date reported in mindat.org is used

here. A few mines are counted twice. This occurs when for example, an underground mine be-

comes a strip mine or when the type of ore that is mined changes dramatically. These cases require

major new investments in processing facilities and are not just expansions of existing facilities.

Cumulative openings, whether at the national or regional level or whether in total or just those

that are major, are constructed as the number that of mines that opened in the current and in all

previous years.

In addition to the opening dates, We collected the mining method (underground and strip),

deposit type (oxide, sulfide, and native), ore type (porphyry, pipe/vein/replacement, massive
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sulfide, and other – mostly deposits that occur on the upper Michigan peninsula), whether there

are byproducts, and the location (geographic coordinates) of each mine.

Mines are classified as major when historical accounts portray them as highly profitable. Al-

though this classification might seem arbitrary, when mines are mentioned by many authors, it

seems plausible that those were the ones that might have triggered investment. Moreover, histo-

rians often note the economic influence that such mines exerted on the region where they were

found.

Aggregate and Industry Economic Events Data

• Wars: U.S. Civil War, 1861–1865; WWI, 1914-1918; WWII, 1939–1945; Korean War (U.S.

involvement), 1950–1953; War in Vietnam (U.S. involvement), 1965–1973.

• Cartels: Secrètan, 1888–1890; Amalgamated Copper Restriction, 1899–1901; CEA, 1919–

1922; CEI, 1926–1932; ICC, 1935–1939; and CIPEC, 1967–1988.

• Price Controls: 1942–1946 during WWII and 1971–1973 during the War in Vietnam. There

were also controls during WWI and the Korean War. However, the former are considered

not to have been effective, whereas the latter were accompanied by subsidies for investment

in mining.

• The Great Depression: 1929–1933.

C Alternative Reduced Form Specifications

C.1 The Timing of Investment

C.1.1 Exogeneity of prices

Copper prices are determined in a world market and it is unlikely that the initiation of a single

project affects that price. We have therefore assumed that price is exogenous. Nevertheless, since

the decision to invest is based on the current price, in other words a project is initiated when

Pt ≥ PH
it , this assumption is tested. We do this in two ways. First, price is instrumented and

second, the major mines are dropped from the sample.

To test the exogeneity assumption, linear probability models using ordinary least squares (OLS)

and instrumental variables (IV) are estimated. The OLS specifications are included because it is

not possible to compare the coefficients from linear probability models to those from probits.

Finally, the instruments for copper price are the prices of lead and pig iron.

Table 8 contains the linear probability regressions. Columns (1) an (2) in that table were

estimated by OLS whereas (3) and (4) were estimated by IV. Although the magnitudes of the OLS

coefficients are different from those in Table 3, the significance of those coefficients is similar to
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that in column (6) of the baseline table. With the IV specifications, some of the coefficients loose

significance. However, an examination of the coefficients of the uncertainty measure, SIGLNP,

shows that the OLS and IV coefficients, as well as their t statistics, are virtually identical.

In the lower half of Table 8, all p–values fail to reject the null of exogenous prices. Furthermore,

the first–stage F statistics indicate that the instruments are not weak. Finally, the overidentifying

restrictions in column (3) are not rejected. Failure to reject the overidentifying restrictions is

evidence that, in addition to price, the other explanatory variables are also exogenous.

Although the over identifying restrictions are not rejected, a second check is performed. In

particular, it was noted that lead is often a byproduct of copper mining. For this reason, the price

of lead could have an independent impact on investment that does not work through copper price.

An exactly identified equation was therefore estimated that uses only the price of pig iron as an

instrument. A comparison of this specification, which appears in column (4), to the over identified

equation in column (3) shows that the estimates are very similar.

Despite the fact that formal exogeneity tests fail to reject the null, one might still worry that

announcing a large new project might influence the world price and, to a lesser extent, price

volatility. Since it is unlikely that initiation of a small mine affects price, a specification was

estimated in which the major mines were dropped from the sample. Comparing column (2) in

Table 8, which contains the results from the smaller sample, to the full sample specification in

column (1) shows that the coefficients and their t statistics are virtually identical.

There is therefore no evidence that endogeneity is a problem. In particular, failure to account

for the endogeneity of price cannot explain the positive relationship between investment and

uncertainty.

C.1.2 Regional variation

In this subsection, we experiment further with regional variation. Table 9 contains probit regres-

sions with regional fixed effects. The inclusion of fixed effects allows the constant to vary, which

means that the means of the explanatory variables can differ by region. The two specifications

are distinguished by the measure of uncertainty that is used. Finally, Michigan is the base case.

The last row in Table 9 contains p–values that test the null of no regional variation. The large

p–values imply that significant regional differences in timing, at least of this form, are absent.41

However, it is not surprising that the region in which a property is located is not a significant

determinant of the timing of investment in that property, since the property’s location does not

change during the period in which the investor is making a decision.

In what follows, specifications without regional variation are estimated. In addition, since the

log pseudolikelihoods in Table 3 are greater for specifications with CMO compared to those with

CMOR, the national cost–lowering variable is used in the timing equations. However, none of the

41 We also experimented with specifications that allow some of the coefficients and the variance to vary by region
but found no significant differences.
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results depend on this choice. Finally, to save on space, in all subsequent tables only specifications

with the second measure of uncertainty, the coefficient of variation of ln(P), are shown. As with

the other simplifications, this one does not affect the conclusions that can be drawn.42

C.1.3 Mine characteristics

Costs, and therefore price thresholds and investment decisions, vary by mine. However, as those

characteristics do not change during the decision period, they are not expected to affect the timing

of investment. This hypothesis is now examined.

Table 10 contains probit regressions with mine characteristics. Columns (1)–(4) are specifica-

tions with a single set of dummy variables (for mining method, ore type, deposit type, and the

presence of byproducts, respectively), whereas the final column is a specification with all of the

characteristics.

The p–values in the last row of the table test the null that the characteristics do not affect

the timing of investment. The very large p–values indicate that the null is never rejected. More

importantly, the inclusion of the mine characteristics does not affect the sign or significance of the

investment/uncertainty relationship.

C.1.4 Technological breakthroughs

The next extension of the baseline model introduces technical change. For this extension, dummy

variables that equal zero prior to the year of the adoption of each new technology and one thereafter

are included. The underlying assumption is that, once a technology has been introduced, it is

available to investors. The dummy variables control for the introduction of open–pit mining, froth

flotation, and solvent extraction electrowinning.

Table 11 contains probit regressions with technological dummies. The first three columns are

specifications with a single technology variable, whereas the fourth has all three. The p–values at

the bottom of the table indicate that the technology variables are not significant determinants of

timing. This result is expected since, for most mines, those variables do not change during the

decision period. Moreover, as with the mine characteristics, inclusion of the technology variables

does not affect the sign or significance of the investment/uncertainty relationship.

C.1.5 Aggregate economic events

In an unregulated market, conditional on price and the growth in industrial production, aggregate

economic conditions such as wars and cartels should have no effect on the timing of investment.

However, this need not be the case if there are are nonmarket policies such as investment subsidies

or output restrictions in place during the periods of interest. This possibility is now investigated.

42 Additional regressions with CMOR and SIGPDP are available from the authors upon request.
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Table 12 contains probit regressions with dummy variables for aggregate economic events. As

with Table 10, the first four columns are specifications with a single aggregate variable (for cartels,

wars, the Great Depression, and copper price controls, respectively), whereas the last specification

includes all of the events. The p–values in the last row of the table show that only wars and price

controls had significant effects on timing, and both effects were positive.

It is not surprising that wars encouraged investment in copper mines. Indeed, due to war

efforts, the demand for copper rose more steeply than aggregate economic activity. Moreover, in

war time it was not uncommon to subsidize mining investments. On the other hand, the positive

effect of price controls is counterintuitive. However, when both war and price control variables are

included in the equation, the latter looses its significance. The loss of significance occurs because

price control years are a subset of war years.

Although some aggregate variables have significant effects on the timing of investment, the table

shows that the sign and significance of the investment/uncertainty relationship is not affected by

those inclusions.

C.1.6 Time varying risk premia

With the results reported thus far, the risk premium is assumed to be constant. In this subsec-

tion, that assumption is relaxed. Unfortunately, due to data constraints this involves dropping

approximately one third of the mines.

Ideally, one would have data on firm or an aggregate of copper industry stock returns and

calculate firm or industry betas.43 However, using firm or industry stock returns would mean

dropping an even larger fraction of the sample. Lacking these data, We consider an alternative

measure of risk, the risk that is associated with holding copper metal. A copper beta is then

calculated as COV(RP,RM)/VAR(RM), where RP is the percentage change in real copper price

and RM is the real return (capital gains plus dividends) on the S&P Composite Index. In order

to capture entire business cycles, betas are calculated using data from the previous ten years.44

The last row of Table 1 contains summary statistics for the calculated betas, which average

0.36 and range between -0.47 and 1.21. Probit regressions with time varying risk premia can

be found in Table 13. The first column is the baseline specification estimated on the smaller

sample, the measure of systematic risk (BETA) is added in the second column, and the risk free

rate (RINR) is added in the third. The table shows that, with both of the latter specifications,

the coefficient of beta is negative, indicating that higher systematic risk discourages investment.

However, that coefficient is never significant. Finally, as before, the coefficient of the measure of

total risk, SIGLNP, is positive and significant in all three specifications.

43 Beta is the the measure of systematic risk that is associated with holding an asset.
44 Five years would capture most business cycles. However, betas calculated from five years of data were very

unstable.
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C.1.7 Alternative proxies

Due to data limitations, proxies for real interest rates and mining costs have been used. This

section investigates the sensitivity of the investment/uncertainty relationship to the choice of

proxies.

Interest rate data were not available for the entire sample and, rather than drop 20% of the

observations, a proxy — the rate of growth of industrial production — was used. We argued that

this variable should be negatively correlated with real interest rates, a hypothesis that is confirmed

by the data. We now experiment with specifications that include real interest rates (RINR) and

are estimated on the smaller sample.

The first three columns in Table 14 assess the effect of including RINR. The first column is

the baseline specification estimated on the smaller sample. That column shows that, although the

significance of the explanatory variables drops relative to the full sample, all of the explanatory

variables remain significant at 5%. The proxy (GRINDP) is replaced by RINR in column two,

whereas both variables are included in column three. The table shows that a rise in real inter-

est rates delays investment, as expected. Moreover, when RINR is included, the significance of

GRINDP drops. However, the inclusion of the interest rate variable does not affect either the sign

or the significance of the investment/uncertainty relationship.

It is more difficult to assess sensitivity to the cost proxy, cumulative mine openings (CMO). In

particular, We have no direct measurement of costs, even for a smaller sample.45 However, it is

possible to experiment with other proxies. Specifically, we hypothesize that major mine openings

might have a stronger cost–lowering effect than total openings. To test this hypothesis, in columns

(4) and (5) of of Table 14, CMO is replaced with new variables: cumulative openings of major mines

in the U.S. (CMMO) and cumulative openings of major mines in the region (CMMOR). The table

shows that, although the coefficient of CMMO is significant and that of CMMOR is marginally

so, as before, these substitutions do not affect the findings concerning the uncertainty/investment

relationship.

C.1.8 Serial correlation

The possibility of serial correlation of the errors for a given mine was modeled by including random

effects in the probit model.46 However, there are other ways of modeling serial correlation. In

particular, We experimented with clustering the standard errors by mine, which is a more general

model of correlation. It is not clear, however, that increased generality of this form should be

preferred. Indeed, although one can treat the data as a panel, the t dimension is not a year (e.g.,

1865). Instead it is time before a decision was made (i.e., -3, -2, -1, or 0) where 0 can refer to

45 Although it would be possible to obtain mining wage rates and the prices of mining machinery and equipment,
the data for those variables would be available for a small fraction of the years and even smaller fraction of the
mines.

46 See subsection 5.1 for a discussion of the random effects model.
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many different calendar years.

When clustering by mine was introduced, the standard errors became smaller, and the evidence

in favor of the basic conclusion became even stronger.47

C.1.9 Other specifications

In addition to varying σ, the measure of uncertainty,48 numerous other assessments of sensitivity

were performed. For example, instead of being zero, α, the rate of growth of price, was allowed

to vary over time. Specifically, a variable ALPHAt, was constructed as the average of ∆P/P over

the previous three years. When lagged values of this variable were included in regressions, its

coefficient was never significant and its inclusion did not affect the basic conclusion.

We also experimented with other cost lowering variables. In particular, we hypothesized that

recent investment might have a stronger effect on costs than investment in the more distant past.

To test this hypothesis, variables that equal the number of mines that opened in the U.S. or the

region in the previous m years were constructed for different values of m. However, none of those

experiments affected the sign or significance of investment/uncertainty relationship.

C.2 The Price Thresholds

C.2.1 Regional variation

The first sensitivity exercise assesses potential regional variation in the thresholds. Table 15

contains specifications with regional fixed effects and, as in Table 9, Michigan is the base case and

the two equations are distinguished by the measure of uncertainty that is used. To save on space,

in this and subsequent tables, the selection equation is not shown. However, there is evidence of

selectivity in all threshold equations.

The table shows that, in contrast to the timing of investment, there is significant regional

variation in the price thresholds. In particular, relative to Michigan, not only is the investment

trigger price lower in all other regions but also it falls as one moves west. These differences in

thresholds are probably due to regional cost differences. The role of uncertainty, however, does

not change when regional effects are introduced.

C.2.2 Mine characteristics

Although there are regional differences in trigger prices, it is unlikely that the regions are different

per se. Instead it is more likely that the mines in different regions have distinctive characteristics.

In this subsection, We dig deeper into why the regions differ. In particular, threshold equations

with mine characteristics instead of regional fixed effects are presented.

47 Smaller standard errors usually imply negative correlation within clusters.
48 See section 4.2.
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Table 16 contains those regressions. The base case for ore type is native, for deposit type

is other, and for mining method is underground, which essentially implies that Michigan is the

relevant comparison. As with Table 10, columns (1)–(4) show specifications with a single set of

dummy variables, whereas column (5) includes all of the characteristics. In contrast to Table 10,

however, many coefficients of the characteristics are now significant.

Columns (2) and (3) show that thresholds are lower when ores are not native and when deposits

are not of the type found on the upper peninsula, which explains why thresholds are higher in

Michigan. In addition, not surprisingly, thresholds are lower when a property contains valuable

byproducts. Finally, thresholds do not differ between underground and strip mines.

When all of the characteristics are included in a single equation, only the coefficients of the

dummies for sulfide deposits and byproducts remain significant. This reduction in significance is

perhaps due to multicollinearty. For example, the ores of most porphyry deposits are sulfide.

Finally, as with the previous sensitivity assessments, the inclusion of mine characteristics does

not change the sign or significance of the investment/uncertainty relationship.

C.2.3 Technological breakthroughs

The next sensitivity assessment involves the technology dummies that control for the introduction

of open pit mining, froth flotation, and solvent extraction electrowinning (SX-EW). Table 17,

which contains those regressions, shows that, in contrast to the timing equations in Table 11, the

introduction of open pit mining and froth flotation lowered the thresholds significantly. On the

other hand the introduction of SX-EW did not.49 The latter finding is probably due to the

fact that the principal effect of the SX-EW technology was to raise output, through its ability

to process waste dumps, not investment. As before, the investment/uncertainty relationship is

unchanged.

C.2.4 Aggregate economic events

For the final sensitivity exercise, economic events that influence the economy or the copper industry

are assessed. As with the timing equation, it is not clear if, conditional on price and the growth

in industrial production, those events should affect the thresholds. Furthermore, if they do, the

direction of the effects is not obvious.

The specifications with dummy variables for aggregate events can be found in Table 18. As

with Table 12, the first four columns of 18 contain a single dummy variable (for copper cartels,

wars, the great depression, and copper price controls, respectively), whereas column (5) assesses

all four jointly.

The table shows that only the coefficient of the cartel variable is significant at conventional

levels, both by itself and when combined with the other aggregate variables. Moreover, the

49 A regression with all of the technology variables is not shown because the maximum likelihood algorithm did
not converge.
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coefficient of that variable is negative, implying that cartels encourage investment. This might at

first seem counterintuitive. However, although copper cartels were able to raise prices, they were

not very successful at limiting output. For example, Herfindahl (1959, p. 74) states that, during

the short–lived Secrétain cartel, “the high price of copper induced an increase in world copper

output of about a sixth from 1887 to 1888. Most of this increase came from the United States.”

In fact, the history of the copper industry provides many lessons in how not to manage a cartel.

Finally, as with all of the other threshold sensitivity exercises, the coefficients of the uncertainty

measure remain negative and highly significant here.

D Graph of Thresholds

Figure 5 displays the exit trigger PL along with the entry trigger PH plotted against the volatility

σ2 for the average values of k, w, and `. One can see that, at the average model-implied costs, the

range PH − PL remains constant over most values of σ2.
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Figure 5: Structural Model: The Relationship Between the Entry Trigger PH (solid

line), Exit Trigger PL (dashed line) and the Volatility σ2 at the average model-implied

values of the costs (k = 1.81, w = 0.60, ` = −0.97)
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Table 8: Exogeneity Tests

Dependent variable: Dummy = 1 when mine opens

(1) (2)a (3) (4)b

OLS OLS IV IV

RPRICE .0027 .0028 .0013 .0019

(2.9) (2.9) (1.0) (1.1)

σ̂ (SIGLNP) .023 .025 .022 .022

(3.3) (3.4) (3.2) (3.2)

GRINDP .0048 .0050 .0045 .0046

(3.3) (3.3) (3.1) (3.1)

CMO .0005 .0005 .0003 .0004

(2.4) (2.3) (0.9) (1.1)

CONST -.056 -0.68 .061 .009

(-0.7) (-0.8) (0.5) (0.1)

Observations 1356 1220 1356 1356

p–value exogeneity

Wu–Hausman 0.15 0.30

Durbin 0.15 0.30

1st stage F statistic 621 581

p–value overidentifying restrictions

Hansen–Sargan 0.55

Basman 0.55

Linear probability models

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

t–statistics in parentheses

Robust standard errors

Instruments: other commodity prices
a Major mines dropped
b Exactly identified
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Table 9: Probit Regressions with Regional Fixed Effects

Dependent variable: Dummy = 1 when mine opens

(1) (2)

RPRICE .0056 .0050

(2.2) (1.9)

σ̂ (SIGLNP) .077

(3.6)

σ̂ (SIGPDP) .016

(3.5)

GRINDP .015 .016

(3.2) (3.3)

CMOR .0024 .0026

(2.2) (2.4)

EAST .113 .144

(0.7) (0.9)

MICH .014 .037

(0.1) (0.3)

WEST .169 .180

(1.2) (1.2)

ALAS .150 .202

(0.7) (0.9)

CONST -1.43 -1.43

(-7.1) (-7.0)

p–value 0.78 0.69

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

Base case is the Southwest

H0 for p–value: No regional differences

1356 observations
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Table 10: Probit Regressions with Mine Characteristics

Dependent variable: Dummy = 1 when mine opens

(1) (2) (3) (4) (5)

METHOD ORE DEP BYP ALL

RPRICE .0087 .0083 .0082 .0085 .0083

(2.9) (2.7) (2.5) (2.8) (2.5)

σ̂ (SIGLNP) .069 .071 .077 .070 .077

(3.2) (3.4) (3.3) (3.3) (3.3)

GRINDP .016 .016 .017 .016 .017

(3.4) (3.3) (3.4) (3.3) (2.2)

CMO .0018 .0017 .0015 .0016 .0017

(2.5) (2.5) (2.1) (2.5) (2.2)

CONST -1.68 -1.64 -1.40 -1.65 -1.41

(-6.2) (-5.8) (-4.5) (-5.8) (-4.5)

Mine characteristics:

Mining method yes no no no yes

Ore type no yes no no yes

Deposit type no no yes no yes

Byproducts no no no yes yes

p–value 0.49 0.89 0.25 0.87 0.72

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

H0 for p–value: Mine characteristics are not significant

1356 observations
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Table 11: Probit Regressions with Technological Breakthroughs

Dependent variable: Dummy = 1 when mine opens

(1) (2) (3) (4)

OPEN FROTH SXEW ALL

RPRICE .0085 .0085 .0082 .0079

(2.7) (2.8) (2.6) (2.4)

σ̂ (SIGLNP) .070 .071 .071 .072

(3.3) (3.2) (3.4) (3.3)

GRINDP .016 .016 .016 .016

(3.3) (3.3) (3.3) (3.3)

CMO .0015 .0015 .0015 .0013

(1.5) (1.6) (2.0) (1.1)

CONST -1.66 -1.66 -1.63 -1.60

(-5.6) (-5.8) (-5.8) (-5.0)

Technological breakthroughs:

Open pit yes no no yes

Froth flotation no yes no yes

SX-EW no no yes yes

p–value 0.92 0.93 0.69 0.98

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

H0 for p–value: Technological breakthroughs are not significant

1356 observations
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Table 12: Probit Regressions with Aggregate Economic Events

Dependent variable: Dummy = 1 when mine opens

(1) (2) (3) (4) (5)

CARTEL WAR GDEP PC ALL

RPRICE .0080 .0056 .0084 .0077 .0043

(2.7) (1.8) (2.8) (2.6) (1.3)

σ̂ (SIGLNP) .067 .075 .072 .074 .075

(3.1) (3.5) (3.4) (3.5) (3.5)

GRINDP .016 .012 .015 .013 .012

(3.3) (2.6) (3.3) (3.2) (2.4)

CMO .0013 .0004 .0016 .0013 .0001

(1.9) (0.6) (2.4) (1.9) (0.1)

CONST -1.61 -1.38 -1.66 -1.58 -1.25

(-5.9) (-4.9) (-6.1) (-5.8) (-4.3)

Aggregate Variables:

Cartels yes no no no yes

Wars no yes no no yes

Great Depression no no yes no yes

Price Controls no no no yes yes

p–value 0.20 0.00 0.63 0.03 0.00

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

H0 for p–value: Aggregate variables are not significant

1356 observations
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Table 13: Probit Regressions with Time Varying Betas

Dependent variable: Dummy = 1 when mine opens

(1) (2) (3)

RPRICE .0118 .0132 .0103

(2.4) (2.6) (1.9)

σ̂ (SIGLNP) .053 .061 .054

(2.1) (2.3) (2.0)

GRINDP (.0073 .0078 .0015

(1.4) (1.5) (0.2)

CMO .0018 .0021 .0014

(2.3) (2.5) (1.5)

BETA -.163 -.163

(-1.2) (-1.1)

RINR -.025

(-1.7)

CONST -1.77 -1.85 -1.45

(-5.1) (-5.3) (-3.5)

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

878 observations
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Table 14: Probit Regressions with Alternative Proxies

Dependent variable: Dummy = 1 when mine opens

(1) (2) (3) (4) (5)

RINR RINR MAJOR MAJOR

National Regional

RPRICE .0071 .0019 .0036 .0066 .0044

(2.0) (0.5) (0.9) (2.7) (2.1)

σ̂ (SIGLNP) .062 .054 .057 .078 .077

(2.8) (2.4) (2.5) (3.7) (3.7)

GRINDP .013 .008 .015 .014

(2.5) (1.5) (3.2) (3.1)

RINR -0.034 -0.030

(-3.7) (-3.1)

CMO .0014 .0001 .0004

(2.0) (0.2) (0.5)

CMMO .012

(2.3)

CMMOR .010

(1.6)

CONST -1.53 -0.83 -1.02 -1.46 -1.26

(-5.2) (-2.6) (-3.0) (-6.9) (-7.4)

Number of obs. 1096 1096 1096 1356 1356

Explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Population averaged parameters from a random effects probit

z–statistics in parentheses

Robust standard errors

CMMO is the cumulative number of major mine openings

CMMOR is the cumulative number of major mine openings in the region
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Table 15: Thresholds with Regional Fixed Effects

Dependent variable: PH

(1) (2)

σ̂ (SIGLNP) -1.49

(-2.5)

σ̂ (SIGPDP) -.242

(-1.9)

GRINDP -.502 -.505

(-3.8) (-3.7)

CMOR -.236 -.239

(-8.9) (-8.6)

EAST -12.0 -12.2

(-2.5) (-2.5)

SWEST -17.8 -18.5

(-5.5) (-5.5)

WEST -27.5 -27.9

(-6.4) (-6.1)

ALAS -38.8 -39.9

(-7.1) (-7.5)

CONST 120.6 120.5

(42) (39)

PH is the upper price threshold

PH and explanatory variables lagged 2 years

σ̂ is forecast volatility based on volatility measure in ()

Correction for sample selection bias

Maximum likelihood estimates

z–statistics in parentheses

Robust standard errors

Base case is the Michigan

339 observations for threshold equation

1356 observations for selection equation
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Table 16: Thresholds with Mine Characteristics

Dependent variable: PH

(1) (2) (3) (4) (5)

METHOD ORE DEP BYP ALL

σ̂ (SIGLNP) -3.28 -2.29 -2.61 -2.47 -1.94

(-5.4) (-3.7) (-4.3) (-4.1) (-3.2)

GRINDP -.417 -.451 -.416 -.461 -.428

(-3.0) (-3.1) (-2.8) (-3.2) (-3.0)

CMOR -.225 -.212 -.223 -.225 -.212

(-7.5) (-9.0) (-8.3) (-9.3) (-7.8)

STRIP -3.65 2.37

(-1.1) (0.7)

SUL -13.9 -9.74

(-5.4) (-3.1)

OX -4.87 -1.58

(-1.9) (-0.6)

POR -10.5 -3.94

(-3.5) (-1.1)

PVR -11.4 -4.79

(-4.6) (-1.7)

MS -5.37 4.66

(-1.2) (1.0)

BYP -12.9 -6.87

(-5.0) (-2.3)

CONST 117.4 120.4 114.7 120.0 115.4

(40) (42) (38) (40) (36)

PH is the upper price threshold

PH and explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Correction for sample selection bias

Maximum likelihood estimates

z–statistics in parentheses

Robust standard errors

Base case is a Michigan type deposit (UND, NAT, OTH)

339 observations for threshold equation, 1356 for selection equa-

tion
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Table 17: Thresholds with Technological Breakthroughs

Dependent variable: PH

(1) (2) (3)

OPEN FROTH SXEW

σ̂ (SIGLNP) -2.67 -3.27 -3.37

(-4.2) (-5.4) (-5,1)

GRINDP -.556 -.462 -.518

(-3.9) (-3.1) (-3.3)

CMOR -.115 -.133 -.235

(-3.1) (-3.3) (-7.0)

OPEN -18.5

(-4.7)

FROTH -15.4

(-3.7)

SX-EW -2.25

(-0.3)

CONST 115.3 115.1 118.4

(42) (39) (40)

PH is the upper price threshold

PH and explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Correction for sample selection bias

Maximum likelihood estimates

z–statistics in parentheses

Robust standard errors

339 observations for threshold equation, 1356 for selection equa-

tion
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Table 18: Thresholds with Aggregate Economic Events

Dependent variable: PH

(1) (2) (3) (4) (5)

CARTEL WAR DEP PC ALL

σ̂ (SIGLNP) -2.98 -3.74 -3.26 -3.34 -3.84

(-4.8) (-6.0) (-5.2) (-5.3) (-5.6)

GRINDP -.527 -.555 -.533 -.504 -.554

(-3.3) (-3.5) (-3.4) (-3.2) (-3.2)

CMOR -.214 -.240 -.237 -.234 -.196

(-7.8) (-7.7) (-8.9) (-8.1) (-5.5)

CARTEL -12.6 -12.7

(-4.0) (-3.6)

WAR -2.74 (-3.07

(-0.7) (-0.8)

DEPRESSION -10.0 -7.29

(-1.3) (-0.8)

CONTROLS -14.4 -11,7

(-1.8) (-1.3)

CONST 118.9 120.9 118.3 118.1 124.4

(40) (36) (40) (40) (35)

PH is the upper price threshold

PH and explanatory variables lagged 2 years

σ̂ is forecast volatility based on the volatility measure in ()

Correction for sample selection bias

Maximum likelihood estimates

z–statistics in parentheses

Robust standard errors

339 observations for threshold equation, 1356 for selection equation
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