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1. Introduction

Policy learning refers to designing an optimal policy for a target population using data from
a source population. As such, it is inherently a transfer problem, which involves transferring
features learned about one population to another. For example, suppose that a policymaker
(PM) has access to experimental data from a source population. From the experiment data,
PM can estimate the treatment effect for the source population, and wants to obtain an optimal
treatment assignment for a target population. Of course, the relevance of the source population
data to the treatment assignment problem in a different population depends on how much of
the experiment setting is “transferable” to the target population. One extreme setting, often
considered in the literature, is that both populations represent the same population, regarding
the data as generated from the target population. However, such an assumption is not plausible
in actual policy settings.

It is not uncommon in the literature of randomized experiments that the causal effects
of a certain program estimated to be statistically significant disappear when the program is
expanded to a wider population with an increased budget (Duflo (2004), Allcott (2015),
Muralidharan and Niehaus (2017), Wang and Yang (2021)). In summary, the experiment
results can lose their relevance for a PM targeting a wider population, if the source and target
populations are very different.

A departure from the single-population assumption, acknowledging the issue of transfer
from the source to target population, opens up a wide range of possibilities. In this paper,
we consider a policy learning setting under budget constraints. In this setting, we assume
transferability between target and source populations, where the conditional distributions of
potential outcomes and total costs given covariates are transferable between the source and
target populations but the program participation incentives are not. In other words, the source
and target populations may exhibit different take-up behaviors. This could be, for example,
because the experiments are administered by the NGO workers who have high stakes at the
success of the program and put extra efforts to raise the take-up rate, whereas the program is
administered by the civil servants in the government with less stakes in the program’s success.
In this case, the take-up behaviors between the two populations can be widely different.

In our setting, the PM is subject to a budget constraint. The size of the budget depends
on the take-up rate of the subjects. Hence, the optimal decision would take this into account
and consider both the take-up rate and the contribution of treatment to the social objective
function. However, we consider a setting where the policy has not been implemented in the
population. In this setting, it is too strong an assumption in practice that the PM knows the

participation incentives on the target population. Thus, we relax this assumption, allowing the
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PM to be ignorant of the actual take-up rate in the population. In formulating the policy design
problem, we take a maximin approach where the PM aims to find a policy that maximizes the
minimum social objective across a range of participation incentives.

First, we specify that the participation decisions are made through a generalized Roy model
where each subject decides to participate in the program based on the net expected payoff
differences. However, the PM does not know the individual payoff functions, except that they
belong to a certain class of utility functions. The size of the class is regulated through a bound
on the maximal variations in the marginal utilities. Then, we find that the optimal policy design
problem in such a setting can be reformulated as one under the almost first order stochastic
dominance constraint of Leshno and Levy (2002). From this reformulation, we obtain an
explicit form of an optimal policy. This policy is intuitive: it focuses on those that are expected
to fully comply and prioritize those with highest returns to the treatment that is defined to
be the ratio of the conditional treatment effect to the conditional total costs given covariates.
Then, we turn to an estimator of the optimal policy using the combined sample of the source
population and the target population, and establishes its consistency.

The optimal policy design has received attention in the literature. Manski (2004) proposed
an optimal policy that maximizes the empirical welfare and suggested using maximal regret
as its performance measure. Kitagawa and Tetenov (2018) established finite sample upper
and lower bounds for the finite sample maximal regret for the empirical welfare maximizer.
Athey and Wager (2021) considered a setting where the source population data are generated
from an observational setting, and proposed an optimal policy motivated from methods of
semiparametric efficiency. A recent work by Chernozhukov, Lee, Rosen, and Sun (2025) proposes
an upper confidence bound (UCB) approach in policy learning that explicitly incorporates
the estimation error as part of the policy objective function. This literature incorporates a
constrained optimization problem by considering the restricted set of policy functions.

There is a line of research which explicitly considers budget constraints. Bhattacharya and
Dupas (2012) considered a problem of welfare maximizing treatment assignment and derived
an optimal solution under budget constraints. More recently, Sun, Munro, Kalashnov, Du,
and Wager (2025) considered a setting where the PM does not know exactly the costs. Sun
(2025) studied an empirical welfare maximization problem under budget constraints. The
policy learning problem under the budget constraint is mathematically similar to that under
fairness considerations (Viviano and Bradic (2024)). Our paper is distinct from this literature,
by allowing the target population to have different participation incentives from the source
population.

IThere is related literature on external validity on randomized experiment results. See, e.g., Hotz, Imbens, and
Mortimer (2005),Gechter (2024), and Gechter and Meager (2022).



The paper is organized as follows. In the next section, we present the policy learning
problem, making explicit the transferability condition. Toward the optimal policy solution, we
first provide a reformulation of the policy design problem using almost first order stochastic
dominance constraints, and then present an optimal policy at the population level. In this
section, we also propose an estimated optimal policy using the combined sample from the
target and source populations, and establish its consistency. We provide numerical illustration
of the optimal policy using simulations. In Section 3, we discuss some extensions. In Section

4, we conclude. The mathematical proofs are found in the appendix.

2. Optimal Treatment Assignments with Compliance Guarantee

2.1. The Policy Objectives

In this section, we introduce the basic policy learning set-up. In the target population, each
individual is endowed with the potential outcomes Y (1) and Y (0), where Y (1) indicates the
potential outcome of the treated state and Y (0) that of the control state. To formally model
the incentives, we assume that each individual is endowed with the utility u(y, v), when the
potential outcome of the treatment and the other payoff states are realized to be y and v. Each
individual observes the payoff state V as a random vector, but does not observe the potential
outcome of the treatment at the time of deciding on the participation in the treatment program.
Throughout the paper, we assume that the payoff state V taking values in a space V includes a

covariate vector X so that
V=(X,V_y),

where V_, denotes the payoff states other than X. We assume that the PM observes X but does
not observe V_y. Thus, the random utility of an agent with the outcome y is given by

u(y, V).

When offered treatment, an individual decides whether to accept it or not by comparing the
expected utilities between the treatment state and control state. Thus, the acceptance decision

can be written as
a(V;u) == 1{E[u(Y(1),V) [ V] = E[u(Y(0),V) | V]},

where the conditional expectation given V reflects that the individual observes V', knows their
own utility function u, and has rational expectations.

A policy by the PM is a map: g : X — {0, 1}, which assigns each covariate group X = x to
the treatment group (g(x) = 1) or the control group (g(x) = 0). In considering the outcome,
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we assume that the PM adopts a social objective function, q(y,x) : Y x X — R, so that for each
realized outcome, the PM deems the outcome y more desirable for group x if q(y, x) is higher.
We will discuss some examples of g later. Thus, under the policy g, the PM focuses on the
following aggregate quantity:

2.1) S(g;w) =E[q(¥(0).X)(1— g(X)a(V;w)) +q(¥ (1), X)g()a(V;u) .

The expected social outcome not only depends on the policy g but also the take-up decision a
by individuals.
As for the choice of g, we provide two examples as follows:

(WEIGHTED AVERAGE): q(y,x) = qu (y) =y - w(x).
(SUFFICIENTARIANISM): q(¥,x) = qs(y) :=min{y, y*} - w(x).

The choice q(y) = q,,(y) says that the PM considers the treatment a success if the weighted
average of the outcomes for those treated is high. On the other hand, by choosing q(y) =
qs(y), the PM takes as a measure of success the average outcome below a threshold y*. This
measure reflects sufficientarianism which suggests that the PM should not be concerned about
the outcome ordering among those groups with high enough outcomes (see Alcantud, Mariotti,
and Veneziani (2022) and Bossert, Cato, and Kamaga (2023)).2

The policy is subject to a budget constraint. We consider two kinds of costs, C, and C;, where
the random variable C,, represents the cost incurred by sending out an offer of treatment and
C; the cost incurred by treating the individual. The budget constraint is written as:

(2.2) E[Cog(X)]+E[Crg(X)a(V;u)] < B,

where B denotes the budget allowed for the program. Thus, the main goal of PM in the target

population is to maximize the expected outcome in (2.1) subject to the budget constraint (2.2).
However, the PM cannot implement this policy learning problem (even at the population

level), primarily because the PM does not know the participation incentives of the target

population. We consider a maximin approach, where the PM maximizes the expected outcome

for the least favorable group with participation incentives that minimizes the expected outcome.
Let us formalize the PM’s problem at the population level. Define

2.3) O(g:u) = { S(g;u), if (2.2) is satisfied,

—o0, otherwise.

2We are grateful to Gordon Anderson for introducing the notion of sufficientarianism and the relevant literature
to us.



6

Then, the PM considers the optimal policy that maximizes the minimum welfare over g € G
subject to the budget constraint:
2.4) sup inf Q(g; u),

g2€G uel
where U/ denotes the class of utility functions that we explain in more detail later. Here, we
consider G to be the collection of (measurable) maps from X to {0,1}. Then, a policy g* is
optimal if it satisfies the following:

(2.5) inf Q(g*;u) = sup inf Q(g; u).
uel g€G uel

The problem appears complex, because u is involved both in the objective function and the
budget constraint. Later, we will show how we can reformulate the problem into a tractable
one.

It is worth noting that the PM does not consider the random utility u(y, V') as part of the PM’s
objective function, except in the participation decisions by the individuals. We have several
reasons to formulate the PM’s decision problem this way. First, it may not be obvious for the PM
to come up with a social utility function out of the subjective utilities in a way that is transparent
and socially agreeable. Second, the decision problem of the PM has a normative nature,
whereas the participation decisions by individuals are of positive one. Hence, the socially
agreeable objective of the PM does not need to conform with the aggregation of the individual
utilities. This is precisely the case of the PM adopting the sufficientarian objective. In this case,
the individuals with outcome y greater than y* may still prefer a higher outcome. However,
the PM is not concerned about such preference, once the outcome is above a threshold y*.
Furthermore, as noted by Alcantud, Mariotti, and Veneziani (2022), choosing an appropriate
threshold y* is a task far from obvious, because heterogeneous utilities are hard to compare
between people. Third, in our framework, the PM does not have information on the utilities,
nor any data to make inference on them. In this setting, focusing on the people with lowest
utilities may trivialize the policy learning problem, while considering a weighted average of
utilities is operationally tantamount to assuming the knowledge of the distribution of the
utilities. Thus we do not find either of these approaches practically attractive as compared
to taking the PM’s target quantity simply as a known function of the outcome that can be
measured.

2.2. Transfer from the Source Population

Our main departure from most existing literature of policy learning is that we consider an

ex ante policy learning setting where the target population has not yet implemented the policy.
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As a consequence, we do not observe the outcomes from the policy in the target population.
However, there is a source population which has experimented with the policy and the outcome
data from the policy is available. Thus, the policy learning problem is summarized as one in
which the PM searches for an optimal policy for the target population using data generated
from the source population.

We assume that the source population and the target population are different, and hence
not all the information on the experiment setting in the source population is relevant to the
PM. Here, we clarify the available data for the PM regarding the source population and the
transferable aspects of the experiment setting.

We define the conditional CDF of the potential outcomes and the conditional average total
cost (CATC) as follows: ford =0, 1,

Fi(y|x)=P{Y(d)<y|X=x}and c(x)=E[C,+C; | X =x], x€X.

We assume that (7(:),c(-)) is identified from the source population and transferable to the
target population.

Assumption 2.1 (Identification and Transferability). For each x € X, (F,(: | x), Fo(- | x),c(x))
is identified in the source population and identical between the source and target populations.

It is well known that the identification of the conditional CDFs, F;, can be obtained under
the unconfoundedness condition: (Y(1),Y(0)) I D | X. This condition excludes partial
compliance in the experiment in the source population. We will later discuss extension of our
framework to the case with partial compliance. The assumption also requires a transferability
condition that requires (F; (- | x), Fy(- | x), c(x)) to remain the same as we move from the source
to target population. However, we assume that all other aspects of the source population are
not transferable to the target population. For example, the distribution of the covariates can
be different between the two populations, and hence the average treatment effect (ATE) is not
transferable between the populations.

A major challenge for the PM in this setting is that the incentives for participating in the
treatment program to differ across the two populations. The difference arises naturally as
participation decisions can involve various social, cultural factors that are distinct across different
populations. Due to the difference in incentives for treatment participation, we cannot use, for
example, the propensity scores estimated from the source population to predict individuals’
participation behavior in the target population.®

3However, the propensity score from the source population can still be useful for identifying 7(x) which is assumed
to be transferable to the target population.
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2.3. Stochastic-Dominance Characterization of Policy Learning

Given the budget constraint setting, an exclusive focus on the brute-force worst possible
scenario can lead to a highly conservative decision, if the collection of probabilities P and
the class of utility functions &/ under consideration is overly large. For example, the maximin
solution can be trivial, such as treating no one, if there is any slightest harm expected for a
certain group that extremely sensitive to any possible harm from the treatment. To alleviate
this issue of conservativeness, we introduce additional, mild conditions for the probabilities and
utilities so that the optimal solution is reasonable, admits an explicit form, and is practically
implementable using the data from the source population.

2.3.1. Compliance Guarantee. First, we place restrictions on P by introducing the following
independence condition.

Assumption 2.2 (Utilities and Costs). For the utilities and costs in the target population, we
assume that the following conditions are satisfied.

@ (Y(1),Y(0)) L V.y | X.

(ii) (Co,Cp) L Vx| X.

Assumption 2.2(i) says that the potential outcomes are dependent with unobservable component
of the payoff only through the covariates X. This seems reasonable when the effectiveness of
the treatment outcomes are less related to the idiosyncratic component of individual characteristics
and are transferable to any individual with the same covariate group. An extreme example
would be the effect of medical treatment which is scientifically verified so that it is deemed
transferable to a wide population of the same observable category. In this case, the difference
in outcome for the same policy across different populations is likely to be from the different
participation incentives. Condition (ii) says that the offer cost and treatment cost are not
related to the unobserved idiosyncratic payoff component given the observed covariates. These
costs are most likely to arise from the cost of administration and implementation of the treatment
from the PM side. (Note that the individual cost in participating the program is subsumed in
the payoff U (hence, U is a net payoff), and not included in C,, C;.) Hence, this condition
seems plausible in practice.

Under Assumption 2.2, we show that the policy learning problem (2.4) can reformulated
as one under compliance guarantee. To formalize this result, it is convenient to introduce the

following definition: for map f : X — R,

Q(g; f) =E[g(X)f (X)].



We define the conditional average offer cost and the conditional average treatment cost:
co(x)=E[C, | X =x]and c;(x) =E[C; | X = x].

Recall that a, denotes the individual’s participation (or acceptance) rule which depends on the
expected payoff from the treatment. Define the propensity score,

m,(x) =E[a(V;u) | X =x],
and the conditional average treatment effect (CATE) (in terms of q(Y(d),X)):
T(x) =E[q(Y(1),X)—q(Y(0),X) | X = x].
Conditional independence in Assumption 2.2 allows us to rewrite (2.3) as:

Q(g;7m,), ifQ(g;co)+Q(g;crm,)<B
2.6) Qg1 7.0) = (g;7m,) (g .o) (g;crmy)

—00, otherwise,
where 7(x) denotes CATE as defined above and ¢ = (c,,cy). (Here, 1 denotes the constant
function taking value number one.) The policy learning problem thus becomes:
2.7) sup inf Qz(g,u; 7,c).

g€g ueu
Our budget constraint in (2.6) suggests that we focus only on the “least favorable” subjects

who are at the margin in a certain sense. We say that a policy is harmless, if the distribution
of the outcome after treatment stochastically dominates the distribution of the outcome before
the treatment. Then the least favorable subjects are those who participates in the program if
and only if the program is harmless for them. So, a program that guarantees full compliance
is one that is harmless.

2.3.2. Almost Stochastic Dominance. The solution to (2.7) can be conservative depending
on the class of utility functions that are allowed in the target population. Define  to be the
set of all non-decreasing, differentiable functions. For each € € (0,1], let*

H, = {h eH: sup R(t)< (2%6) inf h’(t)}.

te[—M,M] te[—M,M]

Then, when € = 0, we take #,, to be the set of non-decreasing functions on [—M, M ]. We can
think of the class H, as a set in which the random utility u(-, V) realizes. The class H, entails
a restriction on how the marginal random utility varies from a low outcome to high outcome.

*Without imposing restrictions on the space of utility functions, the maximin approach that we propose later
becomes trivial, because the worst scenario is achieved by considering strictly decreasing utility functions for
an individual X = x with 7(x) > 0. Then, no one has an incentive to participate and the optimal treatment
assignment is to deny treatment to everybody.
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The restriction gets stronger when € is larger, so that the classes #,, € € [0, 1], are nested: if
€, <€y, thenH, CH, .

The connection between 7, and stochastic dominance constraints is established by Leshno
and Levy (2002) and plays a crucial role in our setting. Let Fy(: | x) and F,(- | x) denote the
conditional CDF of control and treated outcomes, respectively, given covariate x € X'. Define
the degree of AFOSD at x as:

J [F:(y 1) —Foly | )] dy

, if denominator is positive,

5(x) =1 J IF1(y | x)—Fo(y | x)ldy

0, otherwise.

\
According to Leshno and Levy (2002), we have the equivalence:

(2.8) 6(x)<e < E[h(Y(1))| X =x]=E[h(Y(0)) | X =x]forall h € H,.
For € € [0,1/2], we define
Xez{xe)(:5(x)Se}.

The set X, consists of the covariate groups such that the degree of AFOSD is bounded by e.
We introduce the following assumption on ¢/ on the utility functions in the target population.
Let I/ be the class of real valued measurable functions on ) x V.

Assumption 2.3. For the target population, there exists € € [0,1/2] such that
U={uell:u(-,v) €H, forallveV}.

This assumption says that I/ has to be flexible enough, so that each individual in the target
population has random utility that can take the value of any element in 7, for some €. We
assume that the PM knows this constant €. This assumption leads to simplification in the
budget constraint in (2.6).

Lemma 2.1. Suppose that Assumptions 2.3 holds. Then,
irelz,foB(g’ u;T,c) = 125 Qp(g,u;7,(co +¢1,0)), e={(co,cr).

Note that Qz(g, u; 7, (co+cy, 0)) involves the acceptance rule a only in the objective function,
not in the budget constraint. This is because budget violation outweighs all benefits, and hence
the budget constraint a policy has to adhere to is the one under full compliance, which involves
co + cr. Hence, there is no differentiating between c, and c; in this setting. We define

c=co+cy.
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We can interpret c(x) as the group level marginal treatment cost when the group x complies

with the treatment. Thus, the PM chooses a policy among those that ensures full compliance.
The following lemma shows that the budget-constrained expected outcome also takes a

simple form that involves the potential outcomes and costs only through 7(x) and 6(x).

Lemma 2.2. Suppose that Assumptions 2.1-2.3 hold for some € € [0,1/2]. Suppose further that
a policy g satisfies that E[c(X)g(X)] < B. Then,

inf Qs 17, €) = [ g(OTCOLX € 2} |+ E[ g (O7(01{r(X) < 0} |.

This lemma plays a crucial role for characterizing the optimal treatment assignment. It
shows that the adversarial welfare is completely characterized by T and 6 only.

2.4. Optimal Policy

2.4.1. An Explicit Form. Our main result is to provide an explicit characterization of the
optimal solution g* in (2.5). We now describe a solution to (2.5). Define

7(x)
c(x)’

Thus p(x) is the CATE relative to the cost. We can view it as the inverse of Cost-Effectiveness-

p(x) =

Ratio (CER) used in the health care evaluations.” We call p(x) the Returns-to-Treatment
(RTT). The result below provides an explicit form of the optimal policy in the target population
problem in (2.5).

Theorem 2.1. Suppose that Assumptions 2.1-2.3 hold. Then the following defines an optimal
policy g* to (2.5):

1 ifxeX and p(x)> k¥,
g'(x)=<r ifxe€X and p(x)=k*,
0 otherwise,

where the threshold k* is defined as
k* = inf{k >0: E[I{X ex,px)> k}c(X)] < B},
while r is determined as follows: if k* >0, then r solves
E[l{XeX,p(X)=k"}c(X)]r =B —E[I{X eX,pX)> k*}c(X)],

and if k* = 0, then r can be chosen as O.

>There is a debate about the use of ICER (Incremental Cost-Effectiveness-Ratio in health care policies.)



12

The threshold k* represents the minimum threshold k such that when we assign to treatment
any group with x such that the RTT is above k*, the total cost does not exceed the budget B.
The optimal policy simply suggests that we treat any group x such that the RTT is above this
threshold and does not treat the group x if the RTT is below the threshold.

The solution to (2.5) is not necessarily unique. In the characterization of Lemma 2.2, since
assigning g(x) = 1 for 7(x) > 0 generates adversarial welfare only if x € X, if the budget
constraint is not binding for the solution given by Theorem 2.1, we can set g(x) = 1 for some
x ¢ X_with 7(x) > 0 such that the budget constraint is still met. While this will attain the same
adversarial welfare, it may attain higher actual welfare, as we could be overly conservative.
We could think about add covariates that are not in X, but has a high treatment to cost ratio.

2.4.2. Consistent Estimation. Given the solution form in Theorem 2.1, we consider the sample
analogue of the optimal policy using data from the target and source population. For the data
requirements on the target population, we observe the random sample of the covariate vectors
Xy, X

eey nr*

Assumption 2.4 (Random Sample of Covariates in the Target Population). X;, i = 1,...,ny,
are i.i.d. random vectors from the target population.

As for the source population, we assume that we can construct estimators of F;, F,, T and
¢, denoted by F,, 13"0, 7 and ¢ respectively, based on i.i.d. data (X;, Yi,Di)?il, where ngy denotes
the size of the random sample from the source population. For these estimators, we make the
following high level assumption.

Assumption 2.5 (Uniform Convergence). (i) There exists a > 0 such that as ng — o0,

sup |F4(y | x)—Fy(y | x)| = 0,(n5®), ford = 0,1,

xeX,yey
sup|?(x) — 7(x)| = O,(ng*) and
XEX
sup|é(x) — c(x)| = O, (ng*).
XEX

(ii) ¢ < ¢(X) < ¢ for some ¢ > 0 with probability one.
(iii) Conditioned on it being positive, the random variable p(X) admits a density that is
bounded above on its support.

Assumption 2.5(iv) eliminates the necessity of a tie breaking rule. An optimal policy is then
g (x)=1{xe X, p(x) >k},
where k* is as defined in Theorem 2.1. We write

6(x; Fy, Fy) = 6(x),
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making the dependence of 6(x) on F, and F; explicit. Since all the objects in g are not known,
we use a plug-in estimator of g. Define

/’f,’ens = {x cEX: 5(x;ﬁ1,ﬁo) < ens};

which is an estimator of the set X, _for some sequence €, — €.
ng

First, we construct the estimated threshold k is given by

(2.9) kzinf{kzgns:niil{xie&ns,ﬁ(xipk}SB},

i=1
where &, is bounded sequence which converges to zero at a certain rate that we specify later.
Define

8(x) = l{x € )Qens,,é(x) > IAc}
The following theorem establishes the consistency of k.

Theorem 2.2. Suppose that Assumption 2.5 holds. Suppose further that conditional on p(X) > 0,
the random variable p(X) has continuous density that is bounded above zero. Let £, be a bounded
sequence such that ngéis — 00 for some a > 0 in Assumption 2.5 (ii), and let €, — € be
monotone decreasing satisfying ng& TZIS €, — €| — o0. Then,

k —, k%,
as ng,ny — Q.
The following theorem establishes the consistency of the estimated policy &.

Theorem 2.3. Suppose that the conditions of Theorem 2.2 holds. Then,

f 1{x : §(x) # g"(x)}dPx(x) =, O,
as ng,ny — 0.

The theorem says that the probability of the covariate groups on which the estimated policy
and the true optimal policy differing goes to zero as n — oo.

2.4.3. Practical Implementation. The procedure described in Section 2.4.2 can be viewed as
constructing a set C,, defined as

C, = {x € /XA’ens cp(x)> Ens},
with the goal of satisfying the following two properties: as ng — 00,

(2.10) P{xex.:p(x)>¢,/2} CC,)—1,
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and
(2.11) PXe{xex:p(x)>&, /2}nC,)—0.

In words, C,, includes valid covariates with large enough RTT, and excludes invalid covariates
appropriately. Given these properties, an empirical rule can be obtained by restricting treatment
offers to covariates in C,, with the RTT cutoff estimated accordingly.

The tuning parameters £, and €, play crucial roles. For each covariate x, when the
conditional CDFs are not identical across treatment and control, 6(x) is defined as

f (A 10 —Foly | )] dy

o(x)=

J

flﬂ(y | x)—=Fo(y | x)ldy

and it is possible for both the denominator here and &(x) itself to be arbitrarily small. This
means 5(x, F,, F,;) may fail to be uniformly consistent across x despite uniform consistency of
the conditional CDF estimates. By enforcing that covariates need to satisfy p(x) = &, to be
offered treatment, we impose a positive lower bound on the denominator. If this lower bound
goes to O at a slow enough rate, 5(x,13“1,13“0) will be uniformly consistent across x, and can
detect AFOSD violations of size €, —e€ given that this does not go to zero too quickly, and leads
to (2.10) and (2.11).
Furthermore, if budget B is such that

E[B—1(X € X,)1(p(X)>0)]>0 but E[B—1(X € x,)1(p(X)>0)]<0,

and there is a point mass at p(X) = 0, then

fll{x eX. :p(x)>0}—1{x e X.:p(x)>0}|dPy(x)

may not converge to O in probability, as we could be offering treatment to covariates with
zero conditional average treatment effect, and budget violation may not go to 0 in probability.
This can be dealt with by again requiring that 6(x) > &, for x to be considered for treatment
offer: this is the same as only offering treatment to x which displays strong evidence of positive
effects since £, will be of a slow rate than p.

Based on Theorem 2.2, a feasible choice of tuning parameters of the form

log ne \*/? logne \/*
ens=e+c1( 8 S) and 5n5=c2( & S)
ng ng

for some positive constants c¢; and c,.
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Remark 2.1. If p(X) has no point mass in a neighborhood around 0, we should be able to simply
set £, = 0 and set a faster rate for €, — € such as

4_a
logng ) 5
ng '

€n =e+c1(

While the empirical rule may mistakenly offer treatments to covariates which violate the AFOSD
constraint due to the denominator in 6(x), which is ||F;(+:|x) — Fo(:|x)|,,, being too close to 0,
such x must have p(x) close to 0, and overall that proportion goes to 0 in probability.

Similarly, if the budget constraint is known to be binding, we can also set &,,_ to be any arbitrary
non-negative constant smaller than k*, including 0, and set a faster rate for €, — €. Even though
C,, may contain covariates x ¢ X. due to denominator in 6(x) being close to 0, such x would

never be considered for treatment offer anyway due to the budget constraint.

2.5. Confidence Band Approaches

The key goal of constructing C,, is to ensure that the conditions (2.10) and (2.11) are satisfied.
An alternative approach instead defines

C,= {x €X:L(x)<eplx)> Ens}.
where L(x) is a lower bound of a uniform confidence band for §(x). Two common methods
of constructing L(x) are:

(1) Bootstrap supremum: Draw bootstrap samples for sup,. ;- £us |3 (x)—0o6 (x)| to estimate
its g,, quantile (where q,, — 1), denoted §,,. Then define

L(x) = 6(x)—4,.

(2) Studentized bootstrap supremum: Estimate pointwise standard errors &(x) via bootstrap,
then estimate the g, quantile (where g, — 1) of

5(x)—6(x)

sup (5'(,)(‘)

Xip (0> Eng

denoted g,,, and define
L(x) = §(x)—§,6(x)

To ensure the validity of either method, it is likely necessary to restrict the supremum to the
set {x : p(x) > &, }. Unless one assumes that the denominator of 50,

12 1) = Fo(- [ )]l »
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is uniformly bounded away from zero for all x € X, uniform consistency of 5(x) may fail.
As a result, even if the budget constraint is binding and p(X) has no point mass near zero,
taking bootstrap suprema over the entire covariate space can behave poorly. The restriction to
covariates with sufficiently large estimated RTT, enforced through 6(x) > &, , helps control
this issue.

2.6. Numerical Illustration

We illustrate how the optimal policy works, by comparing its performance with that from a
naive policy. The naive policy offers treatment to those with the highest Returns-to-Treatment
(RTT). It mirrors the approach of Sun et al. (2024), who assume full uptake once treatment
is offered. On the other hand, the optimal policy considers the individual’s take-up decision,
based on the AFOSD (called AFOSD-based policy here). This rule first checks whether the
treatment outcome from each potential recipient satisfies the approximate first-order stochastic
dominance (AFOSD) criterion up to a tolerance level €. Then, eligible agents are then
ranked by RTT. This policy takes into account the possibility that some individuals may reject
the offer of treatment.

We consider different variance configurations for the conditional distribution of the potential
outcomes given the covariates. It is not easy to induce highly risk-averse individuals to participate
in the treatment, when the treatment is highly effective on average, yet can carry some negative
net utilities with a positive probability. Thus, risk-averse people have different incentives
to participate in the treatment, if the treatment outcomes differ in their variances, yielding

different compliance behaviors.

2.6.1. Data Generating Process. First, we generate covariates and control outcomes as
X; ~ Uniform(0,1) and Y;(0) ~ Uniform(1.2,1.4)

which are independent. Conditional on X; = x, treated outcome Y;(1) has the mean: m,(x) =
1.8 4+ 0.05x, but for their variances, we consider two specifications:

2
Model A: O'iA(x) = [0.7 cosz(%)] and Model B: O'iB(X) =[0.7 cos®(x — 1)]2.

In Model A, the CATE and the conditional variance of Y;(1) align in the sense that the conditional
variance declines with x while CATE increases in x. In Model B, the CATE and the conditional
variance of stochastic dominance moves in the opposite direction: In both cases, conditional on
X; = x, the treated outcomes in both models are normally distributed, but truncated 20, (x)
around their respective means.
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RTT against covariate value Stochastic Dominance Violations
11 F

Model A
Model B

09

0.8

p(x)
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FIGURE 1. Returns-to-Treatment and Stochastic Dominance Violation

Note: The left figure shows the cost Returns-to-Treatment (RTT) against the values of covariates, whereas the
right figure plots AFOSD violation against covariates. In our design, the RTT increases with x in both models A
and B. However, due to the different behavior of the conditional variance of Y (1) given X = x between models,
the violation of the approximate first order stochastic dominance increases with x in Model B whereas it decreases
with x in Model A.

Next, conditional on X, treatment costs C; are drawn from Uniform(0.5—0.5x,1.5—0.5x),
so that E[C; | X; =x]=1—0.5x.
Agents evaluate outcomes using expected utility from a CRRA utility function

(y—0.45)t7i—1
h(y; ) = =—
—Yi

where each y; ~ Uniform(1.1,4) is drawn independently of all other variables in both models.

Consequently, an agent with (x,y) will accept a treatment offer if and only if

E[h(Y;(1),v)IX; = x,y; = y] = E[h(Y;(0), v )IX; = x,y; = 7].

Both models A and B share the same conditional means for treatment effect and cost. As x
increases, the conditional average treatment effect rises, while expected cost falls, so the RTT
is increasing in x (see Figure 1(A)).

However, the models differ in how the conditional variance behaves, resulting in opposite
patterns of stochastic dominance violation. This leads to a threshold x such that §(x) < €4
if and only if x > x?. By contrast, CATE and stochastic dominance do not align in model B, as
conditional variance of Y;(1) increases with x, and 6(x) < €, if and only if x < x? for some
threshold x” (see Figure 1(b)).

We set the tolerance level at €,,, = 0.04. Based on the characterization of 6 in Section
2, H
x such that 6(x) < €, will accept treatment. On the other hand, when 6(x) > €ger>

contains every h(y;y) for y in the support of y;. As a result, any individual with

€target

whether an individual accepts treatment depends on his utility function. Since higher y implies
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FIGURE 2. AFOSD Violation and Treatment Acceptance

Note: In each plot, the green region indicates covariates x for which 6(x) < €qe- Agents in the yellow region
have 5(x) > €rgee ut are not risk averse enough to reject treatment. This is in contrast to agents in the red
region who have 0(x) > €, and are highly risk averse, so that they would reject treatment if offered.

a greater risk aversion and because the conditional variance of Y (1) grows in x, a portion of
the population, characterized by high x and y, will in fact reject treatment. The rest, despite
having 6(x) > € g, Still accepts treatment if offered. Figure 2 illustrates these three regions
in the (x, y) plane for each model, where:

e Green region contains those with §(x) < €4
e Yellow region contains those with 6(x) > e but would still accept treatment.
e The red region contains those with 6(x) > €, and would actually reject treatment.

2.6.2. Comparing Population Solutions. We fix budget at B = 0.1, a level too small to offer
treatment to everyone even though p(x) > 0 for all x. Under the naive rule, we simply set
a cutoff k

so that offering treatments to all agents with p(x) > k exactly exhausts

naive naive

the budget. By contrast, our AFOSD rule requires two simultaneous conditions for an offer at
covariate value x: i) a sufficiently high p(x) > kuposp, and ii) a small enough AFOSD violation,
i.e. 0(X) < €parger- The extent to which these two rules agree depend on the joint distribution
of potential outcomes.

Model A

In Model A, high RTT is associated with low AFOSD violation, so for low budgets, both rules
target the same subpopulation with high x. As shown in Figure 3, at budget equals 0.1, the
naive and AFOSD rules align perfectly, offering treatment to exactly the same set. Because
treatment offers are based solely on x, both rules result in vertical slices in the (x,y) plane.

1.0
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FIGURE 3. Naive and AFOSD policy under model A
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FIGURE 4. Welfare and wastage against budget under model A

As the budget increases, the policies diverge. The naive rule ignores stochastic dominance
violations and continues expanding offers until all x are included, regardless of compliance.
The AFOSD rule, however, stops expanding once all covariates satisfying 5(x) < €qagec (i-€.
x = x‘;‘) are included; it excludes the remaining x values that violate the AFOSD constraint.
This difference is visible in Figure 4, which shows welfare and budget wastage as functions
of budget. At higher budgets, AFOSD treats a strict subset of those offered by the naive rule,
resulting in lower total welfare but zero wastage, since every dollar goes to an agent who

accepts.
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FIGURE 5. Naive and AFOSD policy under model NA

Model B

Model B presents a stark contrast. Here, higher RTT is correlated with greater stochastic
dominance violation. The naive policy starts at the maximum x = 1 and expand leftwards
until the budget is depleted as before, whereas the AFOSD decision rule starts expanding from
x = x” instead of x = 1, thereby reserving offers for those covariate values where risk-averse
agents are guaranteed to accept.

Figure 5 highlights a key weakness of the naive policy: by targeting the highest RTT values
without regard to compliance in model B, it ends up offering treatment to many agents who
will refuse. For example, at x = 1.0, roughly 75 percent of individuals possess a y large enough
to reject treatment. Although the naive rule maximizes allocation based on RTT, this translates
poorly into actual welfare gains once refusal is accounted for.

In contrast, the AFOSD rule confines offer to the region where 6(x) < €. While this
constraint may exclude some high RTT individuals, every treatment offered under AFOSD rule
is taken up, ensuring that each allocation fully contributes to welfare. Consequently, AFOSD
rule yields more reliable welfare improvements by aligning allocation decisions with agents’
true willingness to accept treatment.

Figure 6(a) demonstrates that, in model B, targeting only individuals with a compliance
guarantee is advantageous at low to medium budget levels. As the budget increases, the
number of agents offered treatment under the AFOSD rule rises, leveling off at a budget of
approximately 0.44, once all agents who satisfy the AFOSD criterion are included. Up to this
threshold, the compliance guarantee property of AFOSD results in higher welfare than the naive
rule. Beyond this point, however, only the naive rule continues to expand the offer set, until
reaching budget level of around 0.75, at which stage everyone is offered treatment and welfare
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FIGURE 6. Welfare and wastage against budget under model B

plateaus. Due to this difference in targeting, the naive rule ultimately overtakes AFOSD at high
budget levels, capturing additional high RTT agents who may not always accept treatment.

This pattern is mirrored in Figure 6(b), which breaks down wastage. Under the naive policy,
a nontrivial share of spending goes to agents who reject treatment, and is especially high for
low budget levels, whereas AFOSD incurs zero wasted expenditure.

2.6.3. With Estimation. To assess finite-sample performance, we estimate each policy in Figure
3 and 5 corresponding to B = 0.1, and examine how their welfare gap evolves as sample size
increases. The estimation procedure is as follows:
(1) Naive policy estimation
Let
(x)
)

where 7, ¢ are estimates for CATE and conditional mean cost using the Nadaraya Watson

p(x)

estimator. The naive cutoff is then obtained by

]A<naive = Sup{lz 1([3(Xl) Z k)é(Xl)—B Z 0}
k n

i=1

which leads to the estimated naive policy

gnaive(x) = l(ﬁ (X) > ]znaive)

(2) AFOSD policy estimation
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p(x) is defined as above. We also estimate the AFOSD violation using
M 145 A +
%Zj:l[Fl(J’ﬂx)_Fo(J’ﬂx)]
M A A
1 2 [F1 (1) = Foy; 1)

where {y;, -+, yy} is a fine grid of y values in the support of Y. With this, we obtain

5(x) =

lower bound L(x) of a uniform confidence band for &(x) using studentized bootstrap as
outlined in Section 2.5, and solve for the threshold as

A IR A
karosp = S‘;P{EZ 1(p(X;) = k)]-(L(Xi) < Etarget)c(Xi)_B = 0}

i=1

and the policy estimate is

gA-AFOSD(x) = 1(PA(X) > ]AcAFOSD)]-(z'(X) < etarget)'

For each sample size n € {1000, 2000, 3000,4000}, we proceed as follows:

(a) Draw a dataset of size n and then estimate both the naive and AFOSD rules.
This is repeated 200 times. In each of these 200 replications, the AFOSD lower-
bound threshold is constructed using the studentized bootstrap (method 3) with
g,=1—0.5n74.

(b) For each replication r = 1,---,200, and each covariate value x in our grid, we

record whether the naive policy gr(lazve

(x) and the AFOSD policy gAFOSD offers
treatment.
(c) For each point on a fine grid of x values, compute the relative frequency with

which each rule would offer treatment:
200

_ 1 5(r) _
gnaive(x 200 Z {gnawe(x) - 1}

200

_ 1 o
gAFOSD(x) = ﬁ; 1{&(\1:)0513(35) = 1}

These curves represent the “average learned” policies as functions of x.
We then overlay g, ... and Zarosp ON the true population policy boundaries to assess their
convergence.

2.6.4. Policy Estimation Under Model A. Figure 7 shows the average learned policy
for each rule in Model A. At budget equal 0.1, the naive and AFOSD policies coincide
in both theory and practice. At this budget level, since 6(x) < € for all x in the shaded
area, and the lower confidence band lies below 6 with high probability, the estimated
policies depend essentially on only ¢ which tracks p reasonably well.
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2.6.5. Policy Estimation Under Model B. In the left panels of Figure 8, which correspond to
the naive policy estimator, the learned policy closely tracks the true population rule even at
n = 1000. This consistency reflects the fact that ranking by the estimated /(x) mirrors the
ranking by the true p(x), so the cutoff procedure reliably selects the same covariate region
regardless of sample size.

By contrast, for the estimated AFOSD policy to work well in model B, it has to be able to
eliminate points that violate the stochastic dominance constraints, and this is challenging. The
right panels in Figure 8, which correspond to the AFOSD policy estimates, reveal noticeable
discrepancies for n = 1000 and 2000. Although the RTT ranking remains accurate, the one-sided
confidence lower bound L (x) significantly understates the true AFOSD violation &(x), causing
the estimator to offer treatment at x > x. when it should not. As n grows, however, L(x)
converges more tightly to 6(x), and the estimated policy increasingly refrains from offering
treatment beyond the true threshold. This shift is evident in the declining “overshoot” of the
average offer probability and the gradual alignment of its peak with x..

3. Extensions

3.1. Partial Compliance in the Source Population

We have assumed that the source population complied with the program fully, so that the
CATE 7(x) is identified. We can extend our framework to the case where the source population
complies only partially. In this case, we can partially identify CATE 7(x) as an interval, where
the interval consists of local average treatment effects, and use the lower bound instead of
7(x) in our framework.

3.2. Soft Budget Constraints

We have assumed hard budget constraint, where no violation of the budget constraint is
allowed. However, in reality, there might be some flexibility in budget violation. We can
modify the procedure depending on the degree of violation that the PM is willing to tolerate.

4. Concluding Remarks

We consider a policy learning problem under a budget constraint, where the setting of
source population is only partially transferable to the target population. More specifically,
the conditional average treatment effects and the conditional cost functions are transferable,
whereas the participation incentives are not. By using the almost first order stochastic dominance
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of Leshno and Levy (2002), we find an explicit optimal policy, which assigns treatment only to
those with full compliance, with priorities given to those with highest returns to the treatment.
We provide an estimator of the optimal policy and establish its consistency.

5. Appendix: Mathematical Proofs

Proof of Lemma 2.1: If Q(g;c, + c;) > B, then the choice of u which satisfies u(y, V) =1 for
all y, indeed being a member of #_, leads to 7,(X) = 1 with probability 1 because in this case,
the subject is indifferent to the treatment outcomes. Therefore,

Q(g;¢0) +Q(g;¢rm,) = Qg5 ¢0 +¢1) > B.
Budget violation means that welfare under this u is
Qp(g,u;7,¢) = —00 = Qp(g,u; 7,(co + ¢, 0)).
On the other hand, if g satisfies Q(g; ¢y + ¢r) < B, then for any u, we have
Q(g;¢0) +Q(g;crmy,) <Q(g;(co +¢,0),1) < B,

so that

Q(g,u;7,¢) = Q(g; 7m,) = Qp(g, u; 7, (co + ¢1,0)).
The last equality follows because Qz(g,u; 7, c) does not depend on ¢ as long as c satisfies the
budget constraint. In both cases, we have

infQy(g,u; 7, ¢) = inf Qp(g,u; 7, (co + c1, 0)).
|
Proof of Lemma 2.2: First, note that for each x € X, and v = (x,v_,) with some v_, € V_y,

E[u(Y(1), V)|V =v]—E[u(Y(0),V) |V =v]

= J u(y, V)dpy(1)|v(y | v) _J u(y, V)dPY(o)W(y | v)

= vl’relﬁff{f u(y, v )dPyyy (v [ v) —f u(y, v )dPy v (y | V)},

with Py, denotes the regular conditional distribution of Y(d) given V. By Assumptions
2.2(ii) and 2.3(i), the last infimum is bounded from below by

Jnf {ELR(Y(1) [V =v]—E[R(Y(0) |V =v]}

= Inf{E[A(Y(1)) [ X = x]—E[R(Y(0)) | X =x]} = O,
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where the last inequality follows by (2.8). Therefore,
(5.1) n,(x)=1ifxe X..

Suppose that Q(g,c) < B. Observe that for any € € [0,1/2], since the set of linear functions
is in H,, if x is in X, then it has to be that 7(x) > 0. Conversely, if T7(x) < 0, then x ¢ X..
Thus we can decompose welfare as follows:

(5.2)  infQu(g;Tm,) = InfE[g(X)7(X)7,(X)]
= inf E[g ()77, (X)X € X} +g(X)r(X)m, CO17(X) < 0}
+g(X)T(X) 7, (X)X ¢ A, T(X) > 0}].
Now, by (5.1), the last infimum is written as
(53) E[g(X)t()1{X € x.}]
+ lilrelng[g(X)T(X)ﬂu(X)l{T(X) <0} +g(X)TCO T (X)X ¢ X, 7(X) > 0} ].

Let us focus on the infimum in (5.3). We choose ii € U as follows. Suppose that x ¢ X, and
7(x) > 0. By the contrapositive of (2.8), for any x ¢ X, there exists some h, € H, such that

(5.4 E[h,(Y(1)) | X =x] <E[h,(Y(0)) | X =x].
Using this, we define
N {hx(~), if v=_(x,v_,) withx ¢ X and 7(x)>0
ac,v) =
1, otherwise.

This is indeed an element of &/ by Assumption 2.3(ii), since the mapping v — (-, v) is constant
in v_,. Under &, for v = (x,v_,) such that x ¢ X_ and 7(x) > 0, (5.4) implies that

E[a(Y(1),V) |V =v]—=E[i(Y(0),V) |V =V]
=E[h, (Y(1)) |V =v]=E[h(Y(0) |V =V]
=E[h,(Y(1)) [ X = x]—-E[h(Y(0)) [ X = x] <O,
so that 7;(x) = 0. On the other hand, for v = (x, v_,) with 7(x) < 0, we have
E[a(Y(1),V) |V =v]=1=E[a(Y(0),V) |V =v],
and this implies 7;(x) = 1. Consequently, for any u € U, we have
E[ 007 (X)m, (X)1{7(X) < 0} + g(X)7(X)m, () 1{X & &, 7(X) > 0}]

> E[ g(X)T(X)1{r(X) < 0} ]
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= E[g(X)T(X)ﬂa(X)l{T(X) <0} +g(X) T ()X € X, 7(X) > 0}]

where the inequality follows because g and the indicator functions are non-negative while 7 is
negative in the first term, and positive in the second. Therefore, the infimum in (5.3) is equal
to

E[ g(X)T(0)1{X € .} |+ E[ ¢(X)1()1{7(x) < 0} ]
This completes the proof.

Proof of Theorem 2.1: We first consider the case where E[1{X € X_, 7(x) > 0}c(x)] < B. In
this case, setting k* = 0 and r = 0 is equivalent to the policy

gx)=1 <= xe X, t(x)>0.

This maximizes the first term in (5.3), while ensuring the second term, which is non-positive,
is equal to O.
For the other case where E[1{X € X, and 7(X) > 0}c(X)] > B, we have k* > 0. Denote
Xi={x:p(x)>k',x € X}
Xeb ={x:p(x)=k",x e X}
Xl ={x:p(x)<k',x € X},

so that
1{x € X%} p(x) >k"1{x € x°}
l{x S Xeb}p(x) =k*1{x S Xeb}
(5.5) 1{x € X}p(x) <k*1{x € x*}.

Let g be an optimal policy to (2.5), and
B Z2(x), ifxeX,
g(x) = _
0, otherwise.

Observe that
(1) since g satisfies the budget constraint, & must also satisfy the budget constraint since it
does not treat anymore than g; and
(2) if 7(x) <0, then x ¢ X_, so that g(x) = 0;
So that by (5.3), g attains the same adverse welfare as . Now, define
X={x:xeX,gx)=1}
)?eb ={x:xeX,g(x)e(0,1)}
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X={x:xe€X,§(x)=0}
We compare the difference in resulting mean outcomes
E[§(X)H{X € X }1(X)] - E[g"(X) X € A }71(X)]
by the decomposition
E[1{X e Z*na’}Q1—r)tX)]+E[1{X e 22 nx‘}7(X)]
—E[1{X e X' nx}(1-gX))TX) ]|+ E[1{X e X' n X"} (X)—r)T(X)]
+E[1{X € X' nx}g()t(X)]—E[1{X € X nx*}7(X)]
—rE[1{X e X' nx’}r(X)]
<KE[1{X e 2 nx’}(1—r)cX)]+KE[1{X € £ n X }c(X)]
—KE[1{X e X nx*}(1—gXNc(X) ]+ KE[1{X € > n A’} (g(X) — r)c(X)]
+KE[1{X € 2 nx}g(X)c(X) ] —kKE[1{X € X nx}c(X)]
—rkE[1{X € X nx’}c(X)]
= k*(E[g(X)c(X)]—E[g"(X)c(X)]) <0,

where the first inequality follows from (5.5), and the second inequality uses the fact that g
satisfies the budget constraint and g* meets the budget constraint exactly, and that k* > 0 in
this case. This implies

E[ZCOUX € X }1(X)] <E[g ()X € A }r(X)],

so that g* is optimal. W

Lemma 5.1. Under Assumption 2.5, for bounded positive &,, such that ny® = 0(5 i),

sup |5(x;13'1,13“0)— 5(X§F1:Fo)| = Op(igznga),

x:t(x)>&,

as ng — 0Q.

Proof: Denote
A(y | x)=F,(y | x)—Fy(y | x), and
Aly | x)=F(y | x)=Fo(y | x).

We can write

Sup |5(X2ﬁ1,ﬁ'0)_5(x2F1,F0)|

x:t(x)>&,
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[A 101{A [x)>0}dy  [Aly [0)1{A(y |x)>0}dy
" et [TAG 10|dy - [1AGy [)ldy
- w JAG oAy 10 >0kdy  [AQ [01{A(y | x)> 0}dy
xT(0>E, [|AG 1 x)|dy [1A(y [ x)ldy
. [ A 101{Ay |x) >0} = Al [ 0)1{A(y [ x)> 0}dy
x:T()>E, [1A(y [ x)ldy
1
‘xf&l}iJ ALl )|dy “TIaG 1oy |
v sup gngln (A 10-a0 101{AG 10> o}dy‘

1
(5.6) + sup —

x:t(x)>E,%n

J Ay 10)(H{AW 10> 0} —1{aly |x) > 0})dy‘

where second inequality is due to

M

€n<T(X)=f Fo(yIX)—Fl(yIX)dySJ |A(y | x)Idy.

—-M -M

Since outcomes are bounded, the first term in (5.6) is bounded above by

1 1
[1AG 120)|dy f|A(y | x)|dy
sup |[1A(y %) —

sup 2M

x:t(x)>&,

2M x:7(x)>&,
€ X:T%gggnf|A(y | x)|dy
< 2M fsupxeXyey|A(y | X)—A(y | X)|dy
G inf JIAG Iy = sup [AGy1x)-Aly | x)|dy

x:t(x)>&,
4aM?  O,(ng*) _
< —o = 0p(£;715)-
€ &n—0p(ng )~
The second term in (5.6) is bounded by

sup —f|A(y 1X)—AQy | 0)|dy < 22

g sup  |A(y [x)— Ay | x)| =0,(&,'n5°).
x:7(x)>E,Sn

n x,y:7(x)>E,
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The last term in (5.6) is bounded by

sup JIA(y | )l 1(Ay | x)>0)—1(A(y [ x) > 0)|dy

x:t(x)2ET

= sup JIA(J/ | )I{Ay | x)=A(y | x) = A(y | x) > 0}dy

x:t(x)2EL

+ sup JIA(}' | )1{0= A(y [ x) > A(y | x) = Ay [ x)}dy

x:t(x)=E1

<4M sup |A(y | x)—A(y | x)|dy = 0,(ng").

XEX,y€Y

Thus overall it is Op( ;Zn;“). ]

Lemma 5.2. Under Assumption 2.5, for sequences €, — €, A, — 0 and bounded positive &, such
that n3&>A,, — oo, the event

{x EX, 5 17(x)> En} C {x € PQEH cT(x) > §n} C {x € X, 4z, :T(x)> En}

occurs with probability approaching 1.

Proof: Denote the complement of a set S in the probability space by S¢. Since
P((ANE)S(BNE)S(DNE)=PH{ANE)N(BNE)}U{BNE)N(DNE)}=2)
=P{(ANE)N(B°UE)U{(BNE)N(D°UE)} =©)
=P((ANENBY)U(BNEND) =)
=1—P((ANENB)U(BNEND") # Q)
>1—-P(ANENB*#@)—P(BNEND" # @),
we can write
P({x €EX, ;5 ,7(x)> §n} c {x € /ﬁn, T(x) > En} - {x €EX, 13,7T(x)> En})
>1 —P({x €X, 5 N )?ecn, T7(x) > En} #* @) —P({x € é@en NXS T(x) > En} * @)
=1 —P{5(x;F1,FO) <e,—A,,6(x;F,E))>e€, forsome x with t(x)> En}
—P{5(x;F1,F0) >e, +A,6(x;F,F))<e, forsome x with t(x)> in}

> 1—2P{ sup |5(x;13“1,13*0)—6(x;F1,F0)| > An} — 1, as ng — 00,

x:t(x)>&,

where the last line uses Lemma 5.1. &



32

Lemma 5.3.

nr

iZ1{X el ,p(X)>k}c(X)——Zl{X € X}1{p(X) > k}e(X)| —

nr s nr i3

sup
k=&,

as np,ng — 0Q.

Proof: We write

P{ sup
k=&,

< P(sup niz 1{X, € X, }1{p(X,) >k} —1{p(X,) > k}| > )
k=&, T =1

nr

LS (1fx, e &, p(X) > k} — 1K, € XIT{p(X) > K}E(X,)

nr i3

)

+P(sup—Z|1{X eX. }—1{x, GX}|1{p(X)>k}>—)

k>£n nT l ]_
Moreover, we have

P(SUP iz 1{x; e X }H1{p(x)) > k} —1{p(X)) > k}| > 2%)

= P(sup ii

1%9)

(X)) >2_)

SP(:;g)ii (P(X)E[k k—l-gz”D>4%)+P(:;£%T21(P(Xi)€[ —é D>%)

nr i3

)+1(p(X)>k>p(X))

1(P(Xi)> k>

+p(suplo ()= pa) > 2

e 2

< p(gg(mn—m( x,) e [k k+ ‘iD > _ggp(p(xi) e [k,k ; %D)

+p(£3p(E E)l(p(X )e [ _%,kD > %—:llgP(p(Xi) < [k— %kD)
+op(1) h

where [, denotes the empirical mean operator, and the second inequality follows as ng&, —
oo. For given € > 0, by bounded density, for large enough n, we have

sup P(p(Xi) € [k k + éD < —, and
k>E, 2 8c

sup P(p(Xi) € [k— %,kD < é

k=&,
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Thus we have

P(sup(En —E)I(P(Xi) = [k’k + %D ~ % a supP(p(Xi) < [k’k+ %D)

k=g, € kzg,
+P(21£(En —E)l(p(Xi) € [k— %,kD > % —:;gp(p(Xi) € [k— %,k]))

< ZP(ZEE(EH —E)1(p(X,) € B) > %)

where B is the set of closed balls in R. By Kosorok (2008), Lemma 9.8 and 9.12, the collection
of function 1(p(X;) € B : B € B) is VC subgraph and thus Glivenko-Cantelli, so this term goes
to 0.

On the other hand, pick A, — 0 monotonically such that ng& iln — 00. Then

k=g, Mr 74

1 & \

nr

1 N €
< P(—Z 1{X, € & nx, and 7(X,) > &,c} > 2—6)
1 <& €
+ P(—Z X, et natnxt, t(X)>&.c)> 2—6)

1 & R €
+P(n—T; Hx, e nxtnx, ., ,7(X)>E.c)> = |

By Lemma 5.2, the sets {x € 235 NX,:1(x)> ing} and {x € )Qen N X«;Mn :7(x) > Eng} are
empty with probability going to 1, so the first two term goes to 0. Secondly, since the sets
X, 1, are nested by monotonicity of €, + A, for there exists n, such that n > n, implies

P(X,€X‘NX, ., )<= and X'NX, ., C XE NAX, i, . Thus
1 < N . €
Pl = > 1(xied nxina, , )1(1(x) > ke) > =
n n n _— C

< p(niTZT: 1(x, e x°n Xenomo) > 2%)

i=1
< p(niT Z{I(Xi S .)C: N X6n0+7tn0) —P(Xi € Xec N Xen0+lno)} > %)

The last probability vanishes by the weak law of large numbers. B
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Proof of Theorem 2.2: To get consistency of k, we show that

(5.7) sup niz 1{X; € X, p(X) > k}e(X)—E[1{X; € X, p(X;) > k*}e(X)]| = 0p(2).
k=&, T =1

Once we have this, if budget constraint is not binding for setting cutoff at k = 0, then for any
1n > 0, we have

r, = B—E[1{X, € X }1{p(X;) > n}c(X)] > 0

and
P(k>n)= p(niz 1{X; € X ,p(X;) > n}e(X,) > B)
T i=1

nr

L X € &, pX) > M}~ B, € X, p(X) > ()]

IA

-r, )
-r)

where the second inequality holds for large enough n such that £, < . On the other hand, if

d

< P| sup
k=&,

—0

nr

LS {x e &, 50X > K} —EI1{X, € X, p(X) > KJe(X,)]

nr i3

budget constraint is binding, then consistency follows from standard arguments of extremum
estimators, with identification condition given by the positive density of p around k* under
Assumption 2.5.

Decomposing LHS in (5.7),

sup iZ 1{x; € &, , p(X,) > k}e(X) —E[1{X; € X }1{p(X,) > k}C(Xi”‘
k=&, "'t T
< sup iZT: I{Xi € )E'en,ﬁ(Xi) > k}é(Xi) - iZT: 1{X; Xe}l{p(Xi) > k}e(X;)
k=&, | Nt T nr i3
+ sup izT: 1{X; € X }1{p(X;) > k}e(X;) — izT: 1{X; € X }1{p(X;) > k}c(X;)
k=&, |t T Mr i3
(5.8) +sup nizT: 1{X; € X }1{p(X;) > k}c(X;) —E[1{X; € X }1{p(X;) > k}c(X;)]|.
k=0 | "t 55

The second term here is 0,(1) by uniform convergence of ¢. As for the third term, note that
2:() ={1(- € X)1(p(-) > k)c(+)} is a bounded decreasing process in k. By Lemma 9.10 in
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Kosorok (2008), it is VC subgraph with index 2, and is therefore Glivenko-Cantelli. This means
the third line goes to 0 in probability. The first term is 0p,(1) by Lemma 5.3. &

Lemma 5.4. Under Assumption 2.5, let €, — € be monotone decreasing, and bounded positive
g, be such that n3&>(e, —e) — 0o. Then,

f l{x EX: l{p(x) >E.,x€ AA’E”} #1{p(x)>¢&,,x e Xe}}dPX(x) —5 0,
as ng — 00.
Proof: The random subset is equal to the union of the following two random subsets:
{x ex.n 2?;1 cp(x)> §n} and {x €XN )ﬁen cp(x)> En}.

We will show that the probability (push-forward) measures of these random subsets of X goes
to 0 in probabiliy.

Observe that p(x) > &, implies 7(x) > c&,, for some ¢ > 0 due to Assumption 2.5. By setting
A, = €,—€, Lemma 5.2 implies that the first set is empty with probability approaching 1. As
for the second random set, let A, — 0 monotonically be such that n§>A, — oo. Then,

PX{x EXN )Qen and p(x) > En}
= PX{x €EXN )?En NS ., and 7(x)> £ng} +PX{x €XN /’%en N&X, 4, and 7(x) > §ng}

< PX{X S XAEH N XECHMH and 7(x) > §ng} + PX{X €AX’N XenMn}’

because €, + A, =2€,—€ — €.

By Lemma 5.2, the first probability in the last line vanishes as ng — o0o. As for the second
term, let E, = X’ N X, ,, . Then, ﬂ:il E, = @. By construction, the sets are nested such that
E, 2 E, 2 E; 2 .... Furthermore, Py (E;) < 1. By continuity of measure,

lim Py {E,} =Px{ﬁEn} =0.
Hence, -
P{P{xexnx,,, }>n/2} -0,
asng — 0. W
Proof of Theorem 2.3: We can write
[1{xeX_,p(x)>k}—1{x e X, p(x)> K"}
<|1{p(x) > k*} —1{p(x) > k}| + 1{p(x) > k*}
< |1H{p(x) >k} —1{p(x) > k}| + 1{p(x) > £,}

1(xeXx)— l(x € é?en)

I(xex)—1(xeX,)
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+ 1{k* < p(x)<E&,}.
For the second term, Lemma 5.4 states that

PX({X p(x)> &, 1(xe X)) # l(x € ??En)}) —, 0.

For the third term, if k* > 0, then the set of x such that p(x) € (k* &, ] is empty for large
enough n. On the other hand if k* = 0, the probability measure goes to 0 due to bounded
density for positive values of p(X;), so that

Py(x:k"<p(x)<&,)—0.
We tackle the first term by breaking into two cases. Suppose k* > 0. Given € > 0, we can
<1, and sup,cy|0(x) — p(x)| < n, implies
Py ({x: 1{p(x) > k*} # 1{p(x) > k}})
< PXi({x 1 p(x)> IAc,p(x) < k*}) +Pxi({x :p(x) < IAc,p(x) > k*})
<Py ({x:0<k*—m;—my <p(x) <k'PH+ Py ({k* <p(x) <k"+mn;+mn,})

choose 1, n, small enough such that if |IA< —k*

<e,

where the last line uses the bounded density of p(X;) for positive values. Assumption 2.5 and
consistency of k imply that

P(Px,({x: 1{p(x) >k} #1{p(x) > k}}) > €)
<P(|k—k*

> 1)+ P(5upl ()= ()] > 1, ) = 0.
XE

For the other case let k* = 0. Given € > 0, we can pick n; > 0 such that on the event
sup, . |p(x) — p(x)| < &, and k < n,, we have for large enough n,

Py ({x: 1{p(x) > k*} # 1{p(x) > k}})
< Py, ({x 1 p(x) > £, p(x) S OP + Py ({x: plx) <k, p(x) > 0})
<SO+P({x:0<px)<m+E D <e,

where in the first inequality we have that k > &, and the last inequality is again due to bounded
density. And so

P(Pxi({x :1{p(x) >k} # l{ﬁ(x) > IAc}}) > e)

< p(suplp(0) —pCI > & ) +P(k < y) = 0

XEX
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