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CHAPTER 1

Recap and limitations of traditional methods

In this chapter, we review the basics of the linear regression model, OLS estimation, the

instrumental variables (IVs) regression model, and 2SLS estimation. In the case of OLS, we

will focus on the effect of many covariates on the variance of the OLS estimator. We consider

a typical scenario where there are some important regressors, which are the main focus of

a study, and there are many potential controls. The econometrician is unsure which of the

controls should be included. Omitting important controls results in biased estimates for the

main parameters when the main regressors and controls are correlated. However, including

too many controls may lead to very imprecise estimates for the main coefficients (excessively

large standard errors). This motivates the need for automatic or machine learning (ML)

methods for selecting of controls.

In the case of IV estimation, we will show that the 2SLS estimator is inconsistent when

there are too many IVs. Since dropping important IVs would reduce the efficiency (precision)

of the 2SLS estimator, we again face the problem of choosing among many potential problems.

We also discuss the difficulties associated with “traditional” hypothesis-testing-based (i.e.

statistical-significance-based) practices of choosing variables, which further motivates the need

for machine-learning-based methods.

1.1. Linear Regression and OLS

The researcher observes data on the dependent variable Yi and the k explanatory variables

Xi,1, . . . , Xi,k. The index i denotes individual observations, and the sample size is n: i =

1, . . . , n. A classical linear regression models the conditional mean of Yi given the regressors:

for all i = 1, . . . , n,

E(Yi | Xi,1, . . . , Xi,k) = β1Xi,1 + . . .+ βkXi,k,

where β1, . . . , βk are the unknown regression coefficients to be estimated. The intercept is

included by allowing one of the regressors to take the value one for all observations (the

corresponding β is the intercept). Equivalently, we can write

Yi = β1Xi,1 + . . .+ βkXi,k + Ui,

where

E(Ui | Xi,1, . . . , Xi,k) = 0.

The residual terms Ui’s capture the effect of unobserved factors on Yi. The classical linear

regression model also assumes that for all i = 1, . . . , n,

E(U2
i | Xi,1, . . . , Xi,k) = σ2,
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1.1. LINEAR REGRESSION AND OLS 5

and that for i ̸= j,

E(UiUj | Xi,1, . . . , Xi,k) = 0.

It is convenient to switch to the matrix notation. Define the n× k matrix of observations

on the regressors:

X =


X1,1 X1,2 . . . X1,k

X2,1 X2,2 . . . X2,k

. . . . . . . . . . . .

Xn,1 Xn,2 . . . Xn,k

 .

Note that the rows of X represent different observations, and the columns represent different

regressors. Thus, the element i, j of X is observation i on the j-th regressor. To rule out

multicollinearity, we assume that the n× k matrix of regressors X has a full column rank:

rank(X) = k.

The last condition implies that there is no exact linear combination among the k columns of

X (the k regressors).

Similarly, let an n× 1 vector Y collect the n observations on the dependent variable:

Y =


Y1

Y2
...

Yn

 ,

and U collect the n observations on the residuals:

U =


U1

U2

...

Un

 .

Lastly, let the k × 1 vector β collect the unknown regression coefficients:

β =


β1

β2
...

βk

 .

Note that Xβ is an n × 1 vector of the predicted values of Y given X. Assuming that

observations are independent, the model can now be stated as

Y = Xβ + U,(1.1.1)

E(U | X) = 0,(1.1.2)

V ar(U | X) = σ2In.(1.1.3)

(See Appendix 1.7 for the definition and properties of the variance of a vector.)
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For an n× 1 vector y, its Euclidean norm is given by

∥y∥ =
√
y21 + . . .+ y2n.

Hence, the squared distance between two n-vectors y and ŷ can be written as

∥y − ŷ∥2 =
n∑

i=1

(yi − ŷi)
2.

Note that for a k × 1 vector b, Xb is n× 1.

The ordinary least squares (OLS) estimator of β is obtained by solving

(1.1.4) min
b∈Rk

∥Y −Xb∥2,

where

∥Y −Xb∥2 =
n∑

i=1

(Yi −Xi,1b1 − . . .−Xi,kbk)
2

=

n∑
i=1

(Yi −X ′
ib)

2,

where Xi is the k × 1 vector collecting the i-th observations on all k regressors:

Xi =


Xi,1

Xi,2

...

Xi,k

 .

Let β̂ denote the OLS estimator, i.e. β̂ is the solution to the least squares problem in (1.1.4).

The first-order condition for the least squares problem is given by

0 =

n∑
i=1

Xi(Yi −X ′
iβ̂)

= X ′(Y −Xβ̂),

which implies that

β̂ = (X ′X)−1X ′Y.

Define the fitted/estimated residuals

Ûi = Yi −X ′
iβ̂,

and collect them into an n× 1 vector

Û =


Û1

Û2

...

Ûn

 .
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We choose the OLS estimator β̂ so that the resulting fitted residuals are orthogonal to the

regressors:

0 = X ′Û

=
n∑

i=1

XiÛi,

which can be seen from the definition of Û and the first-order conditions for the least squares

problem.

The properties of the OLS estimator are summarized below.

Proposition 1.1.1.

(a) Suppose that (1.1.1) and (1.1.2) hold. Then β̂ is unbiased:

E(β̂ | X) = β.

(b) Suppose that (1.1.1)-(1.1.3) hold. Then

V ar(β̂ | X) = σ2(X ′X)−1.

Proof. For part (a),

β̂ = (X ′X)−1X ′Y

= (X ′X)−1X ′(Xβ + U)

= β + (X ′X)−1X ′U,(1.1.5)

where the second equality is by (1.1.1). The result follows since

E(β̂ | X) = β + (X ′X)−1X ′ · E(U | X)(1.1.6)

= β + (X ′X)−1X ′ · 0

= β,

where the second equality holds since E(U | X) = 0 by (1.1.2).

For part (b), by (1.1.5):

V ar(β̂ | X) = V ar(β + (X ′X)−1X ′U | X)

= (X ′X)−1X ′V ar(U | X)X(X ′X)−1

= (X ′X)−1X ′(σ2In)X(X ′X)−1

= σ2(X ′X)−1X ′X(X ′X)−1

= σ2(X ′X)−1,

where the first equality holds by (1.1.5), the second equality holds by the properties of the

variance,1 and the third equality holds by (1.1.3). □

The unbiasedness property in Proposition 1.1.1(a) requires that we control for all regres-

sors included in the model (have non-zero β’s) unless they are orthogonal. To see this, let us

1See Appendix 1.7, Proposition 1.7.1.



1.2. THE EFFECT OF COVARIATES ON THE VARIANCE OF THE OLS ESTIMATOR 8

partition the model as

(1.1.7) Y = X1β1 +X2β2 + U,

where X1 is n× k1 and contains the first k1 columns of X, X2 is n× k2 and contains the last

k2 columns of X, and k1 + k2 = k:

X =
(

X1 X2

)
.

Similarly, we partition

β =

(
β1

β2

)
,

where β1 is k1×1 and β2 is k2×1. We can view X1 as the main regressors and X2 as potential

controls or covariates.

Suppose the researcher estimates β1 by regressing Y only on X1 without including X2 (we

also say without controlling for X2). Let β̃1 denote the resulting estimator:

β̃1 = (X ′
1X1)

−1X ′
1Y

= β1 + (X ′
1X1)

−1X ′
1X2β2 + (X ′

1X1)
−1X ′

1U.

We have:

E
(
β̃1 | X

)
= β1 + (X ′

1X1)
−1X ′

1X2β2,

where (X ′
1X1)

−1X ′
1X2β2 is the bias term. Thus, unless β2 = 0 (there is no need to control for

X2) or X
′
1X2 = 0 (the regressors in X1 are orthogonal, i.e. unrelated, to X2) the estimator β̃1

is biased : it is “contaminated” by the effect of X2 on Y as captured by β2 and the relationship

between X1 and X2.

1.2. The effect of covariates on the variance of the OLS estimator

In practical applications, researchers often have long lists of potential controls X2. See

for example the discussion of the cross-country growth regression model in Belloni and Cher-

nozhukov (2011, Example 3). The cross-country growth regression model is concerned with

estimating the effect of initial conditions (initial GDP) on future growth rates. There is a

long list of additional potential controls related to the initial GDP that may also affect future

growth rates. The list includes variables describing institutions and technological factors, and

overall there are about 60 potential covariates, while the sample size is about 90 observations.

While only a few of the potential covariates may have non-zero coefficients in the true model,

unfortunately, we do not know which ones.

To avoid the omitted variables bias, the researcher may attempt to include all potential

controls. Unfortunately, that results in large variances and standard errors on the main

parameters of interest as we discuss next.

To isolate the variance of one of the elements of the vector β̂, we need the following result.

Proposition 1.2.1. Consider the partitioned regression model (1.1.7).
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(a) The OLS estimator of β1 in the regression of Y against X1 and X2 is given by

β̂1 = (X ′
1M2X1)

−1X ′
1M2Y,

where M2 is an n× n orthogonal projection matrix:2

M2 = In −X2(X
′
2X2)

−1X ′
2.

(b) Suppose that (1.1.1)-(1.1.3) hold. Then,

V ar(β̂1 | X) = σ2(X ′
1M2X1)

−1.

Remark. The result in part (a) of the proposition is important on its own. Some ML

methods that we will be discussing later in the course rely on it. As we discuss below, the

result implies that β̂1 can be obtained by first regressing X1 against the other regressors X2,

saving the residuals; then regressing Y against X2 and saving the residuals, and then lastly

regressing the residuals of Y against the first-step residuals of X1.

Proof. For part (a), first note that by the properties of the projection matrix M2,
3

M2X2 = 0.

Recall that by construction,

(1.2.1) X ′Û = 0,

where

Û = Y −X1β̂1 −X2β̂2.

Re-write the last equation as

Y = X1β̂1 +X2β̂2 + Û .

We now have:

(X ′
1M2X1)

−1X ′
1M2Y = (X ′

1M2X1)
−1X ′

1M2

(
X1β̂1 +X2β̂2 + Û

)
= β̂1 + (X ′

1M2X1)
−1X ′

1M2

(
X2β̂2 + Û

)
= β̂1 + (X ′

1M2X1)
−1X ′

1M2Û .

Next,

M2Û = Û −X2(X
′
2X2)

−1X ′
2Û

= Û ,

where the second equality holds since X ′
2Û = 0 by (1.2.1). Similarly,

X ′
1Û = 0,

and the result in part (a) follows.

2See the discussion of projection matrices in Appendix 1.8.
3See Proposition 1.8.1(c) in Appendix 1.8.
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To prove part (b), note that

β̂1 = β1 + (X ′
1M2X1)

−1X ′
1M2U.

Note also that the projection matrix M2 is symmetric and idempotent:4

M ′
2 = M2,

M2M2 = M2.

Using these facts, we obtain:

V ar(β̂1 | X) = (X ′
1M2X1)

−1X ′
1M2V ar(U | X)M ′

2X1(X
′
1M2X1)

−1

= σ2(X ′
1M2X1)

−1X ′
1M2X1(X

′
1M2X1)

−1

= σ2(X ′
1M2X1)

−1.

□

Let us partition the regression model as follows:

Y = β1X1 +X2β2 + U,

where X1 is n× 1 and contains the observations on the main regressor of interest (the initial

GDP in the cross-country growth regression model), β1 is a scalar coefficient on the main

regressor, and X2 is n× (k − 1) and includes observations on the potential controls. In view

of Proposition 1.2.1(b), the variance of the OLS estimator of β1 while controlling for the

covariates X2 is given by5

V ar(β̂1 | X) =
σ2

X ′
1M2X1

.

Let us discuss the effect of adding more controls into X2, i.e. the expression in the

denominator of V ar(β̂1 | X). Since M2 = M ′
2 and M2M2 = M2,

X ′
1M2X1 = X ′

1M2M2X1 = X ′
1M

′
2M2X1 = X̃ ′

1X̃1,

where

X̃1 = M2X1 = X1 −X2(X
′
2X2)

−1X ′
2X1 = X1 −X2γ̂,

and γ̂ is the OLS coefficient from the regression of X1 against X2. Hence, X̃1 is the matrix

of residuals from the OLS regression of X1 against X2, and X̃ ′
1X̃1 is the sum of the squared

residuals:

X̃ ′
1X̃1 =

n∑
i=1

X̃2
i,1,

and we can write

V ar(β̂1 | X) =
σ2∑n

i=1 X̃
2
i,1

=
σ2∑n

i=1(Xi,1 −X ′
i,2γ̂)

2
.

Thus, the denominator of V ar(β̂1 | X) contains the residual sample variation of the main

regressor of interest X1 after removing from it everything linearly related (explainable) by

4See Proposition 1.8.1(a),(e).
5Note that β̂1 is an estimator of a scalar parameter, and therefore, its variance is a scalar.
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X2. When we include more controls into X2, a larger portion of the variation of X1 is

removed resulting in a smaller sample residual variation
∑n

i=1 X̃
2
i,1.

6

The above discussion shows that when we include unnecessary controls into X2 that are

correlated with X1, the variance of the OLS estimator of β1 increases. As a result, the esti-

mates of the main parameter of interest become noisier. In practice, one would tend to see

larger standard errors for β̂1, smaller t-statistics and larger p-values, and wider confidence

intervals for β1. When the number of potential controls is large and they are highly corre-

lated with the main variable of interest, the impact of including unnecessary controls on the

informativeness and significance of the main estimates can be drastic.

1.3. Including only significant covariates

To address the issue of many potential controls described in the previous section, one might

consider including only covariates with statistically significant coefficients. Unfortunately,

due to the nature of hypothesis testing, such a practice would typically result in exclusion

of relevant controls and the omitted variables bias. The reason for that is that inference

procedures do not control the probability of Type II errors (not rejecting a null hypothesis

when it is false) and as a result the probability of seeing insignificant coefficients when in fact

the true parameters are different from zero can be large. We illustrate this point below using

a simple stylized example.

Suppose θ̂ is an estimator for a scalar parameter θ, and

θ̂ ∼ N(θ, ω2).

Suppose further that the variance ω2 is known. Consider testing H0 : θ = 0 against H1 : θ ̸= 0.

Since
θ̂ − θ

ω
∼ N(0, 1),

a size α test rejects H0 in favor of H1 when∣∣∣∣∣ θ̂ω
∣∣∣∣∣ > z1−α/2,

where zτ denotes the τ -th quantile of the standard normal distribution. The probability of

Type I error (rejecting H0 when it is true) is controlled as under H0, θ̂/ω ∼ N(0, 1) and

therefore P (|θ̂/ω| > z1−α/2 | θ = 0) = α.

To consider the probability of Type II error, write

θ̂

ω
=

θ̂ − θ

ω
+

θ

ω
= Z +

θ

ω
,

where

Z ∼ N(0, 1).

Note that since we are now under H1, θ ̸= 0. The probability of deciding that θ ̸= 0

(significant) is given by

P
(
|Z + θ/ω| > z1−α/2

)
.

6See Proposition 1.8.2 in the Appendix.
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Note that this probability converges to 1 − α as θ → 0. I.e. in this case, the probability of

Type II error can be as large as 1 − α. If the value θ/ω is not very large, the probability of

detecting θ ̸= 0 can be relatively small.

The above example illustrates that a failure to reject H0 : θ = 0 cannot be used as reliable

evidence that the true coefficient is zero. In the context of regression, dropping insignificant

regressors can lead to the omitted variables bias.

1.4. Data snooping

Data snooping (also known as p-hacking) occurs when the researcher repeatedly re-uses

the same data in order to produce “statistically significant” estimates with large t-statistics

or small p-values (which generated the name “p-hacking”). This is typically done by tweak-

ing the specification of a model numerous times, adjusting the definitions of the variables,

excluding some observations, and etc until sufficiently small p-values are obtained for the

main parameters of interest. Data snooping/p-hacking destroys the validity of t-statistics and

p-values, and leads to false discoveries. We illustrate the issue using a simple example.

Suppose the researcher wants to show that data supports their hypothesis that some scalar

parameter θ is different from zero. Suppose that the researcher can construct J independent

estimators for θ such that

θ̂j ∼ N(θ, ω2
j ),

where ω2
j are known. To demonstrate the “significance” of θ, the researcher conducts J size

α tests of H0 : θ = 0 vs H1 : θ ̸= 0, each test based on different θj , until they find a test with

|θ̂j/ωj | > z1−α/2 or run out of tests. Suppose in fact θ = 0. In this case, the probability of

concluding that θ is “significant” is given by

P

(
max
1≤j≤J

∣∣∣∣∣ θ̂jωj

∣∣∣∣∣ > z1−α/2

)
= 1− P

(
max
1≤j≤J

∣∣∣∣∣ θ̂jωj

∣∣∣∣∣ ≤ z1−α/2

)

= 1− P

(∣∣∣∣∣ θ̂1ω1

∣∣∣∣∣ ≤ z1−α/2, . . . ,

∣∣∣∣∣ θ̂JωJ

∣∣∣∣∣ ≤ z1−α/2

)

= 1−
J∏

j=1

P

(∣∣∣∣∣ θ̂jωj

∣∣∣∣∣ ≤ z1−α/2

)
= 1− (1− α)J ,

where the second equality holds because the maximum of J statistics is below the critical

value if and only if each of the J statistics is below the critical value. The third equality holds

by the independence of θ̂j ’s across j, and the last equality holds because each of the J tests

has size α:

P

(∣∣∣∣∣ θ̂jωj

∣∣∣∣∣ > z1−α/2

)
= α.

Hence, when the J tests are independent and θ = 0, the probability of falsely concluding

that θ ̸= 0 is given by

1− (1− α)J .
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Table 1. The probability of false discovery that θ ̸= 0 with J independent
size α = 0.05 tests

J 1 5 10 15 30 60 85

Prob. of false discovery 0.05 0.23 0.40 0.54 0.79 0.95 0.99

Since 0 < 1− α < 1, the probability of falsely concluding that θ ̸= 0 quickly grows with J as

illustrated in Table 1 for α = 0.05. For example, with 10 independent tests, the probability

of falsely concluding that θ ̸= 0 is 40%, and escalates to almost 80% with 30 tests. With 85

tests, the researcher is almost assured to falsely conclude that θ ̸= 0.

While in practice tests are rarely independent, the same relationship holds qualitatively.

Since by design, each test comes with the probability α of making a false discovery (or the

Type I error), when the researcher performs many of such tests the probabilities of Type I

error quickly accumulate. Thus by the design of statistical tests, if the researcher searches

long enough, with a high probability they would find something that is not actually there.

The nature of empirical research is such that one cannot know the right specification

until they start working with data. Since the search for correct specifications is unavoidable

and in view of the dangers of data snooping, there is a great need for ML procedures that

automatically detect correct specifications in a data-driven way.

1.5. Instrumental variables (IV) regression

In many economic applications the assumption that regressors are exogenous is implausi-

ble:

(1.5.1) Y = Xβ + U, β ∈ Rk,

but

E(U | X) ̸= 0.

The last equation immediately implies that the OLS estimator of β is biased,7 and therefore

one should use an alternative estimation strategy.

One example of such a model is the Mincer earnings regression, where the dependent

variable is the log wage, the main regressor of interest in X is years of schooling, while other

regressors included in X are a gender dummy, years of experience, etc. The residual term U

is often interpreted as the unobserved ability. Since individuals with higher ability typically

self-select to obtain more education, the education variable predicts an individual’s ability:

E(ability | education)̸= 0.

Suppose that in addition, the researcher observes an n× l matrix of IVs such that

E(U | Z) = 0.

7See equation (1.1.6) in the proof of Proposition 1.1.1(a).
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Thus, Z contains data on l exogenous variables (in the sense that they are not related to U).

We also assume that Z are related to X through the so-called first-stage equation:

X = ZΠ+ V,(1.5.2)

E(V | Z) = 0.

In the first stage equation, the matrix of coefficients Π is l × k. We assume that the l IVs in

Z are sufficiently informative about the k regressors in X in the sense that

rank(Π) = k.

The last condition implies that l ≥ k. Note also that the regressors in X that are exogenous

can and should be included in Z.

Given the first-stage equation and since E(U | Z) = 0, the regressors in X can be endoge-

nous only because of the correlation between U and V .

For the Mincer earning regression, Angrist and Krueger (1991) proposed to use the quarter

of birth dummy variables as instruments for schooling. To justify the choice, they argue that

while the quarter of birth is exogenously assigned, it predicts education due to compulsory

schooling laws. In the US, education is mandatory until the age of 16 in most states. Since

people born in the first quarter reach 16 before those born later in the same year, they tend

to have slightly less education.

Combining the first-stage equation in (1.5.2) with the main regression equation in (1.5.1),

we obtain:

Y = (ZΠ+ V )β + U

= (ZΠ)β + (U + V β)

= (ZΠ)β + ϵ,

where

ϵ = U + V β.

Note that

E(ϵ | Z) = 0,

and therefore one can obtain an unbiased estimator of β from the OLS regression of Y against

ZΠ. Since Π is unknown, in practice it is replaced by its estimator from the first stage:

(1.5.3) Π̂ = (Z ′Z)−1Z ′X.

The IV or two-stage least squares (2SLS) estimator of β is given by

β̂ =
(
(ZΠ̂)′(ZΠ̂)

)−1
(ZΠ̂)′Y

=
(
Π̂′Z ′ZΠ̂

)−1
Π̂′Z ′Y

=
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y,(1.5.4)
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where the last equality holds by substituting the expression for Π̂ from (1.5.3) into the second

line.

Define an n× n projection matrix8

PZ = Z(Z ′Z)−1Z ′.

The 2SLS estimator can be written as

β̂ = (X ′PZX)−1X ′PZY.

When the number of IVs is the same as the number of regressors (l = k), the 2SLS estimator

simplifies to

(1.5.5) β̂ = (Z ′X)−1Z ′Y,

which is often referred to as the IV estimator. The result holds by (1.5.4) and because the

matrix Z ′X is now square (k × k) and (Z ′X)−1 exists:

β̂ =
(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1(Z ′Z)(X ′Z)−1X ′Z(Z ′Z)−1Z ′Y

= (Z ′X)−1Z ′Y.

We can denote

X̂ = PZX = ZΠ̂,

i.e. X̂ contains the exogenous variation in X due to Z. Note that by construction, X̂ is n×k.

Thus, whether l = k or l > k, the 2SLS estimator can be re-written as

β̂ = (X̂ ′X)−1X̂ ′Y,

Hence, X̂ can be viewed as k IVs for X: the 2SLS estimator is an IV estimator that uses the

first-stage predicted values of X as IVs. To make the 2SLS estimator more efficient, one would

like to include all relevant IV variables into Z to capture all available exogenous variation in

X.

1.6. IV regression with many IVs

In this section, we discuss the bias of the 2SLS estimator. Since the first-stage matrix

Π must be replaced with its estimates, the 2SLS estimator is typically biased. However, its

biased disappears as the sample size n → ∞. I.e. in large enough samples, the bias of the

2SLS estimator is negligible. However, the situation changes drastically when the number of

IVs is very large and of a similar order as n. In such cases, the bias of the 2SLS estimator

does not disappear even in large samples, which makes it inconsistent.

The many IVs scenario can easily arise in practice when E(U | Z) = 0, and the econometri-

cian suspects a non-linear relationship between X and Z’s. In that case, the econometrician

may try to gain more efficiency by including the polynomial and interaction terms on the

right-hand side of the first-stage equation. By including polynomial terms of higher orders

8See a discussion of projection matrices in Appendix 19.
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and many interactions, the number of the right-hand side variables can grow fast. For ex-

ample, Angrist and Krueger (1991) generated many IVs by interacting the quarter of birth

dummies with exogenous regressors in X.

To simplify the presentation, suppose k = 1, i.e. there is only on regressor. In that case,

the 2SLS estimator satisfies

(1.6.1) β̂ =
X ′PZY

X ′PZX
= β +

n−1X ′PZU

n−1X ′PZX
,

and, hence, the bias of the 2SLS estimator depends on n−1E[X ′PZU ].

Proposition 1.6.1.

(a) Suppose that the covariance between U and V is given by

E
(
UV ′ | Z

)
= σUV In,

for some scalar σUV . Then

E

(
1

n
X ′PZU | Z

)
= σUV

l

n
.

(b) Suppose in addition that the variance of V is given by

E
(
V V ′ | Z

)
= σ2

V In,

for some scalar σ2
V > 0. Then

E

(
1

n
X ′PZX | Z

)
=

1

n
Π′Z ′ZΠ+ σ2

V

l

n
.

Proof. For part (a), since X ′P ′
ZU is a scalar (as X and U are n vectors),

X ′P ′
ZU = tr

(
X ′P ′

ZU
)

= tr(PZUX ′),

where the second equality holds by the properties of the trace: tr(AB) = tr(BA). Next,

E
(
tr(PZUX ′) | Z

)
= tr

(
PZE

(
UX ′ | Z

))
,

where

E
(
UX ′ | Z

)
= E

(
UΠ′Z ′ + UV ′ | Z

)
= E (U | Z)Π′Z ′ + E

(
UV ′ | Z

)
= σUV In,
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where the last equality follows because E(U | Z) = 0. Combining these results, we have:

E

(
1

n
X ′P ′

ZU | Z
)

=
1

n
tr(PZσUV In)

= σUV
tr(PZ)

n

= σUV
tr(Z(Z ′Z)−1Z ′)

n

= σUV
tr((Z ′Z)−1Z ′Z)

n

= σUV
tr(Il)

n

= σUV
l

n
.

The result in part (b) holds by the same arguments. □

Note that

1

n
Π′Z ′ZΠ =

1

n

n∑
i=1

l∑
j=1

(Zi,jΠj)
2, and

E(X2
i | Zi) =

l∑
j=1

(Zi,jΠj)
2.

Thus, the first term in the expression for the denominator (in Part (b) of the proposition)

measures the exogenous variation of the endogenous regressor Xi, i.e. the variation due to

Z ′
iΠ. For the variance of Xi to remain finite as l → ∞, we need to assume that for all values

z of Zi,

(1.6.2) lim
l→∞

l∑
j=1

(zjΠj)
2 ≤ K < ∞.

The condition holds, for example, if Zi,j ’s are bounded and only a few Πj ̸= 0. Such models are

called sparse: many of Zi,j ’s are irrelevant. Alternatively, the condition holds when Πj → 0

sufficiently fast. In that case, most of the IVs Zi,j can be viewed as weak.

The result of Proposition 1.6.1 shows that the bias of the 2SLS estimator depends on the

covariance between the second-stage errors U and first-stage errors V , and the ratio of the

number of IVs to the sample size. When X is endogenous,

σUV ̸= 0.

However, if the number of IVs is fixed (small)

σUV
l

n
→ 0

as n → ∞. On the other hand, when the number of IVs is large and comparable to the sample

size, it is more appropriate to model it as

l = ln,
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where

ln → ∞,

ln
n

→ c > 0,

as n → ∞. In such cases,

σUV
ln
n

→ σUV c,

and, therefore, the bias term is non-negligible even in very large samples (we assume that

(1.6.2 holds).

When l is small, adding a few extra IVs can improve the performance of the 2SLS esti-

mator. The situation is drastically different when l/n is large. In such cases, the researcher

needs to be able to pick a small subset of the best IVs out of a long list of potential instru-

ments. Hence, there is a need for a procedure that automatically selects the “best” IVs in a

data-driven manner.

1.7. Appendix: The variance of a random vector

Let X be an n× 1 vector of random variables:

X =


X1

...

Xn

 .

Its expectation is defined as a vector (matrix) composed of expected values of its corresponding

elements:

E(X) = E


X1

...

Xn



=


E (X1)

...

E (Xn)

 .
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The variance-covariance matrix of a random n-vector is a n× n matrix defined as

V ar(X) = E (X − EX) (X − EX)′

= E


X1 − EX1

...

Xn − EXn

( X1 − EX1 . . . Xn − EXn

)

=

 E (X1 − EX1) (X1 − EX1) . . . E (X1 − EX1) (Xn − EXn)

. . . . . . . . .

E (Xn − EXn) (X1 − EX1) . . . E (Xn − EXn) (Xn − EXn)



=

 V ar (X1) . . . Cov (X1, Xn)

. . . . . . . . .

Cov (Xn, X1) . . . V ar (Xn)

 .

It is a symmetric matrix with variances on the main diagonal and covariances off the main

diagonal. The symmetry follows from the fact that for two random variables Xi and Xj ,

Cov(Xi, Xj) = Cov(Xj , Xi). The variance-covariance matrix is positive semi-definite (de-

noted by V ar(X) ≥ 0), since for any n-vector of constants a, we have that a′V ar(X)a ≥ 0 :

a′V ar(X)a = a′E (X − EX) (X − EX)′a

= Ea′ (X − EX) (X − EX)′a

= E
(
(X − EX)′a

)2
≥ 0.

Proposition 1.7.1. Suppose Y = α+ΓX, where α ∈ Rk is a fixed (non-random) vector and

Γ is a k × n fixed matrix, then V ar(Y ) = Γ(V ar(X))Γ′.

Proof. First, note that

Y − EY = Γ(X − EX)

By the definition of the variance-covariance matrix,

V ar(Y ) = E(Y − EY )(Y − EY )′

= Γ(X − EX)(X − EX)′Γ′

= ΓV ar(X)Γ′.

□

1.8. Appendix: Projection matrices

Let X be n× k with rank(X) = k. The first projection matrix we consider is

PX = X(X ′X)−1X ′.

Note that P is n× n by construction. Let Y be an n× 1 vector, and consider the projection

of Y using P :

Ŷ = PXY = X(X ′X)−1X ′Y = Xβ̂,
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where β̂ = (X ′X)−1X ′Y . Thus, PXY can be interpreted as the fitted values of Y from a

regression of Y against X. Thus, PX projects n × 1 vectors onto a linear subspace of Rn

spanned by the columns of the matrix X:

S(X) = {y ∈ Rn : y = Xb, b ∈ Rk}.

However, the projection is orthogonal in the following sense.

Consider the difference between Y and its projection PXY :

Y − PXY = (In − P )Y = (In −X(X ′X)−1X)Y = MXY,

where

MX = In − P = In −X(X ′X)−1X

is the second projection matrix we are interested in. Note that

MXY = Y − Ŷ = Y −Xβ̂ = Û .

Thus, a projection by PX generates fitted/predicted values, and a projection by MX generates

fitted/sample residuals. Moreover, since

In = PX +MX ,

we have

Y = PXY +MXY = Ŷ + Û ,

with

Ŷ ′Û = 0,

which holds by X ′Û = 0. Thus, MX projects n-vectors onto

S⊥(X) = {y ∈ Rn : y′X = 0}.

Additional properties of the projection matrices are given below.

Proposition 1.8.1.

(a) PX and MX are symmetric: P ′
X = PX and M ′

X = MX .

(b) PXX = X.

(c) MXX = 0.

(d) PX and MX are orthogonal: MXPX = 0 and PXMX = 0.

(e) PX and MX are idempotent: PXPX = PX and MXMX = MX .

(f) rank(PX) = k and rank(MX) = n− k.

Proof. The results in (a) follow immediately from the definitions of PX and MX .

For part (b),

PXX = X(X ′X)−1X ′X = XIk = X.

For part (c),

MXX = (In − PX)X = X − PXX = X −X = 0.

For part (d),

MXPX = MXX(X ′X)−1X ′ = 0,
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and

PXMX = (MXPX)′ = 0.

For part (e),

PXPX = PXX(X ′X)−1X ′ = X(X ′X)−1X ′ = PX ,

and

MXMX = MX −MXPX = MX .

For part (f), using the results that PX and MX are symmetric and idempotent, one can

show that their ranks are equal to their traces. Then,

tr(PX) = tr(X(X ′X)−1X ′) = tr((X ′X)−1X ′X) = tr(Ik) = k.

□

In an OLS regression, where Y is the vector of observations on the dependent variable

and X is the matrix of regressors, the sum of squared residuals Û = MXY is given by

Û ′Û = Y ′MXY.

Proposition 1.8.2. The sum of squared residuals cannot decrease when adding more regres-

sors.

Proof. Consider partitioned regression matrix X = (Z W ) . Let us study the effect of

adding extra regressors W on the sum of squared residuals. Let

PX = X
(
X ′X

)−1
X ′ be the projection matrix corresponding to the full regression,

PZ = Z
(
Z ′Z

)−1
Z ′ be the projection matrix corresponding to the regression without W.

Define also

MX = In − PX ,

MZ = In − PZ .

Note that since Z is a part of X,

PXZ = Z,

and

PXPZ = PXZ
(
Z ′Z

)−1
Z ′

= Z
(
Z ′Z

)−1
Z ′

= PZ .

Consequently,

MXMZ = (In − PX) (In − PZ)

= In − PX − PZ + PXPZ

= In − PX − PZ + PZ

= MX .
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Define

ÛX = MXY,

ÛZ = MZY,

and write

0 ≤
(
ÛX − ÛZ

)′ (
ÛX − ÛZ

)
= Û ′

X ÛX + Û ′
ZÛZ − 2Û ′

X ÛZ ,

where the inequality in the first line holds by the fact that x′x =
∑

i x
2
i ≥ 0. Next,

Û ′
X ÛZ = Y ′MXMZY

= Y ′MXY

= Û ′
X ÛX .

Hence,

Û ′
ZÛZ ≥ Û ′

X ÛX .

□

1.9. Appendix: Matrix square root

Let A be a symmetric and positive definite k × k matrix. One can show that there exists

a unique symmetric k × k matrix B such that

BB = A.

We therefore denote

A1/2 = B.

Moreover, the inverse of the matrix B exists and

B−1B−1 = A−1.

Hence,

A−1/2 = B−1.

Note that

A−1/2AA−1/2 = A−1/2A1/2A1/2A−1/2 = Ik.



CHAPTER 2

Selecting regressors using the Bayesian Information Criterion

(BIC)

In the context of linear regression and OLS, we discuss information-criteria-based ap-

proaches for selecting relevant regressors among many potential controls. We discuss consis-

tency, the oracle properties, and post-selection inference. While the results are presented for

the linear regression model, the same approach can be applied to nonlinear models such as

probit, logit, and etc.

2.1. Selecting regressors

Consider a linear regression model with k potential regressors:

Yi =
k∑

j=1

βjXi,j + Ui,(2.1.1)

EXi,jUi = 0, j = 1, . . . , k.

For now, we assume that the number of potential regressors is small: k is fixed and does not

depend on n.

Let A denote the set (list) of regressors with non-zero coefficients:

A = {j : βj ̸= 0} .

For example, A = {1, 3, 7} implies that only the regressors Xi,1, Xi,3, and Xi,7 have non-zero

coefficients, and that the remaining regressors have coefficients equal to zero. We use A0 to

denote the true set of relevant regressors: i.e. the true data generating process (DGP) for Yi

only includes the regressors in A0:

Yi =
∑
j∈A0

βjXi,j + Ui.

Our goal is to estimate A0 using the data {(Yi, X ′
i)
′, i = 1, . . . , n}. We use Ân to denote

an estimated set of relevant regressors produced by a selection procedure. We say that the

selection procedure is consistent if

(2.1.2) P
(
Ân = A0

)
→ 1

as n → ∞.

Let β = (β1, . . . , βk)
′, and by βA we denote the subvector of β that includes only the

coefficients in A:

βA = (βj : j ∈ A) .

23
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We use |A| to denote the number of elements in A, and hence βA is a |A|-subvector of the

k-vector β.

Suppose a procedure produced the set of selected regressors Ân and the vector of estimates

β̂n = (β̂n,1, . . . , β̂n,k)
′. Here we set β̂n,j = 0 for j /∈ Ân. We say that the procedure is oracle

if, in addition to the consistency property in (2.1.2),

√
n(β̂A0 − βA0) →d N(0, V (A0)),

where V (A0) is the best asymptotic variance one can obtain when the true model A0 is

known. The oracle property means that not only the econometrician consistently selects the

true regressors, but also the coefficients on the relevant regressors are estimated as precisely

as when the set of the true relevant regressors in the DGP is known.

2.2. BIC

Recall that if the econometrician tries to select the regressors by minimizing the sample

sum of squared residuals (SSR), or equivalently maximizing R2, the procedure would result

in overfitting: the SSR is monotone non-increasing in the number of included regressors. The

idea behind BIC is to penalize the SSR for the model complexity.

Let Xi = (Xi,1, . . . , Xi,k)
′, and define Xi,A as the subvector of Xi that includes only the

regressors in A:

Xi,A = (Xi,j : j ∈ A).

Again, Xi,A is a |A|-subvector of the k-vector Xi. The true DGP can now be written as

Yi =
∑
j∈A0

βjXi,j + Ui

= X ′
i,A0

βA0 + Ui.

Let β̂n,A(A) denote the OLS estimator of βA that only uses the regressors in A:

β̂n,A(A) =

(
n∑

i=1

Xi,AX
′
i,A

)−1 n∑
i=1

Xi,AYi.

We can set

β̂n,Ac(A) = 0,

and view β̂n(A) = (β̂n,A(A)′, β̂n,Ac(A)′)′ as the estimator of β = (β′
A, β

′
Ac)′ under model A.

The corresponding SSR is given by

SSRn(A) =
n∑

i=1

(
Yi −X ′

i,Aβ̂n,A(A)
)2

.

The complexity of model A can be measured by the number of included regressors, i.e.

the number of elements in A. BIC for model A is defined as

BICn(A) = SSRn(A) + |A| log n,

where the second term is a penalty. A model with more included regressors receives a larger

penalty. A BIC-based selection procedure selects the regressors by minimizing BIC across all
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possible models:

ÂBIC
n = argmin

A
BICn(A).

We show below that BIC selects the relevant regressors consistently.

Proposition 2.2.1. Suppose that data are iid, EXiX
′
i and EU2

i XiX
′
i are finite and positive

definite, and EU2
i < ∞. Then P

(
ÂBIC

n = A0

)
→ 1 as n → ∞.

We will see in the proof below that the penalty term only plays a role when A0 ⊂ A:

omitted regressors are detected by the SSR term in the BIC definition. The penalty term is

only needed to deselect irrelevant controls.

Proof. It suffices to show that for all A ≠ A0

(2.2.1) P (BICn(A) > BICn(A0)) → 1,

i.e. the true model A0 minimizes BIC with probability approaching one.

We say that the random sequence Vn = op(1) if Vn converges in probability to zero, see

the discussion in Appendix 2.6. For example, Vn = op(1) when EVn = 0 and V ar(Vn) → 0.

First, consider the average SSR for the true model:

n−1SSRn(A0) = n−1
n∑

i=1

(
Yi −X ′

i,A0
β̂n,A0(A0)

)2
= n−1

n∑
i=1

(
Ui −X ′

i,A0
(β̂n,A0(A0)− βA0)

)2
= n−1

n∑
i=1

U2
i + (β̂n,A0(A0)− βA0)

′

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)
(β̂n,A0(A0)− βA0)

− 2(β̂n,A0(A0)− βA0)
′

(
n−1

n∑
i=1

Xi,A0Ui

)
= EU2

i + op(1),

where the op(1) term in the last line is by the LLN and consistency of the OLS estimator

under the true model:

n−1
n∑

i=1

U2
i = EU2

i + op(1),

β̂n,A0 = βA0 + op(1),

n−1
n∑

i=1

Xi,A0X
′
i,A0

= EXi,A0X
′
i,A0

+ op(1),

n−1
n∑

i=1

Xi,A0Ui = op(1).

Suppose that model A omits some relevant regressors:

(A ∩A0) ̸= A0.
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Since the OLS estimator is inconsistent in general when there are omitted relevant regressors,

β̂n(A)− β →p δ ̸= 0,

where β̂n,j(A) is the corresponding element of β̂n,A(A) for j ∈ A, and β̂n(A) = 0 for j /∈ A.

We have:

n−1SSRn(A) = n−1
n∑

i=1

(
Yi −X ′

iβ̂n(A)
)2

= n−1
n∑

i=1

(
Ui −X ′

i

(
β̂n(A)− β

))2
= n−1

n∑
i=1

U2
i + (β̂n(A)− β)′

(
n−1

n∑
i=1

XiX
′
i

)
(β̂n(A)− β)

− 2(β̂n(A)− β)′

(
n−1

n∑
i=1

XiUi

)
= EU2

i + δ′EXiX
′
iδ + op(1).

Note also that

|A| log n
n

= o(1).

Therefore, for such a model A,

P (BICn(A) > BICn(A0)) = P
(
n−1BICn(A) > n−1BICn(A0)

)
= P

(
n−1SSRn(A) + |A| log n

n
> n−1SSRn(A0) + |A0|

log n

n

)
= P

(
δ′EXiX

′
iδ + op(1) + o(1) > 0

)
→ 1,

where convergence in the last line holds because δ ̸= 0 and EXiX
′
i is positive definite.

Next, consider model A such that

A0 ⊂ A.

In this case, A contains all the relevant regressors as well as some irrelevant ones. The OLS

estimator β̂n,A(A) is consistent and asymptotically normal:

n1/2(β̂n,A(A)− βA) →d ΨA,

where

ΨA ∼ N (0, V (A)) ,

V (A) = σ2
(
EXi,AX

′
i,A
)−1

.

The result follows from

n−1/2
n∑

i=1

XiUi →d ΦA,
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where

ΦA ∼ N
(
0, σ2Xi,AX

′
i,A
)
.

We use Vn = Op(1) to say that Vn is bounded in probability. For example, the sequence of

random variables Vn = Op(1) when V ar(Vn) ≤ K < ∞ for all n. Convergence in distribution

and convergence in probability to a constant both imply Op(1):

n1/2(β̂n,A(A)− βA) = Op(1),

n−1/2
n∑

i=1

XiUi = Op(1),

n−1
n∑

i=1

Xi,AX
′
i,A = Op(1).

In all the above cases, the variances become bounded as n → ∞ (zero in the latter case).

We have:

SSRn(A)−
n∑

i=1

U2
i =

n∑
i=1

(
Ui −X ′

i,A(β̂n,A(A)− βA)
)2

−
n∑

i=1

U2
i

= n1/2(β̂n,A(A)− βA)
′

(
n−1

n∑
i=1

Xi,AX
′
i,A

)
n1/2(β̂n,A(A)− βA)

− 2n1/2(β̂n,A(A)− βA)
′

(
n−1/2

n∑
i=1

Xi,AUi

)
= Op(1).

By the same arguments,

SSRn(A0)−
n∑

i=1

U2
i →d Ψ′

A0

(
EXi,A0X

′
i,A0

)
ΨA0 − 2Ψ′

A0
ΦA0

= Op(1).

Lastly, when A0 ⊂ A,

P (BICn(A) > BICn(A0)) = P (SSRn(A)− SSRn(A0) > (|A0| − |A|) log n)

= P (Op(1) > (|A0| − |A|) log n)

→ 1,

where convergence in the last line holds since |A0| < |A|, and therefore

(|A0| − |A|) log n → −∞.

□

2.3. Post BIC inference

Suppose the econometrician selects the true model using ÂBIC
n and conducts inference

using β̂n(ÂBIC
n ). For j ∈ ÂBIC

n , the distribution of the estimator of the j-the coefficient is
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given by

P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u
)

= P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n = A0

)
+ P

(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n ̸= A0

)
= P

(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n = A0

)
+ o(1)

= P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u | ÂBIC
n = A0

)
P
(
ÂBIC

n = A0

)
+ o(1)

= P
(
n1/2(β̂n,j(A0)− βj) ≤ u

)
(1 + o(1)) + o(1)

= P
(
n1/2(β̂n,j(A0)− βj) ≤ u

)
+ o(1).

where the second equality holds by

P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n ̸= A0

)
≤ P

(
ÂBIC

n ̸= A0

)
= o(1).

Hence, the BIC-based selection and estimation procedure is oracle.

2.4. Akaike Information Criterion (AIC)

AIC is another popular criterion for model selection (and actually precedes BIC). AIC for

a model A is defined as

AICn(A) = SSRn(A) + 2|A|.

In comparison with BIC, AIC penalizes the model complexity less heavily and, therefore,

tends to select a bigger model with more regressors than BIC.

By the same arguments as in the proof of Proposition 2.2.1, for a model A that omits

some relevant regressors, i.e. (A ∩A0) ̸= A0,

P (AICn(A) > AICn(A0)) → 1.

However, because AIC penalty is not sufficiently strong, if A0 ⊂ A,

P (AICn(A) > AICn(A0)) ↛ 1.

Hence, while AIC detects omitted regressors with probability approaching one, it is more

likely to overfit by also including some irrelevant regressors than BIC.

2.5. Limitations

One should note several limitations of our arguments. First, we assumed that k is small

(fixed). Some of our arguments would breakdown when the number of potential regressors is

large (comparable to the sample size). However, this technical issue can often be addressed

with somewhat different arguments.

More importantly, our analysis ignores the situation where some βj are very close but

different from zero. One cannot expect that the BIC (or any other procedure) would detect

small coefficients with a probability approaching one. Even in the limit, regressors with very
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small coefficients are likely to be omitted from the model, which can potentially create the

omitted variable bias. This shortcoming can be addressed using a double selection procedure,

which will be discussed later in the context of Lasso.

Lastly, while the BIC procedure delivers an automatic selection of regressors, it may be

infeasible in practice if the number of potential regressors is very large. With k regressors,

there are 2k possible models A. For example, if k = 30 one has to run and compare over 1

billion potential regressions. For k = 40, one has to run over 1 trillion (1012) models. Suppose

the CPU time for one regression is 10−3 (This is a typical CPU time for estimating a regression

with n = 10, 000 and k = 40 on a high-end modern laptop using the “lm()” function in R.)

In that case, it would take about 2.6 years to run all 1 trillion possible regressions using 12

cores in parallel.

The many regressors situation can easily arise in practice even when there is a relatively

small number of explanatory variables. Suppose that the econometrician considers flexible

specifications that include quadratic terms as well as pairwise interaction terms of all right-

hand side variables. In that case, 10 potential right-hand side variables generate 65 potential

regressors.

2.6. Appendix: Law of Large Numbers (LLN); Little–o notation

We say that θ̂n converges in probability to θ if for all ϵ > 0,

lim
n→∞

P
(
∥θ̂n − θ∥ > ϵ

)
= 0.

Convergence in probability implies that the probability of θ̂n deviating from θ by any amount

ϵ > 0 becomes negligible as n → ∞. We use the notation

θ̂n − θ →p 0

and

θ̂n − θ = op(1).

The main device for establishing convergence in probability is the law of large numbers.

Let X1, . . . , Xn be uncorrelated random variables with EXi = µ and V ar(Xi) = σ2, and

consider the average

X̄n = n−1
n∑

i=1

Xi.

Note that

EX̄n = µ,

V ar(X̄n) =
σ2

n
→ 0 as n → ∞.(2.6.1)

Hence, as n → ∞ the distribution of the average X̄n becomes concentrated around the mean

µ. More formally, by Markov’s inequality

(2.6.2) P
(∣∣X̄n − µ

∣∣ > ϵ
)
≤ 1

ϵ2
E
∣∣X̄n − µ

∣∣2 = σ2

ϵ2n
→ 0.
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To show (2.6.1), which also implies the equality in (2.6.2),

V ar(X̄n) = V ar

(
n−1

n∑
i=1

Xi

)

= n−2V ar

(
n∑

i=1

Xi

)

= n−2

 n∑
i=1

V ar(Xi) +

n∑
i=1

∑
j ̸=i

Cov(Xi, Xj)


= n−2

n∑
i=1

V ar(Xi)

= n−1σ2,

where the equality in the fourth line holds because we assume that Cov(Xi, Xj) = 0 for i ̸= j,

and the equality in the last line holds because V ar(Xi) = σ2.

In the case of iid data, the following result can be used. Let X1, . . . , Xn be iid random

variables such that E|Xi| < ∞. Then

1

n

n∑
i=1

(Xi − EXi) →p 0,

or equivalently

X̄n = EXi + op(1).

2.7. Appendix: Consistency of OLS

We say that the OLS estimator β̂ is consistent for the true β if

β̂ = (X ′X)−1X ′Y =

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiYi →p β

Proposition 2.7.1. Suppose that data {(Yi, Xi) : i = 1, . . . , n} are iid,

Yi = X ′
iβ + Ui,(2.7.1)

EUiXi = 0,

EXiX
′
i is finite and positive definite.(2.7.2)

Then,

β̂ →p β.
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Proof. Write

β̂ =

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiYi

= β +

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiUi

= β +
(
EXiX

′
i + op(1)

)−1
(EXiUi + op(1))

→p β +
(
EXiX

′
i

)−1 · 0

= β.

□

The OLS estimator is inconsistent when

EXiUi ̸= 0.

In this case,

β̂ =

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiYi

= β +

(
n−1

n∑
i=1

XiX
′
i

)−1

n−1
n∑

i=1

XiUi

→p β +
(
EXiX

′
i

)−1
EXiUi

̸= β,

where (
EXiX

′
i

)−1
EXiUi ̸= 0

can be viewed as asymptotic bias. For example, suppose the true model is given by

Yi = X ′
i,1β1 +X ′

i,2β2 + ϵi,

EXi,1ϵi = 0,

EXi,2ϵi = 0,

but the econometrician omits Xi,2 from the model:

Yi = X ′
i,1β1 + Ui,

Ui = X ′
i,2β2 + ϵi.

Then

EXi,1Ui = EXi,1X
′
i,2β2 ̸= 0,

and

β̃1 =

(
n−1

n∑
i=1

Xi,1X
′
i,1

)−1

n−1
n∑

i=1

Xi,1Yi →p β1 +
(
EXi,1X

′
i,1

)−1
EXi,1X

′
i,2β2.
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2.8. Appendix: Convergence in distribution and asymptotic normality/Central

Limit Theorem; Big–O notation

Let θ̂n denote an estimator of a scalar parameter θ. To perform hypothesis testing about

θ (or construct a confidence interval for θ) using the estimator θ̂n, one needs to know the

distribution of the latter. Unfortunately, in many circumstances, it is impossible to derive

the exact distribution of θ̂n either because the expression is too complicated, or because the

derivation of the exact finite sample distribution requires very restrictive assumptions. In

such cases, we rely on asymptotic approximations that are usually applied to
√
n(θ̂n − θ), i.e.

we approximate the distribution of the scaled estimation error. The scaling is necessary when

θ̂n − θ →p 0. While the probability

P (
√
n(θ̂n − θ) ≤ x)

is unknown for finite n, suppose we can establish that for all x ∈ R,

lim
n→∞

P (
√
n(θ̂n − θ) ≤ x) = P (X ≤ x) ,

where X ∼ N(0, ω2). In such cases, we say that
√
n(θ̂n − θ) converges in distribution to a

normal random variable, denoted as

(2.8.1)
√
n(θ̂n − θ) →d N(0, ω2).

We use the N(0, ω2) distribution to approximate that of
√
n(θ̂n − θ). Suppose that (2.8.1)

holds. Then for any M > 0,

P
(
|
√
n(θ̂n − θ)| ≥ M

)
→ P (|X| ≥ M) where X ∼ N(0, ω2).

Thus, in large samples, the probability of
√
n(θ̂n − θ) taking on a large value greater than M

is approximately the same as that of a normal random variable.

We say Vn = Op(1) if it is bounded in probability: for all ϵ > 0 there is Mϵ > 0 such that

P (∥Vn∥ > Mϵ) < ϵ for all n large enough. Since limM→∞ P (|X| ≥ M) = 0 for any proper

random variable (that does not take infinite values), the convergence in distribution result
√
n(θ̂n − θ) →d X implies that. √

n(θ̂n − θ) = Op(1).

We can also write

θ̂n = θ +
1√
n
Op(1) = θ +Op

(
1√
n

)
,

i.e. θ̂n converges to θ at the rate 1/
√
n.

The concept can be extended to random vectors by considering the joint distribution of

its elements. Suppose now that the random k-vector θ̂n is an estimator of θ ∈ Rk. Suppose

further that for all x = (x1, . . . , xk)
′ ∈ Rk,

lim
n→∞

P
(√

n(θ̂n,1 − θ1) ≤ x1, . . . ,
√
n(θ̂n,k − θk) ≤ xk

)
= P (X1 ≤ x1, . . . , Xk ≤ xk) ,
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where for some positive definite and symmetric k × k matrix Ω,
X1

...

Xk

 ∼ N (0,Ω) ,

where N(0,Ω) denotes the multivariate normal distribution with zero means and a variance-

covariance matrix given by Ω. Then we say that
√
n(θ̂n − θ) converges in distribution to the

N(0,Ω) random vector, denoted as

√
n(θ̂n − θ) →d N(0,Ω).

We use the N(0,Ω) distribution to approximate the joint distribution of
√
n(θ̂n − θ).

The main device for establishing convergence in distribution is the Central Limit Theorem

(CLT).

Proposition 2.8.1. Suppose that X1, . . . , Xn are iid random k-vectors such that EXi = 0

and V ar(Xi) = EXiX
′
i = Ω, where Ω is a positive definite matrix. Then,

1√
n

n∑
i=1

Xi →d N (0,Ω) .

Note that

E

(
1√
n

n∑
i=1

Xi

)
= 0,

V ar

(
1√
n

n∑
i=1

Xi

)
= V ar(Xi) = Ω,

however, the CLT also says that the distribution of n−1/2
∑n

i=1Xi can be approximated by

that of a N(0,Ω) vector.

2.9. Appendix: Asymptotic normality of the OLS estimator

Consider the model defined by equations (2.7.1)–(2.7.2). The following result establishes

the asymptotic normality of the OLS estimator.

Proposition 2.9.1. Suppose that data are iid, (2.7.1)–(2.7.2) hold, and

(2.9.1) E
(
U2
i | Xi

)
= σ2.

Then, √
n
(
β̂ − β

)
→d N(0, σ2(EXiX

′
i)
−1).

Proof. By (2.7.1),

√
n
(
β̂ − β

)
=

(
1

n

n∑
i=1

XiX
′
i

)−1
1√
n

n∑
i=1

XiUi.
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By the LLN,

1

n

n∑
i=1

XiX
′
i →p EXiX

′
i,

and the matrix in the limit is positive definite and therefore invertible. By the law of iterated

expectation,

V ar(XiUi) = E(U2
i XiX

′
i) = E

(
E(U2

i | Xi)XiX
′
i

)
= E

(
σ2EXiX

′
i

)
= σ2EXiX

′
i,

where the third equality holds by (2.9.1). Hence,

1√
n

n∑
i=1

XiUi →d N
(
0, σ2EXiX

′
i

)
,

and √
n
(
β̂ − β

)
→d (EXiXi)

−1N
(
0, σ2EXiX

′
i

)
= N

(
0, σ2

(
EXiX

′
i

)−1
)
.

□



CHAPTER 3

Ridge and Least Absolute Shrinkage and Selection Operator

(Lasso)

We start by discussing Ridge regression and its coefficients-dependent penalty. We then

cover the basics of Lasso using results for convex optimization. The special case of orthonormal

regressors (for which Lasso has an analytical solution) is analyzed before moving to the general

case. Using the Lasso first-order conditions, we discuss its consistency properties. We also

cover weighted and adaptive Lasso and conclude with some adjustments needed for high-

dimensional data.

3.1. Ridge Regression

Ridge regression is based on a similar idea to that of BIC and AIC: penalize a measure

of fit by taking into account the size/complexity of the model. However, the Ridge penalty

term depends on the estimates of the regression coefficients.

For a vector x, recall that the p-norm is defined as

∥x∥p =

(∑
i

|xi|p
)1/p

,

with ∥·∥2 being the usual Euclidean norm. The Ridge criterion function for a linear regression

model with k potential regressors is given by

n−1
n∑

i=1

(Yi −
k∑

j=1

bjXi,j)
2 + λ

k∑
j=1

b2j = n−1∥Y −Xb∥22 + λ∥b∥22.

where Y is the n × 1 vector of observations on the dependent variable, and X is the n × k

matrix of observations on the potential regressors. Here λ > 0 is a tuning penalty parameter:

larger values of λ imply heavier penalization.

The Ridge estimator is given by

β̂Ridge = arg min
b∈Rk

{
n−1∥Y −Xb∥22 + λ∥b∥22

}
.

The first-order condition for the Ridge problem is

−X ′
(
Y −Xβ̂Ridge

)
+ λβ̂Ridge = 0,

which implies that

β̂Ridge =
(
X ′X + λIk

)−1
X ′Y.

One can see that, relative to the OLS estimator, Ridge shrinks the estimates of all coefficients

toward zero, with more shrinkage applied for larger values of λ.

35
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Suppose that the classical regression assumptions hold:

Y = Xβ + U,

E(U | X) = 0,

rank(X) = k.

In that case, the Ridge estimator is biased:

E
(
β̂Ridge | X

)
=
(
X ′X + λIk

)−1
X ′Xβ ̸= β.

However, when there are many potential regressors and k is close to n and, as a result, X ′X

is close to being singular, Ridge provides a regularization as the eigenvalues of

X ′X + λIk

are pushed away from zero. Even when the number of potential regressors is very large and

k > n (so that X ′X is singular and the OLS estimator cannot be computed), the Ridge

estimator is still well-defined.

The regularization property of Ridge makes it useful in prediction problems where the

number of potential predictors is very large. While Ridge regularization introduces a bias,

it also reduces the variance, which may produce better (in the mean squared error sense)

forecasts for Y .

The Ridge problem can be also viewed as a constrained optimization problem:

min
b∈Rk

∥Y −Xb∥22 s.t. ∥b∥22 ≤ M,

where M > 0 is some constant. Hence, Ridge imposes a “budget” constrained on the coeffi-

cients:
∑k

j=1 b
2
j ≤ M . Note that the budget constraint defines a sphere of radius M with the

center at zero. Next, consider the contours CSSR = {b ∈ Rk : ∥Y −Xb∥22 − ∥Y −Xβ̂OLS∥22 =
SSR}. These contours have a stretched ellipsoid form with the center at the OLS estimates

β̂OLS . Note that larger contours correspond to larger SSRs. Due to the quadratic shape of

the budget constraint and of the contours, the solution to the Ridge problem is always in

the interior in the sense that β̂Ridge
j ̸= 0 for all j = 1, . . . , k. Hence, Ridge cannot provide a

selection of regressors.

3.2. Lasso criterion function

As discussed in the previous section, Ridge is not useful for selecting regressors because

of the shape of the constraint of its constrained minimization problem. Lasso addresses that

issue by replacing the 2-norm in the penalty with the 1-norm. Thus, the Lasso criterion

function is given by

n−1
n∑

i=1

(Yi −
k∑

j=1

bjXi,j)
2/2 + λ

k∑
j=1

|bj | = n−1∥Y −Xb∥22/2 + λ∥b∥1.
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The corresponding constrained optimization problem is now

min
b∈Rk

∥Y −Xb∥22 s.t. ∥b∥1 ≤ M,

i.e. the “budget” constrain is given by

k∑
j=1

|bj | ≤ M.

The “budget” constrain now has sharp corners at zero coordinates (bj = 0 for some j =

1, . . . , k), and for sufficiently large λ, we will see corner solutions with exactly zero estimates

of some of the coefficients. The Lasso estimator is defined as

β̂ = arg min
b∈Rk

{
1

2n
∥Y −Xb∥22 + λ∥b∥1

}
,

and for sufficiently large penalty parameter λ, β̂j = 0 for some j’s. Moreover, for larger values

of λ, more estimates tend to be exactly zero.

Note that ∥Y −Xb∥22 and ∥b∥1 are convex functions of b and, therefore, the Lasso criterion

function is convex. Moreover, it is differentiable every except b = 0. To discuss the solution

to the Lasso problem, we need some results from convex optimization.

3.3. Convex minimization and subgradients

Recall that if a real-valued function f(x), x ∈ Rk, is convex and differentiable at x, then

for all y ∈ Rk

f(y)− f(x) ≥ ∇f(x)′(y − x),

where

∇f(x) =
∂f(x)

∂x
is the gradient, i.e. the k-vector of the partial derivatives of f(x). Suppose that f(x) is convex

but not necessarily differentiable. Subgradient generalizes the notion of the gradient to such

cases.

Definition. A k-vector g is a subgradient of f at x if for all y ∈ Rk

f(y)− f(x) ≥ g′(y − x).

The set ∂f(x) of all subgradients at x is called subdifferential of f at x.

∂f(x) = {g ∈ Rk : f(y)− f(x) ≥ g′(y − x) for all y ∈ Rk}.

One can show that if f is differentiable at x, then ∂f(x) = {∇f(x)}. Moreover, if the

subdifferential of f at x is a singleton, i.e. ∂f(x) = {g}, then f is differentiable at x and

g = ∇f(x).

For example, the absolute value function f(x) = |x| is convex, continuous, and differen-

tiable everywhere except at x = 0. Hence, for x > 0, ∂f(x) = {1}. Similarly, for x < 0,

∂f(x) = {−1}. Next, consider x = 0. The condition

|y| − |0| ≥ g(y − 0) for all y ∈ R,
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implies that

−1 ≤ g ≤ 1.

Thus,

(3.3.1) ∂|x| =


−1, x < 0,

[−1, 1], x = 0,

1, x > 0.

Recall that if a convex function f is differentiable and minimized at x∗, then ∇f(x∗) = 0.

Subdifferentials can be used to generalize the property to non-differentiable convex functions.

Proposition 3.3.1. Let M be the set of minima points of a convex function f :

M =
{
x ∈ Rk : f(x) ≤ f(y) for all y ∈ Rk

}
.

Then x ∈ M if and only if 0 ∈ ∂f(x).

Proof. For sufficiency, suppose that 0 ∈ ∂f(x). By the definition of the subgradient, for

all y ∈ Rk

f(y)− f(x) ≥ 0′(y − x) = 0,

or f(x) ≤ f(y) for y ∈ Rk. Hence, x ∈ M.

For necessity, suppose that x ∈ M: for all y ∈ Rk,

f(y)− f(x) ≥ 0 = 0′(y − x).

Hence, by the definition of the subgradient, 0 ∈ ∂f(x). □

For example, |x| is minimized at x = 0 as 0 ∈ [−1, 1] = ∂|0|.

3.4. Analytical solution to the Lasso problem: a special case

A closed-form analytical solution to the Lasso problem exists only in a special case where

the regressors are orthogonal to each other and normalized to have a unit sample second

moment:

(3.4.1) n−1
n∑

i=1

Xi,jXi,l =

0, j ̸= l,

1, j = l.

Note that in this case,

n−1X ′X = Ik,

β̂OLS = n−1X ′Y,

or

β̂OLS
j =

∑n
i=1Xi,jYi∑n
i=1X

2
i,j

= n−1
n∑

i=1

Xi,jYi.
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Define

(x)+ = max{x, 0},

sign(x) =


−1 x < 0,

0 x = 0,

1 x > 0.

Proposition 3.4.1. Suppose that n−1X ′X = Ik. Then the Lasso estimator, i.e. the mini-

mizer of

QLasso
n,λ (b) =

{
1

2n
∥Y −Xb∥22 + λ∥b∥1

}
,

satisfies

β̂j = sign(β̂OLS
j )

(
|β̂OLS

j | − λ
)+

,

j = 1, . . . , k.

Proof. We will introduce some notation first for handling subdifferentials. Let c ∈ R,v
be a k-vector, and S be a set of k-vectors. We define

v + cS = {v + cg : g ∈ S} .

Note that v + cS is a set.

Using the above notation, the subdifferential of the Lasso criterion function can be written

as

∂QLasso
n,λ (b) = n−1X ′ (Y −Xb) + λ∂∥b∥1(3.4.2)

= −(β̂OLS − b) + λ∂∥b∥1

= −


β̂OLS
1 − b1 − λ∂|b1|

...

β̂OLS
k − bk − λ∂|bk|

 .

Hence, the first-order condition for the Lasso estimator of the j-th coefficient is independent

of the other Lasso coefficients: we can solve for β̂ = (β̂1, . . . , β̂k)
′ element-by-element. By

Proposition 3.3.1, the Lasso estimator for the j-th coefficient satisfies

(3.4.3) 0 ∈ β̂OLS
j − β̂j − λ∂|β̂j |.

By (3.3.1), β̂j = 0 if and only if

0 ∈ β̂OLS
j − λ∂|0|

= β̂OLS
j − λ · [−1, 1]

= [β̂OLS
j − λ, β̂OLS + λ].

Equivalently,

β̂OLS
j − λ ≤ 0 ≤ β̂OLS

j + λ,
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or by subtracting β̂OLS
j from each side of the inequalities and multiplying by −1,

−λ ≤ β̂OLS
j ≤ λ.

Hence, β̂j = 0 if and only if

|β̂OLS
j | < λ,

or, equivalently, (
|β̂OLS

j | − λ
)+

= 0.

The Lasso estimator β̂j is nonzero, if and only if |β̂OLS
j | > λ. This occurs when

β̂OLS
j > λ or β̂OLS

j < −λ.

In this case, the first-order condition in (3.4.3) becomes

(3.4.4) β̂j = β̂OLS
j − λ∂|β̂j |,

with ∂|β̂j | = 1 if β̂j > 0, and ∂|β̂j | = −1 if β̂j < 0.

Suppose β̂OLS
j > λ > 0. One can see that a negative β̂j cannot satisfy (3.4.4) as for

β̂j < 0,

β̂OLS
j − λ∂|β̂j | = β̂OLS

j + λ · (−1) = β̂OLS
j + λ > 0.

Hence, β̂j > 0 and ∂|β̂j | = 1, and we have:

β̂j = β̂OLS
j − λ = +

(
|β̂OLS

j | − λ
)+

.

Suppose that β̂OLS
j < −λ < 0. One can see that a positive β̂j cannot satisfy (3.4.4) as for

β̂j > 0,

β̂OLS
j − λ∂|β̂j | = β̂OLS

j − λ · (1) = β̂OLS
j − λ < 0.

Hence, β̂j < 0 and we have

β̂j = β̂OLS
j + λ = −

(
|β̂OLS

j | − λ
)+

.

□

This special case (when the regressors are orthogonal and normalized to have a unit sample

second moment) clearly illustrates the “shrinkage” and “selection” operations performed by

Lasso. First, Lasso shrinks estimates toward zero relatively to the OLS estimates, where the

amount of shrinkage is given exactly by λ. Moreover, if the amount of shrinkage exceeds the

magnitude of a coefficient, it would be set to zero exactly.

Note that similarly to the Ridge regression, Lasso estimates are biased due to the shrink-

age. However, unlike Ridge, Lasso can detect near-zero coefficients and “automatically” shrink

them to zero, which is equivalent to dropping such regressors from the model. If Lasso keeps

only the relevant regressors, one can consider post-Lasso OLS estimation to avoid the bias:

after Lasso, use OLS to regress the dependent variable only on the regressors that survived

the Lasso selection procedure.
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Consider the case of a small number of potential regressors. Since OLS is consistent and

asymptotically normal,

β̂OLS
j = βj +Op

(
1√
n

)
.

Thus, for the irrelevant regressors with βj = 0,

β̂OLS
j = Op

(
1√
n

)
.

To shrink the corresponding Lasso estimates to zero, the penalty term λ has to dominate

the noise component Op(1/
√
n). However, to keep the relevant regressors with βj ̸= 0, the

penalty term λ has to be smaller then minj |βj |.
Suppose that for some δ > 0,

(3.4.5) min
j

|βj | ≥ δ > 0.

Then Lasso can consistently select only the relevant regressors if, for example, we set

λ = λn =

√
log n

n
.

For the irrelevant regressors with βj = 0,

P
(
β̂j = 0 | βj = 0

)
= P

(
|β̂OLS

j | < λn | βj = 0
)

= P

(
Op

(
1√
n

)
<

√
log n

n

)
→ 1.

For the relevant regressors with βj ̸= 0,

P
(
β̂j ̸= 0 | βj ̸= 0

)
= P

(
|β̂OLS

j | > λn | βj ̸= 0
)

= P

(∣∣∣∣βj +Op

(
1√
n

)∣∣∣∣ >
√

log n

n
| βj ̸= 0

)

> P

(
δ +Op

(
1√
n

)
>

√
log n

n

)
→ 1.

However, note that the condition in (3.4.5) rules out small coefficients near zero: βj =

c/
√
n. Consistent detection of such coefficients is not possible as they are of the same order

as the Op(1/
√
n) noise component.

3.5. Lasso: the general case

There is no closed-form solution for the Lasso estimator in the general case. However,

we can discuss its properties using the first-order conditions for the Lasso problem. By
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Proposition 3.3.1 and (3.3.1), the Lasso estimator β̂ solves

− 1

n

n∑
i=1

Xi

(
Yi −X ′

iβ̂
)
+ λnĝ = 0,

where ĝ ∈ ∂∥β̂∥1 is a subgradient at β̂:

ĝj =

sign(β̂j) β̂j ̸= 0,

∈ [−1, 1] β̂j = 0.

Let Ân be the set of Lasso-selected regressors:

Ân = {j : β̂j ̸= 0}.

The first-order conditions for β̂Ân
( the estimated coefficients on the selected regressors) are

given by

(3.5.1)
1

n

n∑
i=1

Xi,Ân

(
Yi −X ′

i,Ân
β̂Ân

)
− λn sign

(
β̂Ân

)
= 0,

where for a k-vector x, sign(x) = (sign(x1), . . . , sign(xk))
′. The set of Lasso-excluded regres-

sors is given by Âc
n. We have j ∈ Âc

n or equivalently β̂j = 0, if and only if

0 = − 1

n

n∑
i=1

Xi,j

(
Yi −X ′

i,Ân
β̂Ân

)
+ λn · ĝj ,

where |ĝj | ≤ 1,

or

(3.5.2)

∣∣∣∣∣ 1n
n∑

i=1

Xi,j

(
Yi −X ′

i,Ân
β̂Ân

)∣∣∣∣∣ ≤ λn.

Let A0 = {j : βj ̸= 0} denote the set of relevant regressors, so the model can be written

as

Yi = X ′
i,A0

βA0 + Ui.

We can now describe the conditions for Lasso selecting the true regressors correctly. Consider

the sign equality condition:

(3.5.3) sign(β̂) = sign(β).

The condition implies that Lasso correctly selects the relevant regressors. This is because for

j ∈ Ac
0, βj = 0, and the condition implies β̂j = 0. Similarly, for j ∈ A0, sign(βj) = ±1, and

therefore β̂j ̸= 0. Hence, the sign equality in (3.5.3) implies that Ân = A0. We have the

following result (Wainwright, 2009).
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Proposition 3.5.1. Suppose that EXi,A0X
′
i,A0

is positive definite. Then sign(β̂) = sign(β)

if and only if

(3.5.4)

sign(βA0) = sign

βA0 +

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λn sign (βA0)

) ,

and for all j ∈ Ac
0,∣∣∣∣∣∣n−1

n∑
i=1

Xi,jX
′
i,A0

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λn sign (βA0)

)
(3.5.5)

− 1

n

n∑
i=1

Xi,jUi

∣∣∣∣∣ ≤ λn.

Proof. Suppose sign(β̂) = sign(β), so that only the correct regressors are selected. By

(3.5.1),

0 =
1

n

n∑
i=1

Xi,A0

(
Yi −X ′

i,A0
β̂A0

)
− λnsign (βA0)

=
1

n

n∑
i=1

Xi,A0

(
Ui −X ′

i,A0
(β̂A0 − βA0)

)
− λnsign (βA0) , or

β̂A0 = βA0 +

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λnsign (βA0)

)
.(3.5.6)

This implies that

sign(βA0) = sign(β̂A0)

= sign

βA0 +

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λnsign (βA0)

) ,

and the condition in (3.5.4) holds. The result in (3.5.5) follows from the fact that the sign

equality in (3.5.3) implies that Ân = A0, and by (3.5.2) and (3.5.6).

Next, suppose that (3.5.4) holds. Consider first the restricted problem that includes only

the relevant regressors:

β̃A0 = argmin
b

1

2n

n∑
i=1

(
Yi −X ′

i,A0
b
)2

+ λ
∑
j∈A0

|bj |.

The corresponding first-order condition is

− 1

n

n∑
i=1

Xi,A0

(
Yi −X ′

i,A0
β̃A0

)
+ λng̃ = 0,

where

g̃ ∈ ∂

∑
j∈A0

|β̃j |

 .
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Hence, the restricted estimator satisfies

(3.5.7) β̃A0 = βA0 +

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λng̃

)
.

The restricted estimator β̃A0 together with β̃Ac
0
= 0 is also the solution to the unrestricted

original problem if

(3.5.8) g̃ = sign(β̃A0),

and

(3.5.9)

∣∣∣∣∣ 1n
n∑

i=1

Xi,j

(
Yi −X ′

i,A0
β̃A0

)∣∣∣∣∣ ≤ λn for all j ∈ Ac
0.

The result in (3.5.4) implies that

(3.5.10) sign
(
β̃A0

)
= sign

βA0 +

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λng̃

) .

By comparing (3.5.10) with (3.5.4), one can see that

g̃ = sign
(
β̃A0

)
= sign (βA0)

is a feasible solution. The condition in (3.5.9) is also satisfied because of (3.5.5). Hence,

β̃A0 = β̂A0 , and the sign equality sign(βA0) = sign(β̂A0) holds. □

For a vector x, define [x]j = xj . Note that sign(xj) = ±1 if and only if |xj | > 0. Hence,

we can restate the result of Proposition 3.5.1 as follows (Belloni and Chernozhukov, 2011,

Lemma 4): Ân = A0, i.e. Lasso correctly selects only the relevant regressors, if and only if

for all j ∈ A0 ∣∣∣∣∣∣βj +
(n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λnsign (βA0)

)
j

∣∣∣∣∣∣ > 0,(3.5.11)

and for all j ̸∈ A0∣∣∣∣∣∣n−1
n∑

i=1

Xi,jX
′
i,A0

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui − λnsign (βA0)

)
(3.5.12)

− 1

n

n∑
i=1

Xi,jUi

∣∣∣∣∣ ≤ λn.

Suppose that

λn =

√
log n

n
.

The condition in (3.5.11) becomes for all j ∈ A0∣∣∣∣∣βj +Op(1)

(
Op

(
1√
n

)
−O

(√
log n

n

))∣∣∣∣∣ = |βj + op(1)| > 0.
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It is satisfied with probability approaching one as long as minj∈A0 |βj | ≥ δ > 0 for some δ.

Next consider the condition in (3.5.12): for all j ̸∈ A0∣∣∣∣∣∣Op

(
1√
n

)
+ λn · n−1

n∑
i=1

Xi,jX
′
i,A0

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1

sign (βA0)

∣∣∣∣∣∣ ≤ λn.

The condition may fail with a positive probability even asymptotically when for some j ̸∈ A0

the following term is large:

n−1
n∑

i=1

Xi,jX
′
i,A0

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1

sign (βA0)

=EXi,jX
′
i,A0

(
EXi,A0X

′
i,A0

)−1
sign (βA0) + op(1).

Thus, to ensure that Lasso correctly excludes irrelevant regressors

EXi,jX
′
i,A0

(
EXi,A0X

′
i,A0

)−1
sign (βA0)

has to be below one in absolute value for all j /∈ A0. Such conditions are known in the literature

as the irrepresentability property (Zhao and Yu, 2006) and imply that the coefficients in

the regressions of irrelevant regressors against the relevant ones are small. Thus, in the

general case, Lasso may include irrelevant regressors if they are highly correlated with the

true regressors in model A0.

3.6. Weighted and adaptive Lasso

A nice property of regression (and OLS) is that the coefficients automatically adjust when

regressors are re-scaled (for example, when the units of measurement change). If we re-scale

a regressor by a constant c, the coefficient is adjusted accordingly:

Yi = βXi + Ui =
β

c
(Xi · c) + Ui = β∗X∗

i + Ui,

where β∗ = β/c and X∗
i = Xi · c. The re-scaling would also automatically be applied to the

standard errors with no effect on statistical significance. Hence, when estimating a model by

OLS, one does not have to worry about the units of measurement of Xi.

Unfortunately, the presence of penalty terms such as ∥b∥1 makes estimation sensitive to

the units of measurement. Consider

n∑
i=1

(Yi − b1Xi,1 − . . .− bkXi,k)
2 + λ

k∑
j=1

|bj |,

and suppose we scale Xi,1 by a large constant c > 1. To balance the equation, the coefficient

b1 is now expected to be of a smaller magnitude by 1/c. It is now more likely that the

corresponding Lasso estimator would shrink to zero. Unfortunately, by simply manipulating

the units of measurements of different regressors, we can make some of them more (or less)

likely to be shrunk to zero by Lasso.

A solution often used in practice (and automatically implemented as the default in some

software packages, such as “glmnet()” in R) is to standardize all regressors so that they all
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have the same scale. Instead of Xi,j one can use

Xi,j − X̄j

σ̂j
,

where

X̄j =
1

n

n∑
i=1

Xi,j ,

σ̂2
j =

1

n

n∑
i=1

(
Xi,j − X̄j

)2
.

Since after standardization, all regressors have the same scale (equal to one), the same shrink-

age/penalty parameter can be applied to all of them. However, this solution is not ideal as it

changes the interpretation of the coefficients.

Since the source of the problem is potentially different scaling of different coefficients,

an alternative solution is to apply different shrinkage to different coefficients. This idea

is implemented in so-called weighted Lasso. Let w1, . . . , wk be some known (non-negative)

weights. Weighted Lasso solves

min
b1,...,bk

 1

2n

n∑
i=1

Yi −
k∑

j=1

bjXi,j

2

+ λ

k∑
j=1

wj |bj |

 .

For example, to adjust for the different scales of different regressors, one may use

wj =

√√√√n−1

n∑
i=1

X2
i,j .

Alternatively, adaptive Lasso adjusts the weights for individual coefficients in a data-

dependent manner based on preliminary estimates of the coefficients. Let β̃1, . . . , β̃k denote

some preliminary estimates of the true coefficients β1, . . . , βk. For example, they can be the

OLS estimates or the Ridge estimates when OLS cannot be computed. Adaptive Lasso sets

the weights as

wj =
1

|β̃j |
, j = 1, . . . , k.

The main idea of adaptive Lasso is that if β̃j is a good initial guess for βj , e.g. because

β̃j →p βj , it can be used to find the amount of shrinkage to be applied to different parameters.

We can expect |β̃j | to be large for βj that is further away from zero, resulting in a smaller

weight in the penalty term. Similarly, larger weights are given to coefficients closer to zero.

Suppose that β̃j = βj +Op(n
−1/2), in which case

wj =
1

|β̃j |
=

1∣∣βj +Op(n−1/2)
∣∣ ,
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it follows that

wj =

Op(1) j ∈ A0,

Op(
√
n) j ̸∈ A0.

Suppose that we set

λn =

√
log n

n
.

Correct regressors are selected if for all j ∈ A0∣∣∣∣∣∣βj +
(n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui −O

(√
log n

n

)
sign (βA0)

)
j

∣∣∣∣∣∣
=

∣∣∣∣βj +Op

(
1√
n

)
+Op

(√
log n

n

)∣∣∣∣
>0.

The condition holds provided that the true non-zero coefficients are bounded away from zero

in absolute value.

By (3.5.12), adaptive Lasso eliminates the irrelevant regressors if for all j /∈ A0∣∣∣∣∣∣n−1
n∑

i=1

Xi,jX
′
i,A0

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)−1(
1

n

n∑
i=1

Xi,A0Ui −Op

(√
log n

n

))

− 1

n

n∑
i=1

Xi,jUi

∣∣∣∣∣ ≤ Op

(√
log n

n

)
.

Note that the rates from the penalty term are now different inside and outside the absolute

value, with the outside term converging to zero at a slower rate. We now have that adaptive

Lasso excludes regressors j /∈ A0 when∣∣∣∣∣Op

(√
1

n

)
+Op

(√
log n

n

)∣∣∣∣∣ ≤ Op

(√
log n

n

)
,

which holds with probability approaching one. Thus, adaptive Lasso does not require the

irrepresentability condition for consistency.

3.7. Sparse high-dimensional models

Suppose that the number of potential regressors is large

k → ∞ as n → ∞.

It is often assumed in such cases that the true model A0 is small, and |A0| is fixed: only a

small (fixed) number of the potential k regressors have non-zero coefficients. In such cases,

we say that A0 is sparse. In order to eliminate many irrelevant regressors, we need that

sup
j /∈A0

∣∣∣∣∣ 1n
n∑

i=1

Xi,jUi + λn · EXi,jX
′
i,A0

(
EXi,A0X

′
i,A0

)−1
sign (βA0) + op(1)

∣∣∣∣∣ ≤ λn.
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Provided that the irrepresentability condition holds, we have to consider

sup
j /∈A0

∣∣∣∣∣ 1n
n∑

i=1

Xi,jUi

∣∣∣∣∣ ,
where the supremum is over a large number of terms of order k with k → ∞.

Recall that n−1/2
∑n

i=1Xi,jUi is asymptotically normal:

n−1/2
n∑

i=1

Xi,jUi →d ξk ∼ N(0, σ2),

where for simplicity we assume that E(U2
i | Xi,j) = σ2 and n−1

∑n
i=1X

2
i,j = 1. One can show

that

E

(
max
1≤j≤k

|ξj |
)

≤
√
2σ2 log k +O

(
1√
log k

)
.

Hence,

sup
j /∈A0

∣∣∣∣∣ 1n
n∑

i=1

Xi,jUi

∣∣∣∣∣ = Op

(√
2σ2 log k

n

)
.

Thus, to account for a large number of potential regressors, we can set the penalty parameter

as

λn ∼
√

2σ2 log(kn)

n
.

Note that σ2 in the above expression measures the noise level and is used to adjust the

penalty parameter for the scale of the residual term Ui. Estimation of σ2 is non-trivial in

high dimensional models, and Belloni and Chernozhukov (2011) suggest an iterative approach.

First, use σ̂2
Y = n−1

∑n
i=1(Yi−Ȳ )2, where Ȳ is the average of Y ’s in the sample. The estimator

is conservative as it also contains the portion of the variation of Y due to X’s. However, σ̂2
Y

can be used for the first pass of Lasso. Given the corresponding Lasso estimates β̌, one can

compute

σ̂2 = n−1
n∑

i=1

(Yi −X ′
iβ̌)

2,

which can be used to determine the penalty parameter and a subsequent application of Lasso.



CHAPTER 4

Post- and double- Lasso

Post-Lasso is an OLS regression that includes only the controls that survive the Lasso

selection step. Since Lasso is unlikely to detect regressors with small coefficients, the naive

application of post-Lasso can result in substantial bias. The bias in post-Lasso can be elim-

inated using the double-Lasso or the partialling out approaches covered in this section. The

double-Lasso or partialling out steps are needed when the goal is the consistent estimation of

some important coefficients instead of the prediction of outcome variables.

4.1. Post-Lasso

Consider the regression model

Yi = αDi +X ′
iβ + Ui,(4.1.1)

E(Ui | Di, Xi) = 0,

where Di is the main regressor of interest, and Xi includes k potential covariates or controls:

β = (β1, . . . , βk)
′. The researcher wants to always include Di in the regression but needs to

select a list of relevant controls from Xi. Thus, when estimating the model by Lasso, the

coefficient on Di is excluded from the penalty term.

Let A0 denote the set of relevant controls:

A0 = {j ∈ {1, . . . , k} : βj ̸= 0} .

Let β̂λ = (β̂1,λ, . . . , β̂k,λ)
′ denote a Lasso estimator of β = (β1, . . . , βk)

′. Such estimators are

constructed, for example, using a Lasso regression of Yi against Di and Xi with no penalty

applied to the coefficient on Di. The estimated set of selected controls is given by

Â =
{
j ∈ {1, . . . , k} : β̂j ̸= 0

}
.

Let Xi,Â denote the sub-vector of Xi that only the controls in Â. A post-Lasso estimator of

α can be constructed using the OLS regression of Yi against Di and Xi,Â :

Yi = α̂(Â) ·Di +X ′
i,Âβ̂Â + Ûi.

Here the notation α̂(Â) is used to indicate that the estimator is constructed using the Lasso-

selected set of controls Â. Note that the coefficients on the vector of included controls Xi,Â
are re-estimated in post-Lasso, since the Lasso estimates β̂λ are biased.

The main concern about the post-Lasso estimator α̂(Â) is if its properties are affected by

the Lasso-selection first stage. Let α̂(A0) denote the infeasible OLS estimator of α when the
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true set of controls A0 is known:

Yi = α̂(A0) ·Di +X ′
i,A0

β̃A0 + Ũi,

where Xi,A0 denotes the true vector of controls defined by A0.

The following proposition exploits the consistent selection property of Lasso.

Proposition 4.1.1. Suppose that P
(
Â = A0

)
→ 1 as n → ∞. Suppose further that

√
n(α̂(A0) − α) →d N(0, ω2(A0)), where ω2(A0) > 0 denotes the asymptotic variance of

the infeasible estimator α̂(A0) when the true model is known. Then,

√
n(α̂(Â)− α) →d N(0, ω2(A0)).

Proof. Let Φ(·) denote the standard normal CDF. Note that if ξ ∼ N(0, ω2), then

Z = ξ/ω ∼ N(0, 1), and P (ξ ≤ x) = P (ξ/ω ≤ x/ω) = P (Z ≤ x/ω) = Φ(x/ω). For x ∈ R,

P
(√

n(α̂(Â)− α) ≤ x
)

= P
(√

n(α̂(Â)− α) ≤ x, Â = A0

)
+ P

(√
n(α̂(Â)− α) ≤ x, Â ≠ A0

)
= P

(√
n(α̂(A0)− α) ≤ x

)
+ o(1)

→ Φ

(
x

ω(A0)

)
,

where o(1) denotes terms converging to zero as n → ∞. The second equality holds by the

following argument:

0 ≤ P
(√

n(α̂(Â)− α) ≤ x, Â ≠ A0

)
≤ P

(
Â ≠ A0

)
→ 0.

□

Proposition 4.1.1 suggests that the post-Lasso estimator can be as good as the OLS

estimator under a known A0. However, the results require Lasso to detect true controls with

probability approaching one. Unfortunately, that does not hold for controls in A0 with small

non-zero coefficients.

Suppose that
X ′X

n
= Ik,

and recall that, in this case, the Lasso estimator satisfies

β̂j,λ = sign(β̃j)
(
|β̃j | − λ

)+
,

where β̃j is the corresponding OLS estimator, and

β̃j = βj +Op

(
1√
n

)
.

Recall that we set the penalty parameter λ to over-rule the noise

λ = 2σ

√
2 log(kn)

n
.

The Lasso coefficient β̂j,λ is shrunk all the way to zero when |β̃j | < λ.
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Suppose that βj is small. Since the magnitude of statistics is measured relative to the

1/
√
n rate of convergence of the noise part, small coefficients can be modeled as

βj =
c√
n

for some constant c. I.e. the coefficient βj is of the same magnitude as estimation noise. Such

coefficients will be eliminated by Lasso with probability approaching one:

P

(∣∣∣∣ c√
n
+Op

(
1√
n

)∣∣∣∣ < 2σ

√
2 log(kn)

n

)
→ 1.

This simple model illustrates that Lasso cannot distinguish small regression coefficients from

the noise, and the corresponding controls will be selected by Lasso with a high probability.

4.2. Bias of a naive post-Lasso estimator

One may wonder that since Lasso eliminates only controls with very small coefficients,

it might not have a substantial impact on the post-Lasso estimator of the main parameter

of interest. However, that depends on the relationship between the omitted controls and the

main regressor, as we illustrate in the following simple example.

Consider the following model with the main regressor Di and a single control variable Xi:

(4.2.1) Yi = αDi + βXi + Ui,

i.e. β ∈ R. Suppose that the coefficient β is small in the sense discussed above

β =
c√
n
.

Suppose further that Lasso has eliminated Xi from the model and Â = ∅. The post-Lasso

estimator of α is estimated by a simple regression of Yi against Di:

α̂(∅) =
∑n

i=1DiYi∑n
i=1D

2
i

= α+ β

∑n
i=1DiXi∑n
i=1D

2
i

+

∑n
i=1DiUi∑n
i=1D

2
i

,

or
√
n(α̂(∅)− α) = c

∑n
i=1DiXi∑n
i=1D

2
i

+
n−1/2

∑n
i=1DiUi

n−1
∑n

i=1D
2
i

.

The second term on the right-hand side of the above equation is the usual asymptotically

normal component with a zero mean. The asymptotic bias of the post-Lasso estimator is

determined by the first term. Note that

γ̂ =

∑n
i=1DiXi∑n
i=1D

2
i

is the OLS estimator in the simple regression of the control Xi against the main regressor Di:

Xi = γDi + ηi.

Hence,

γ̂ = γ +Op

(
1√
n

)
,

and unless γ = o(1), the naive post-Lasso estimator α̂(∅) suffers from an asymptotic bias.
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We conclude that the bias of the naive post-Lasso estimator can be substantial if there

is a substantial correlation between the main regressor Di and controls with small non-zero

coefficients.

4.3. Double Lasso

Belloni et al. (2014) developed a procedure that addresses the shortcoming of the naive

Lasso approach. Since the bias of a post-Lasso estimator depends on the magnitude of the

correlation between the main regressor Di and the control variables in Xi, one can use a Lasso

regression of Di against Xi to detect correlated controls.

Consider the following regression estimated by Lasso:

(4.3.1) Di =

k∑
j=1

ρjXi,j + ηi.

Controls with large enough coefficients ρj will be selected by Lasso with a probability ap-

proaching one. Controls with small coefficients ρj will be dropped by Lass. However, in view

of the discussion in the previous section, omitting such controls does not result in a substantial

bias for the post-Lasso estimator of α.

By combining equations (4.1.1) and (4.3.1), we can write a reduced-form equation that

connects Yi with controls in Xi:

Yi = α

 k∑
j=1

ρjXi,j + ηi

+

k∑
j=1

βjXi,j + Ui

=

k∑
j=1

(αρj + βj)Xi,j + (αηi + Ui)

=

k∑
j=1

πjXi,j + ϵi,(4.3.2)

where

πj = αρj + βj ,

ϵi = αηi + Ui.

Hence, a control Xi,j is useful for predicting Yi if it directly affects Yi through βj , or affects

Di through ρj , or both.

Let ρ̂λ = (ρ̂1,λ, . . . , ρ̂k,λ)
′ denote the Lasso estimator for equation (4.3.1). Let π̂λ =

(π̂1,λ, . . . , π̂k,λ)
′ be the Lasso estimator for equation (4.3.2). The double Lasso algorithm

proposed in Belloni et al. (2014) works as follows.

Step 1 Use Lasso on equation (4.3.1) to select controls that are useful for predicting Di.

Let ÂD denote the corresponding set of selected controls:

ÂD = {j ∈ {1, . . . , k} : ρ̂j,λ ̸= 0} .



4.4. A PARTIALLING OUT APPROACH 53

Step 2 Use Lasso on equation (4.3.2) to select controls that are useful for predicting Yi.

Let ÂY denote the corresponding set of selected controls:

ÂY = {j ∈ {1, . . . , k} : π̂j,λ ̸= 0} .

Step 3 Estimate α using the OLS regression of Yi against Di and controls in ÂD ∪ ÂY .

Note that post-Lasso Step 3 in the above algorithm includes controls selected either for pre-

dicting Di or for predicting Yi. A control is excluded from the post-Lasso step only if it was

dropped in steps 1 and 2 of the algorithm. I.e., a control Xi,j is excluded from the post-Lasso

step when both ρj and βj are small, which provides protection against the post-Lasso bias.

The double Lasso procedure with post-Lasso is implemented in R package “hdm” (see

Chernozhukov et al., 2016a,b).

4.4. A partialling out approach

Another post-Lasso approach that avoids the bias of the naive post-Lasso estimator is

based on the partialling out idea or the orthogonality principle. Recall that the OLS estimator

of α in (4.1.1) can be written as

α̃OLS =
D′MXY

D′MXD
,

where

MX = In −X(X ′X)−1X ′,

and

Ỹ = MXY,(4.4.1)

D̃ = MXD,(4.4.2)

denote the residuals from the respective OLS regressions of Y against X, and of D against

X. Hence, the OLS estimator of α can be written as

α̃OLS =
D̃′Ỹ

D̃′D̃
,

where the equality holds because MX is symmetric and idempotent. In other words, α̃OLS can

be constructed by regressing the residuals Ỹ of the dependent variable against the residuals

D̃ of the main regressor.

When there are many potential covariates in X, α̃OLS can have a very large variance as

we discussed in Chapter 1. The partialling out approach proposes to replace (4.4.1)–(4.4.2)

with the residuals from the corresponding post-Lasso regressions, see Chernozhukov et al.

(2016b).

Step 1 Use Lasso on equation (4.3.1) to select controls that are useful for predicting Di.

Let ÂD denote the corresponding set of selected controls:

ÂD = {j ∈ {1, . . . , k} : ρ̂j,λ ̸= 0} .

Regress Di on the controls in ÂD, and save the residuals as D̃PL
i .
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Step 2 Use Lasso on equation (4.3.2) to select controls that are useful for predicting Yi.

Let ÂY denote the corresponding set of selected controls:

ÂY = {j ∈ {1, . . . , k} : π̂j,λ ̸= 0} .

Regress Yi on the controls in ÂY , and save the residual as Ỹ PL
i .

Step 3 Estimate α using the OLS regression of Ỹ PL
i against D̃PL

i .

We compare the partialling out approach with a naive post-Lasso estimator α̂Naive. The latter

is constructed by first using a Lasso regression of Yi against Di and all Xi’s, selecting controls

from Xi, and then regressing Yi against Di and the selected controls. Let β̂Naive denote the

estimated coefficients on Xi in the second stage with zero values for the controls dropped by

Lasso. The naive post-Lasso estimator α̂Naive satisfies

α̂Naive =

∑n
i=1Di(Yi −X ′

iβ̂Naive)∑n
i=1D

2
i

= α+

∑n
i=1Di(Ui −X ′

i(β̂Naive − β))∑n
i=1D

2
i

,

or

(4.4.3)
√
n(α̂Naive−α) =

n−1/2
∑n

i=1DiUi

n−1
∑n

i=1D
2
i

+
1

n−1
∑n

i=1D
2
i

k∑
j=1

√
n(β̂j,Naive−βj)

1

n

n∑
i=1

DiXi,j .

Suppose that βj = c/
√
n for some j and therefore β̂j,Naive = 0. If Di and Xi,j are correlated,

1

n

n∑
i=1

DiXi,j →p EDiXi,j ̸= 0,

and as a result, the naive post-Lasso estimator α̂Naive suffers from an asymptotic bias.

For the post-Lasso estimator with partialling out, Di in (4.4.3) is replaced with D̃PL
i . If

the correlation between Di and Xi,j is sufficiently strong, Xi,j will be selected in Step 1 of

the algorithm with a probability approaching one. In this case, by construction,

1

n

n∑
i=1

D̃PL
i Xi,j = 0.

Hence, the partialling out step protects post-Lasso against the bias due to small βj ’s.

The partialling out procedure is implemented in the R package “hdm” (see Chernozhukov

et al., 2016a,b).



CHAPTER 5

Lasso and instrumental variables estimation

This chapter discusses Lasso and post-Lasso-based methods for instrumental variable (IV)

estimation. We discuss several scenarios: many potential IVs and few controls, many potential

controls and few IVs, and many potential IVs and many controls.

5.1. Instrumental variables

Consider the model:

(5.1.1) Yi = αDi + Ui,

where Di is the main endogenous regressor of interest:

E(Ui | Di) ̸= 0.

and recall that the OLS estimator of α is inconsistent. We assume that there is an l×1 vector

of potential instruments Zi such that

(5.1.2) E(Ui | Zi) = 0,

and

Di = Z ′
iπ + Vi,(5.1.3)

E(Vi | Zi) = 0,(5.1.4)

where π = (π1, . . . , πl)
′.

The equations (5.1.1) and (5.1.3) can be written in the matrix form as

Y = αD + U,

D = Zπ + V,

where Y is the n×1 vector of observations on the dependent variable, D is the n×1 vector of

observations on the regressor, and Z is the n× l matrix of the instruments. The n× 1 vectors

U and V are defined similarly. The 2SLS estimator of α is given by

α̂ =
D′PZY

D′PZD
,

where

PZ = Z(Z ′Z)−1Z ′.

Note that

D̂ = PZD = Z(Z ′Z)−1Z ′D = Zπ̂,
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where

π̂ = (Z ′Z)−1Z ′D

is the OLS estimator of π in (5.1.3). The 2SLS estimator can be equivalently written as

α̂ =
D̂′Y

D̂′D
=

∑n
i=1 D̂iYi∑n
i=1 D̂iDi

.

We say that

D̂i =
l∑

j=1

π̂jZi,j

is the IV for Di.

As we discuss in Chapter 1, the 2SLS estimator is inconsistent when there are many IVs:

l/n → c > 0. However, suppose that the first-stage equation (5.1.3) is sparse. Define

A0 = {j ∈ {1, . . . , l} : πj ̸= 0} .

Let l∗ denote the number of elements in A0:

l∗ = |A0| .

While it is possible that there are many potential IVs, l → ∞ as n → ∞, we assume that l∗

is small and keep l∗ as fixed.

Let Zi,A0 denote the l∗-sub-vector of Zi that consists only of the IVs in A0. Let πA0

denote the corresponding sub-vector of π. One can show that when the residuals in (5.1.1)

are homoskedastic, i.e.

(5.1.5) E
(
U2
i | Di

)
= σ2,

the efficient IV estimator of α is given by

α̂∗ =

∑n
i=1(Z

′
i,A0

πA0)Yi∑n
i=1(Z

′
i,A0

πA0)Di
.

In other words, the best IV is given by

E (Di | Zi) = Z ′
i,A0

πA0 .

Note that the above equation follows from (5.1.3) and (5.1.4).

Proposition 5.1.1. Suppose that iid data are generated according to (5.1.1), (5.1.2), (5.1.3),

(5.1.4), and (5.1.5). Then,

√
n (α̂∗ − α) →d N

(
0,

σ2

E(Z ′
i,A0

πA0)
2

)
.

Proof. To simplify the notation, define

(5.1.6) ζ∗i = Z ′
i.A0

πA0 ,

and write the first stage as

Di = ζ∗i + Vi.
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The estimator α̂∗ satisfies

√
n (α̂∗ − α) =

n−1/2
∑n

i=1 ζ
∗
i Ui

n−1
∑n

i=1 ζ
∗
i (ζ

∗
i + Vi)

.

Note that

(5.1.7) Eζ∗i Ui = E (ζ∗i E(Ui | Zi)) = 0.

By the CLT,

n−1/2
n∑

i=1

ζ∗i Ui →d N
(
0, E (ζ∗i Ui)

2
)
,

and

E (ζ∗i Ui)
2 = E

(
ζ∗2i E(U2

i | Zi)
)
=
(
Eζ∗2i

)
σ2.

Similarly to (5.1.7),

Eζ∗i Vi = 0.

Hence, by LLN,

n−1
n∑

i=1

ζ∗i (ζ
∗
i + Vi) →p Eζ∗2i .

We conclude

√
n (α̂∗ − α) →d

N
(
0,
(
Eζ∗2i

)
σ2
)

Eζ∗2i
= N

(
0,

(
Eζ∗2i

)
σ2(

Eζ∗2i
)2
)

= N

(
0,

σ2

Eζ∗2i

)
,

and the result follows by (5.1.6). □

While other functions of Zi can be used to instrument Di ,

ζ∗i = Z ′
i.A0

πA0

is the most efficient IV as we show below. Define a function of IVs

ζi = f(Zi),

where

f : Rl → R.

Note that

EζiUi = 0,

which holds by exactly the same arguments as in (5.1.7) in the proof of Proposition 5.1.1.

Hence, ζi = f(Zi) is an IV if

EζiDi = Eζiζ
∗
i ̸= 0.

The IV estimator corresponding to f is given by

α̂f =

∑n
i=1 ζiYi∑n
i=1 ζiDi

.

We have the following result.
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Proposition 5.1.2. Suppose that the assumptions of Proposition 5.1.1 hold and

Eζiζ
∗
i ̸= 0.

Then,

√
n (α̂f − α) →d N

(
0,

σ2Eζ2i
(Eζiζ∗i )

2

)
.

Moreover,
σ2Eζ2i
(Eζiζ∗i )

2 ≥ σ2

Eζ∗2i
.

Proof. Write

√
n (α̂f − α) =

n−1/2
∑n

i=1 ζiUi

n−1
∑n

i=1 ζiDi

=
n−1/2

∑n
i=1 ζiUi

n−1
∑n

i=1 ζi(ζ
∗
i + Vi)

→d
N(0, σ2Eζ2i )

Eζiζ∗i

= N

(
0,

σ2Eζ2i
(Eζiζ∗i )

2

)
,

which establishes the first claim.

For the second claim,

Eζ∗2i − (Eζiζ
∗
i )

2

Eζ2i
=

Eζ∗2i Eζ2i − (Eζiζ
∗
i )

2

Eζ2i
,

and the result follows by Cauchy-Schwartz inequality

(Eζiζ
∗
i )

2 ≤ Eζ∗2i Eζ2i .

□

Note that in practice, the first-stage equation can be a non-linear function f∗(·) of a small

number of some “primitive” IVs Wi = (Wi,1, . . . ,Wi,p)
′:

Di = f∗(Wi) + Vi,

E(Ui | Wi) = 0,

E(Vi | Wi) = 0,

where the function f∗ : Rp → R is unknown. In that case, the efficient IV is given by

ζ∗i = f∗(Wi).
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Since the function f∗(Wi) is unknown, we can try to approximate it using a polynomial

approximation with interaction terms between the primitive IVs:

f∗(Wi) = δ1Wi,1 + δ2Wi,2 + . . .+ δpWi,p

+ δp+1W
2
i,1 + δp+2Wi,1Wi,2 . . .+ δ2pWi,1Wi,p

+ δ2p+1W
2
i,2 + . . . .

The vector of IVs Zi then will be given by

Z ′
i =

(
Wi,1,Wi,2, . . . ,Wi,p,W

2
i,1, (Wi,1Wi,2), . . . , (Wi,1Wi,p),W

2
i,2, . . .

)
.

If we try to approximate f∗(·) as closely as possible, we can end up with a long list of

polynomial and interaction terms between the primitive IVs with potentially only a few of

them playing a significant role in approximating f∗(·). In such cases, we can write

f∗(Wi) = Z ′
i,A0

πA0 + ri,

where A0 is now the list of a small number of important approximation terms in Zi, and ri is

a small (remainder) approximation error. As discussed in Belloni et al. (2012, p. 2378), there

is an approximating set of “effective” IVs such that

l∗ = |A0| = o(n),√√√√ 1

n

n∑
i=1

r2i = Op

(√
s

n

)
.

To avoid the bias of many IVs and to estimate α as precisely as possible, we need to be able

to select the effective IVs Zi,A0 .

Belloni et al. (2012) proposed the following algorithm for Lasso/post-Lasso selection of

IVs and estimation of the IV regression model defined by (5.1.1) and (5.1.3).

Step 1 Estimate the first stage equation in (5.1.3) using Lasso. Let Â denote the set of

selected IVs:

Â = {j ∈ {1, . . . , l} : π̂j,λ ̸= 0} ,

where π̂λ = (π̂1,λ, . . . , π̂l,λ)
′ is the vector of the corresponding Lasso-estimated

coefficients.

Step 2 Estimate the first stage by OLS using only the instruments in Â. Construct

ζ̂i(Â) = Z ′
i,Âπ̂Â,

where Zi,Â is the sub-vector of the instruments selected in Step 1, and π̂Â is the

vector of post-Lasso OLS estimates for the first stage equation:

π̂Â =

(
n∑

i=1

Zi,ÂZ
′
i,Â

)−1 n∑
i=1

Zi,ÂDi.
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Step 3 Estimate (5.1.1) using ζ̂i(Â) as the IV for Di:

α̂(Â) =

∑n
i=1 ζ̂i(Â)Yi∑n
i=1 ζ̂i(Â)Di

.

Note that in Step 2, we use the post-Lasso estimates of the coefficients on the selected IVs

instead of the Lasso estimates from Step 1 to eliminate the shrinkage bias.

With a probability approaching one, the above algorithm in Step 1 selects the few instru-

ments that have a significant relationship to Di. The dropped IVs are either unrelated to Di

or have a very small impact not contributing to the efficient variance of the IV estimator in

5.1.1. Hence, the post-Lasso IV estimator α̂(Â) can achieve the same level of efficiency with

a probability approaching one.

5.2. Many potential IVs and few controls

In a typical situation, the second-stage equation also includes a number of exogenous

covariates/controls. Thus, in practice we often have to consider the following model:

Yi = αDi +X ′
iβ + Ui,(5.2.1)

E(Ui | Xi) = 0.

For example, the intercept is typically one of the elements of Xi. The exogenous controls with

non-zero β’s should be included in the first stage as they are typically also correlated with

the endogenous regressor Di.

Di = Z ′
iπ +X ′

iγ + Vi,(5.2.2)

E(Vi | Zi, Xi) = 0.

Omitting relevant controls, i.e. controls that related to Yi and Di, from the first stage in IV

estimation can result in inconsistent estimates, see Appendix 5.5.

When the number of controls is small, Chernozhukov et al. (2016b) propose the following

algorithm.

Step 1 Estimate the first stage equation in (5.2.2) using Lasso. Force inclusion of Xi’s

by assigning zero penalty weights to their coefficients. Let Â denote the set of

selected IVs:

Â = {j ∈ {1, . . . , l} : π̂j,λ ̸= 0} ,

where π̂λ = (π̂1,λ, . . . , π̂l,λ)
′ is the vector of the corresponding Lasso-estimated

coefficients.

Step 2 Estimate the first stage by OLS (post-Lasso) using only the instruments in Â and

the controls Xi. Construct

ζ̂i(Â) = Z ′
i,Âπ̂Â +X ′

iγ̂(Â),

where Zi,Â is the sub-vector of the instruments selected in Step 1, and π̂Â and

γ̂(Â) are the post-Lasso OLS estimates for the first stage equation.
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Step 3 Estimate (5.1.1) using ζ̂i(Â) as the IV for Di:(
α̂(Â)

β̂(Â)

)
=

(
n∑

i=1

(
ζ̂i(Â)

Xi

)(
Di

Xi

)′)−1 n∑
i=1

(
ζ̂i(Â)

Xi

)
Yi.

We can also provide a more convenient expression for the post-Lasso IV estimator α̂(Â).

Write the second- and first-stage equations in the matrix form:

Y = αD +Xβ + U,

D = Zπ +Xγ + V.

Let MX be the projection matrix on the space orthogonal to the span of X:

MX = In −X(X ′X)−1X ′.

Since

MXX = 0,

we have ‌

MXY = αMXD +MXU,

MXD = MXZπ +MXV.

Recall that

Ỹ = MXY,

D̃ = MXD,

Z̃ = MXZ

are the residuals from the OLS regressions against X of Y , D, and Z respectively. Using the

partialling out arguments, the post-Lasso IV estimator α̂(Â) can be computed as follows.

Step 1 Estimate the first stage equation D̃ = Z̃π + Ṽ using Lasso. Let Â denote the set

of selected IVs:

Â = {j ∈ {1, . . . , l} : π̂j,λ ̸= 0} ,

where π̂λ = (π̂1,λ, . . . , π̂l,λ)
′ is the vector of the corresponding Lasso-estimated

coefficients.

Step 2 Estimate the first stage by OLS (post-Lasso) using only the instruments in Â and

the controls Xi. Construct

ζ̃i(Â) = Z̃ ′
i,Âπ̂Â,

where Z̃i,Â is the sub-vector of the instruments selected in Step 1, and π̂Â is the

post-Lasso OLS estimator for the first stage equation:

π̂Â =
(
Z̃ ′
ÂZ̃Â

)−1
Z̃ ′
ÂD̃.
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Step 3 Estimate Ỹ = αD̃ + Ũi using ζ̃i(Â) as the IV for Di:

α̂(Â) =

∑n
i=1 ζ̃i(Â)Ỹi∑n
i=1 ζ̃i(Â)D̃i

.

The two algorithms described in this section produce identical estimates of α by the partialling

out argument.

5.3. Few IVs and many controls

Consider again the IV regression model

Yi = αDi +X ′
iβ + Ui,

Di = Z ′
iπ +X ′

iγ + Vi.

We assume now that the number of IVs l is small, and all l IVs are used in estimation. On

the other hand, the number of potential controls k is large, however, the model is sparse: the

set of relevant controls

A0 = {j ∈ {1, . . . , k} : βj ̸= 0}

is small. We now need to select the relevant controls from Xi.

The procedure can again be based on the partialling out arguments. Chernozhukov et al.

(2016b) describe the following algorithm.

Step 1 Estimate by Lasso Di =
∑k

j=1 η
D
j Xi,j + ϵDi . Let ÂD denote the set of selected

controls:

ÂD =
{
j ∈ {1, . . . , k} : η̂Dj,λ ̸= 0

}
,

where η̂D1,λ, . . . , η̂
D
k,λ are the corresponding Lasso-estimated coefficients. Post-Lasso:

Regress Di on the controls in ÂD, and save the residuals as D̃PL
i .

Step 2 Estimate by Lasso Yi =
∑k

j=1 η
Y
j Xi,j + ϵYi . Let ÂY denote the set of selected

controls:

ÂY =
{
j ∈ {1, . . . , k} : η̂Yj,λ ̸= 0

}
,

where η̂Y1,λ, . . . , η̂
Y
k,λ are the corresponding Lasso-estimated coefficients. Post-Lasso:

Regress Yi on the controls in ÂY , and save the residuals as Ỹ PL
i .

Step 3 For m = 1, . . . , l, estimate by Lasso Zi,m =
∑k

j=1 η
Zm
j Xi,j + ϵZm

i . Let ÂZm denote

the set of selected controls:

ÂZm =
{
j ∈ {1, . . . , k} : η̂Zm

j,λ ̸= 0
}
,

where η̂Zm
1,λ , . . . , η̂

Zm
k,λ are the corresponding Lasso-estimated coefficients. Post-

Lasso: Regress Zi,m on the controls in ÂZm , and save the residuals as Z̃PL
i,m. Note

that the procedure must be repeated for all m = 1, . . . , l IVs.

Step 4 Construct the IV:

ζ̃i =
l∑

m=1

π̂mZ̃PL
i,m,
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where π̂1, . . . , π̂l are the OLS estimates of π1, . . . , πl from the regression of D̃PL
i

against Z̃PL
i,1 , . . . , Z̃PL

i,l .

Step 5 Use ζ̃i as the IV for D̃PL
i :

α̂
(
Â
)
=

∑n
i=1 ζ̃iỸ

PL
i∑n

i=1 ζ̃iD̃
PL
i

.

Here Â = ÂD ∪ ÂY ∪ ÂZ1 ∪ . . . ∪ ÂZl
and includes all controls that are useful for

predicting Di, Yi, or one of the IVs Zi,m, m = 1, . . . , l.

The algorithm is similar to the partialling out algorithm in Chapter 4. The IV estimator

α̂
(
Â
)
solves the following equation:

n∑
i=1

ζ̃i

(
Ỹ PL
i − α̂(Â)D̃PL

i

)
= 0.

Suppose a control Xi,j for some j = 1, . . . , k has been dropped by Lasso in Step 2 of the

algorithm. With a probability approaching one, the coefficient βj is small. Hence, omitting

Xi,j would not introduce a bias unless it is strongly related to ζ̃i through one of the IVs or Di.

However, since the effect of Xi’s has been partialled out from Zi’s and Di, with a probability

approaching one there will be no significant correlation between ζ̃i and Xi,j .

5.4. Many IVs and many controls

The approach can be extended to the case when there are many potential IVs and controls.

When there are many IVs, it is impractical to partial out the effect of many controls from the

IVs. Instead, we can partial out the effect of controls from the efficient post-Lasso-based IV.

The following algorithm is proposed in Chernozhukov et al. (2015).

Step 1 Use Lasso and post-Lasso to partial out the effects of the controls Xi’s from Yi.

Save the residuals as Ỹ PL
i .

Step 2 Use Lasso and post-Lasso to predict Di in the first-stage regression Di = Z ′
iπ +

X ′
iγ + Vi. Save the predicted value D̂i(Â):

ζ̂i(Â) = Z ′
iπ̂Â +X ′

iγ̂Â,

where Â is the set of Lasso selected IVs and controls. The coefficients π̂Â and γ̂Â
are from the post-Lasso OLS regression of Di against the IVs and controls in γ̂Â.

Step 3 Use Lasso and post-Lasso to partial out the effect of Xi’s on ζ̂i(Â). Save the

residuals as ζ̃PL
i .

Step 4 Use ζ̃i as the IV for D̃PL
i :

α̂ =

∑n
i=1 ζ̃

PL
i Ỹ PL

i∑n
i=1 ζ̃

PL
i D̃PL

i

.

Note that in Step 3, partialling out will remove X ′
iγ̂Â from ζ̂i(Â) constructed in Step 2.

However, we keep Xi in the first-stage equation in Step 2 to obtain consistent estimates of

π’s.
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5.5. Appendix IV estimation and second-stage controls

Consider the IV regression model

Yi = αDi +X ′
iβ + Ui,(5.5.1)

Di = Z ′
iπ +X ′

iγ + Vi,(5.5.2)

E(Ui | Xi, Zi) = 0,

E(Vi | Xi, Zi) = 0.

Substituting (5.5.2) into (5.5.1), we obtain

Yi = α
(
Z ′
iπ
)
+X ′

i(β + αγ) + (Ui + αVi) .

Since Zi and Xi are uncorrelated with (Ui, Vi), the OLS regression of Yi against (Z
′
iπ) and Xi

would produce a consistent estimator of α. This regression is infeasible and in practice, π is

replaced with its first-stage OLS estimator. However, the result is asymptotically equivalent

to that of the infeasible regression.

Suppose that the econometrician omits Xi from the first stage. The resulting first-stage

regression is now

(5.5.3) Di = Z ′
iπ

∗ + V ∗
i ,

where π∗ is the coefficient in the population regression of Di against Zi only:

π∗ =
(
EZiZ

′
i

)−1
EZiDi

=
(
EZiZ

′
i

)−1
E
(
Zi(Z

′
iπ +X ′

iγ + Vi)
)

= π +
(
EZiZ

′
i

)−1
EZiX

′
iγ

= π + θγ,

where

θ =
(
EZiZ

′
i

)−1
EZiX

′
i

is the coefficient in from the population regression of the controls X ′
i against the instruments

Zi. The residual V ∗
i is given by

V ∗
i = Di − Z ′

iπ
∗

= Di − Z ′
i(π + θγ)

=
(
X ′

i − Z ′
iθ
)
γ + Vi

= X̃ ′
iγ + Vi,

where X̃ ′
i is the residual in the population the regression of X ′

i against Zi:

X̃ ′
i = X ′

i − Z ′
iθ.

Hence, by construction:

EZiX̃
′
i = 0.
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Equations (5.5.1) and (5.5.3) imply that

(5.5.4) Yi = α(Z ′
iπ

∗) +X ′
iβ +

(
Ui + αX̃ ′

iγ
)
.

While Zi is uncorrelated with X̃ ′
iγ by construction, the controls Xi are correlated with X̃ ′

iγ.

Consequently, OLS estimation of (5.5.4) would produce inconsistent estimates not only for β,

but also for α if Xi and Zi are correlated.

Note that if Zi and Xi are uncorrelated, θ = 0 and X̃ ′
i = Xi. In this case, αX̃ ′

iγ term

in (5.5.4) would be replaced by αX ′
iγ and can be combined with X ′

iβ as before. Hence,

it is important to include the second-stage controls Xi into the first stage unless they are

uncorrelated with the instruments Zi or γ = 0.
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