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Preface

It is assumed that the reader is familiar with the basics of graduate Econometrics at the
level of Davidson and MacKinnon (2004), Chapters 2-4 (OLS-based methods for estimation
and inference) and Chapter 8 (IV-based methods). The main concepts and results for IV
estimation and inference are also briefly reviewed here in Section 1.
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1 Overview of standard (strong) IV asymptotic theory

1.1 The model

Before we study weak identification, it would be helpful to review the standard theory of
instrumental variables (IVs). This will lay out the framework, establish some benchmark
results, and provide motivation for investigating weak IVs.

The econometrician observes data {(y1i, y2i, Z ′1i, Z ′2i) : i = 1, . . . n}, where y1i denotes the
dependent variable, y2i is the single endogenous regressor, Z1i is the l1-vector of instrumental
variables, and Z2i is the l2-vector of exogenous regressors. The IV regression model can be
stated as

y1i = γy2i + Z ′2iβ + ui, (1.1)

y2i = Z ′1iπ1 + Z ′2iπ2 + vi, (1.2)

where γ ∈ R is the unknown coefficient on the endogenous regressor. Typically, γ is the
main object of interest in applied work. The vector β ∈ Rl2 denotes the vector of unknown
coefficients on the exogenous regressors. Equation (1.1) is known as the structural equation,
and ui is the unobserved structural error. Equation (1.2) is known as the first stage and
connects the endogenous regressor with the IVs; the parameters π1 ∈ Rl1 and π2 ∈ Rl2 are
unknown, and vi denotes the unobserved first-stage error.

Exogeneity of Z1i and Z2i is defined as

EZ1iui = EZ1ivi = 0, EZ2iui = EZ2ivi = 0. (1.3)

The regressor y2i is endogenous in the sense

Ey2iui 6= 0.

In view of exogeneity of Z1i and Z2i, the regressor y2i is endogenous if the structural and
first-stage errors are correlated, i.e.

Euivi 6= 0.

When Z2i includes the intercept, without loss of generality one can assume that Eui = Evi = 0.
Define the n-vectors y1, y2, u, and v as

y1 =


y11
...
y1n

 , y2 =


y21
...
y2n

 , u =


u1
...
un

 , v =


v1
...
vn

 .
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Define further the n× l1 matrix of the observations on the IVs Z1:

Z1 =


Z ′11
...

Z ′1n

 .

Let Z2, the n× l2 matrix of the observations on the exogenous regressors be defined similarly:

Z2 =


Z ′21
...

Z ′2n

 .

The model can now be re-written as

y1 = y2γ + Z2β + u, (1.4)

y2 = Z1π1 + Z2π2 + v. (1.5)

1.2 IV estimation

The reduced-form equation, which relates the dependent variable y1 with the exogenous vari-
ables Z1 and Z2 can be obtained by substitution the first stage (1.5) into the structural
equation (1.4):

y1 = Z1π1γ + Z2(π2γ + β) + (u+ vγ), (1.6)

which shows that the structural parameter of interest γ can be estimated by regressing y1
against Z1π1 and Z2. Since π1 is unknown, it must be replaced with its OLS estimator from
the first stage.1

Define
M2 = In − Z2(Z

′
2Z2)

−1Z ′2.

It is easy to see that M2 is symmetric and idempotent:

M ′2 = M2 and M2M2 = M2.

The matrixM2 is called a projection matrix, andM2x will project any n-vector x on the space
orthogonal to the span of the columns of Z2. In particular,

M2Z2 = 0. (1.7)

By the Frisch-Waught-Lowell (FWL) theorem (see Davidson and MacKinnon, 2004), the OLS
1See, for example, the discussion of different identification strategies in Blundell and Powell (2003).
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estimator of π1 from the first stage can be written as

π̂1 = (Z ′1M2Z1)
−1Z ′1M2y2. (1.8)

This result is also known as the partitioned regression result.2 Using the FWL theorem, (1.6),
and by replacing π1 with π̂1, we can now write the IV estimator of γ ( it is also known as the
2SLS estimator) as

γ̂ =
π̂′1Z

′
1M2y1

π̂′1Z
′
1M2Z1π̂1

. (1.9)

1.3 Asymptotics of IV estimation

Assuming that data are iid, we can apply the iid weak law of large numbers (WLLN, Theorem
A.1 in Appendix A.1) and the iid central limit theorem (CLT, Theorem A.2) to show consis-
tency and asymptotic normality of the IV estimator provided that the vector of coefficients
on the IVs in the first-stage equation is fixed and different from zero: π1 6= 0.

Assumption 1.1. We assume that

(i) The data {(y1i, y2i, Z ′1i, Z ′2i) : i = 1, . . . n} are iid.

(ii) The matrix

E

(
Z1i

Z2i

)(
Z1i

Z2i

)′
=

(
EZ1iZ

′
1i EZ1iZ

′
2i

EZ2iZ
′
1i EZ2iZ

′
2i

)
=

(
Q11 Q12

Q′12 Q22

)
= Q

is finite and positive definite.

(iii) The matrix

E

((
ui

vi

)(
ui

vi

)′∣∣∣∣∣Z1i, Z2i

)
=

(
σ2u σuv

σuv σ2v

)
= Σ

is finite and positive definite.

Remark. Assumption 1.1(iii) states that the errors u and v are homoskedastic. The assump-
tion is made for simplicity and convenience only and can be easily relaxed to accommodate
heteroskedastic models.

Theorem 1.2. Suppose that π1 6= 0 and fixed. Then,

(a) γ̂ →p γ.

2To see the result, write y2 = Z1π̂1 + Z2π̂2 + v̂, where π̂1 and π̂2 are the OLS estimators of π1 and π2

respectively, and v̂ is the OLS residual satisfying Z1v̂ = 0 and Z2v̂ = 0. We now have Z′1M2y2 = Z′1M2Z1π̂1 +
Z′1M2v̂, where we used (1.7). Next, Z′1M2v̂ = Z′1v̂ − Z′1Z2(Z

′
2Z2)

−1Z′2v̂ = 0.

5



(b) n1/2(γ̂ − γ)→d N
(

0, σ2
u

π′1Q1·2π1

)
, where

Q1·2 = Q11 −Q12Q
−1
22 Q

′
12. (1.10)

Proof. Using the definition of π̂1 in (1.8),

π̂′1Z
′
1M2 = y′2M2Z1(Z

′
1M2Z1)

−1Z ′1M2 = y′2PM2Z1 ,

π̂′1Z
′
1M2Z1π̂1 = y′2M2Z1(Z

′
1M2Z1)

−1Z ′1M2y2 = y′2PM2Z1y2,

where we used the following notation. Let H be a full column rank matrix. Then PH is defined
as

PH = H(H ′H)−1H ′.

The matrix PH is a projection matrix (symmetric and idempotent): PHx projects a vector x
onto the span of H. Using the definition of γ̂ in (1.9), the estimator γ̂ can now be written as

γ̂ =
y′2PM2Z1y1
y′2PM2Z1y2

.

Using the model in (1.4),

γ̂ = γ +
y′2PM2Z1u

y′2PM2Z1y2

= γ +
y′2M2Z1(Z

′
1M2Z1)

−1Z ′1M2u

y′2M2Z1(Z ′1M2Z1)−1Z ′1M2y2

=
(Z1π1 + v)′M2Z1(Z

′
1M2Z1)

−1Z ′1M2u

(Z1π1 + v)′M2Z1(Z ′1M2Z1)−1Z ′1M2 (Z1π1 + v)′

= γ +
(Z ′1M2Z1π1 + Z ′1M2v)′ (Z ′1M2Z1)

−1Z ′1M2u

(Z ′1M2Z1π1 + Z ′1M2v)′ (Z ′1M2Z1)−1 (Z ′1M2Z1π1 + Z ′1M2v)
. (1.11)

By the WLLN and Assumption 1.1(i,ii),

Z ′1Z1

n
= n−1

n∑
i=1

Z1iZ
′
1i →p EZ1iZ

′
1i = Q11.

Similarly:
Z ′1Z2

n
→p Q12 and

Z ′2Z2

n
→p Q22.

Hence,

Z ′1M2Z1

n
=
Z ′1Z1

n
− Z ′1Z2

n

(
Z ′2Z2

n

)−1 Z ′2Z1

n
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→p Q11 −Q12Q
−1
22 Q

′
12

= Q1·2, (1.12)

where Q1·2 is positive definite. Furthermore, since

Z ′1u

n
= n−1

n∑
i=1

Z1iui →p EZ1iui = 0, and similarly

Z ′2u

n
→p 0,

we have:

Z ′1M2u

n
=
Z ′1u

n
− Z ′1Z2

n

(
Z ′2Z2

n

)−1 Z ′2u
n

→p 0−Q12Q
−1
22 · 0

= 0. (1.13)

Similarly,
Z ′1M2v

n
→p 0. (1.14)

We conclude from (1.11), (1.12), (1.13), and (1.14) that

γ̂ →p γ +
(Q1·2π1 + 0)′ · 0

(Q1·2π1 + 0)′Q−11·2(Q1·2π1 + 0)′
= γ,

which holds since π1 6= 0 and is fixed by assumption. This concludes the proof of part (a).
For part (b), re-write (1.11) as

n1/2(γ̂ − γ) =
n−1/2π′1Z

′
1M2u+ op(1)

n−1π′1Z
′
1M2Z1π1 + op(1)

, (1.15)

where we used (1.13) and (1.14). By the CLT,

n−1/2

(
Z ′1u

Z ′2u

)
= n−1/2

n∑
i=1

(
Z1i

Z2i

)
ui (1.16)

→d N

(
0, Eu2i

(
Z1i

Z2i

)(
Z1i

Z2i

)′)
= N

(
0, σ2uQ

)
,

where the equality in the last line holds by the law of iterated expectation (see Davidson and

7



MacKinnon, 2004, p. 14) and Assumption 1.1(iii):

Eu2i

(
Z1i

Z2i

)(
Z1i

Z2i

)′
= E

{
E
(
u2i | Z1i, Z2i

)( Z1i

Z2i

)(
Z1i

Z2i

)′}
= σ2uE

(
Z1i

Z2i

)(
Z1i

Z2i

)′
.

Let Φ1 and Φ2 be two random vectors jointly distributed as N(0, σ2uQ):(
Φ1

Φ2

)
∼ N

(
0, σ2u

(
Q11 Q12

Q′12 Q22

))
.

Write

Z ′1M2u

n1/2
=
Z ′1u

n1/2
− Z ′1Z2

n

(
Z ′2Z2

n

)−1 Z ′2u
n1/2

→d Φ1 −Q′12Q−122 Φ2

= Φ1·2. (1.17)

Note that

V ar(Φ1·2) =

= V ar(Φ1) +Q′12Q
−1
22 V ar(Φ2)Q

−1
22 Q12 − Cov(Φ1Φ2)Q

−1
22 Q12 −Q′12Q−122 Cov(Φ2,Φ1)

= σ2u
(
Q11 +Q′12Q

−1
22 Q12 − 2Q′12Q

−1
22 Q12

)
= σ2uQ1·2.

Hence,
Z ′1M2u

n1/2
→d Φ1·2 ∼ N(0, σ2uQ1·2). (1.18)

It follows from (1.12), (1.15), and (1.18) that

n1/2(γ̂ − γ)→d
π′1Φ1·2
π′1Q1·2π1

∼
N
(
0, σ2uπ

′
1Q1·2π1

)
π′1Q1·2π1

= N

(
0,

σ2u
π′1Q1·2π1

)
,

where the last equality follows from the properties of normal distributions, see Theorem A.5
in Section A.2 in the Appendix

Statistical inference about γ (the causal effect of the endogenous regressor on the dependent
variable), can be performed using the asymptotic normality result of Theorem 1.2(b) as

n1/2(γ̂ − γ)√
σ2u/(π

′
1Q1·2π2)

→d N(0, 1).

Thus for inference one can use standard normal critical values such as z1−α/2, where α denotes
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the significance level and zτ denotes the τ -th quantile (percentile) of the standard normal
distribution.

Using the arguments in the proof of Theorem 1.2, π′1Q1·2π2 can be estimated by

y′2PM2Z1y2
n

→p π
′
1Q1·2π2.

To estimate σ2u, consider y1 − y2γ̂:

M2(y1 − y2γ̂) = M2u−M2y2(γ̂ − γ).

Define

σ̂2u =
(y1 − y2γ̂)′M2(y1 − y2γ̂)

n

=
u′M2u

n
+

(γ̂ − γ)′y′2M2y2(γ̂ − γ)

n
− 2

(γ̂ − γ)′y′2M2u

n
(1.19)

=
u′u− u′Z2(Z

′
2Z2)

−1Z ′2u

n
+ op(1)

→p σ
2
u,

where the equality in the third line holds because γ̂ − γ = op(1), and the equality in the last
line holds since u′u/n = n−1

∑n
i=1 u

2
i →p σ

2
u, and Z ′2u/n→p 0.

Consider now testing H0 : γ = γ0 vs. H1 : γ 6= γ0. The t-statistic is given by

t(γ0) =
n1/2(γ̂ − γ0)√

(y1−y2γ̂)′M2(y1−y2γ̂)
y′2PM2Z1

y2

. (1.20)

A test with asymptotic size α rejects H0 when

|t(γ0)| > z1−α/2.

The validity of the test holds because when H0 : γ = γ0 is true,

t(γ) =
n1/2(γ̂ − γ)√

(y1−y2γ̂)′M2(y1−y2γ̂)/n
y′2PM2Z1

y2/n

→d
N
(
0, σ2u/(π

′
1Q1·2π1)

)√
σ2u/(π

′
1Q1·2π2)

= N(0, 1).

Consequently, for Z ∼ N(0, 1)

P
(
|t(γ)| > z1−α/2

)
→ P (|Z| > z1−α/2) = α. (1.21)
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The standard error of γ̂ is given by

std.err = n−1/2

√
(y1 − y2γ̂)′M2(y1 − y2γ̂)

y′2PM2Z1y2
.

The confidence interval for γ with asymptotic coverage 1− α is constructed as

CI1−α =
{
γ0 ∈ R : |t(γ0)| ≤ z1−α/2

}
= [γ̂ − z1−α/2 × std.err, γ̂ + z1−α/2 × std.err].

The asymptotic validity of CI1−α holds as

P (γ ∈ CI1−α) = P
(
|t(γ)| ≤ z1−α/2

)
→ 1− α,

where the last result holds by (1.21).

1.4 Motivation for studying weak instruments

The result in Theorem 1.2(b) shows that the variance of the estimator γ̂ is determined by π1,
the coefficient on the IVs in the first-stage equation. Moreover, the asymptotic variance of the
estimator γ̂ is inversely related to the weighted Euclidean norm of π1:

‖π1‖2Q1·2 = π′1Q1·2π1.

The variance of γ̂ is larger (and therefore the estimator is less precise and informative) for
the values of π1 close to zero. Since π1 relates the IVs Z1 with the endogenous regressor y2,
smaller values of ‖π1‖2Q1·2

correspond to IVs that are less informative about the endogenous
regressor or, in other words, “weaker”.

Thus, it is important to investigate the behavior of the estimator γ̂ for the values of π1
that are very close to zero (in the sense π1 → 0) as in such situations IVs are relevant, but
provide information of poor quality. Unfortunately, Theorem 1.2 breaks down as π1 → 0.

The standard approach adopted in Theorem 1.2 keeps π1 fixed as the sample size n→∞.
As a result,

γ̂ = γ +Op

(
1√
n

)
.

In other words, the estimation error approaches zero at the rate 1/
√
n, while π1 stays fixed.

In view of that, no matter how small it is, any fixed value π1 is “large” relatively to the
estimation error of order 1/

√
n for all sample sizes large enough. However, in practice the

econometrician deals with a fixed sample size, and it is possible that given the actual sample
size, the estimation error and π1 are comparably small. Hence, the standard asymptotic
analysis, which assumes that π1 is fixed, can fail to provide accurate approximation to the
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behavior of γ̂ in finite samples. One needs a drastically different approach.
Lastly, note that

π′1Q1·2π1 = π′1EZ1iZ
′
2i(EZ2iZ

′
2i)
−1EZ2iZ

′
1iπ1.

The quantity can be approximated as

π′1Z
′
1M2Z1π1 ∼ nπ′1Q1·2π1,

where P2 = PZ2 . The expression above is related to the so called the concentration parameter :

‖λn‖2 =
π′1Z

′
1M2Z1π1
σ2v

,

which is used at the measure of the strength of IVs or identification. The concentration
parameter ‖λn‖2 captures the strength of the signal from the IVs relatively to the noise in the
errors in the first-stage equation. Note that the assumption of fixed π1 6= 0 corresponds to
‖λn‖2 →∞: i.e. the signal from the IVs dominates the noise due to the errors. Such cases are
referred to as strong identification or strong IVs. Weak identification occurs when the signal
and noise are of the same magnitude.
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2 Weak IV asymptotics

2.1 Modeling weak IVs

In this section, we introduce the weak IV model using a simplified framework (for clarity).
Consider the case of a simple IV regression with a single endogenous regressor, no exogenous

regressors, and a single instrument:

y1 = γy2 + u,

y2 = π1Z1 + v.

In this case, the IV estimator in (1.9) becomes

γ̂ =
Z ′1y1
Z ′1y2

= γ +

∑n
i=1 Z1iui

π1
∑n

i=1 Z
2
1i +

∑n
i=1 Z1ivi

= γ +
n−1/2

∑n
i=1 Z1iui

π1n−1/2
∑n

i=1 Z
2
1i + n−1/2

∑n
i=1 Z1ivi

= γ +
Op(1)

π1n−1/2
∑n

i=1 Z
2
1i +Op(1)

, (2.1)

where Op(1) stands for bounded in probability, i.e. with a probability arbitrary close to one
it can be bounded by a constant for all sample sizes nlarge enough (see Definition A.6 in the
Appendix). The claims

n−1/2
n∑
i=1

Z1iui = Op(1),

n−1/2
n∑
i=1

Z1ivi = Op(1),

can be justified by the CLT as it implies that the distribution of the random variables on the
left-hand side can be approximated by normal distributions. On the other hand,

n−1/2
n∑
i=1

Z2
1i = n1/2

(
n−1

n∑
i=1

Z2
1i

)
→∞ (2.2)

due to the WLLN.
The Op(1) terms in equation (2.1) represent the noise due to estimation as they are deter-

mined by the errors u and v. On the other hand, the π1n−1/2
∑n

i=1 Z
2
1i term in the denominator

in (2.1) represents the signal contained in random data about the true parameter γ. As long
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as π1 6= 0 (no matter how small), the signal component diverges to infinity

π1n
−1/2

n∑
i=1

Z2
1i →∞

and the signal component will dominate the noise resulting in consistent estimation of γ, i.e.
γ̂ →p γ.

If π1 = 0, the data contains no information (signal) about γ. One can say that identification
of γ is weak when data does contain some information about γ, but the signal is weak in
the sense that it can be easily obscured by the noise for any value of n. In other words,
identification is weak when the signal and the noise are of the same order. In view of (2.2), we
can achieve that (for any n and as n→∞) by modeling π1 as a sequence that depends on n
and approaches zero at the rate that balances out the terms in the signal component, so that

π1n
−1/2

n∑
i=1

Z2
1i →p constant.

To achieve that, one has to assume that

π1 =
C

n1/2
(2.3)

for some unknown constant C. In this case, the signal component no longer diverges to infinity:

π1n
−1/2

n∑
i=1

Z2
1i = Cn−1

n∑
i=1

Z2
1i →p C · EZ2

1i.

Now the signal no longer dominates the noise component (they are of the same magnitude),
and as a result, consistency of γ̂ fails!

Note that since n is large, by adopting (2.3), we effectively modeled the first stage coefficient
as a small number. Thus, since we are relying on asymptotics, “small” must be modeled in
relationship to n as “small” means different things in samples of different sizes! The strength
of the weak signal (i.e. within the weak identification framework) is controlled by the constant
C.

We say that instruments are weak when the coefficient on the instruments in the first stage
is of the local-to-zero form in (2.3).

Such a local-to-zero framework for formalizing weak instruments and weak identification
was first proposed in Staiger and Stock (1997). Moreover, using uniform validity arguments,
it was shown later that the local-to-zero framework (with n−1/2 rates) is unavoidable when
studying local identification failures and relying on asymptotic arguments (see for example
Andrews et al., 2011).
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In the following sections, we will investigate the effect of weak IVs on the properties of
IV-based estimation and inference.

2.2 The distribution of the IV estimator under weak IVs

In this section we derive the asymptotic distribution of the IV estimator γ̂ in (1.9) for the
general model (1.4)-(1.5). We assume that the IVs are weak:

Assumption 2.1 (Weak IVs). π1 = n−1/2C for some fixed unknown l1-vector C.

Define the following two random l1-vectors that have a joint Normal distribution:(
Zu
Zv

)
∼ N

(
0,

(
1 ρuv

ρuv 1

)
⊗ Il1

)
, (2.4)

where (
1 ρuv

ρuv 1

)
⊗ Il1 =

(
Il1 ρuvIl1

ρuvIl1 Il1

)
,

the correlation coefficient
ρuv =

σuv
σuσv

,

and ⊗ denotes the Kronecker product.3 Note that ρuv measures the correlation between the
structural and first-stage errors, i.e. ρuv measures the amount of endogeneity in the model.

Theorem 2.2. Suppose that Assumptions 1.1 and 2.1 hold.

γ̂ →d γ +
σu
σv

(λ+ Zv)′Zu
‖λ+ Zv‖2

,

where Zu and Zv are defined in (2.4), and

λ =
Q

1/2
1·2 C

σv
. (2.5)

Remark. 1. The estimator γ̂ is inconsistent as γ̂ − γ converges in distribution to a non-
degenerate random variable.

2. When ρuv = 0, Zu and Zv are independent. Let

∆ =
(λ+ Zv)′Zu
‖λ+ Zv‖2

. (2.6)

3See Section A.4 in the Appendix.
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When Zu and Zv are independent, the properties of normal distributions (see Section
A.2 in the Appendix) imply that

σu
σv

∆ | Zv ∼ N
(

0,
σ2u

‖σvλ+ σvZv‖2

)
.

This distribution is analogous to N
(

0, σ2u/‖Q
1/2
1·2 π1‖2

)
distribution that we have in the

strong IVs case in Theorem 1.2(b). In particular, the IV estimator appears to be asymp-
totically unbiased as the conditional mean of ∆ | Zv distribution is zero for any value of
Zv.

3. When ρuv 6= 0,

Zu | Zv ∼ N
(
ρuvZv, (1− ρ2uv)Il1

)
,

which follows from the properties of multivariate normal distributions, see Theorem A.4
in Section A.2 in the Appendix. In this case,

σu
σv

∆ | Zv ∼ N
(
σuv
σ2v

(λ+ Zv)′Zv
‖λ+ Zv‖2

,
(1− ρ2uv)σ2u
σ2v ‖λ+ Zv‖2

)
.

Now the IV estimator is not only inconsistent but also asymptotically biased.

4. The parameter λ=σ−1v Q
1/2
1.2 C is related to the concentration parameter, as in this case

‖λn‖2 =
π′1Z

′
1P2Z1π1
σ2v

=
nπ′1 (Z ′1P2Z1/n)π1

σ2v
→p

C ′Q1·2C

σ2v
= ‖λ‖2.

Since the concentration parameter is finite in the limit, the signal from the IVs does not
dominate the noise, which is the source of inconsistency of the IV estimator.

5. The estimator γ̂ is consistent when the concentration parameter ‖λ‖ → ∞, which cor-
responds to the strong IVs case:

(λ+ Zv)′Zv
‖λ+ Zv‖2

=
(λ/‖λ‖+ op(1))′Zv
‖λ/‖λ‖+ op(1)‖2

1

‖λ‖

=
(`+ op(1))′Zv
‖`+ op(1)‖2

1

‖λ‖
, where ` ∈ Rl1 and ‖`‖ = 1

→p 0 as ‖λ‖ → ∞.
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Proof of Theorem 2.2. Define(
Φ1·2

Ψ1·2

)
∼ N

((
0

0

)
,

(
σ2uQ1·2 σuvQ1·2

σuvQ1·2 σ2vQ1·2

))
, (2.7)

where Q1·2 has been defined in (1.10). Note that the variance can be also written as(
σ2uQ1·2 σuvQ1·2

σuvQ1·2 σ2vQ1·2

)
=

(
σ2u σuv

σuv σ2v

)
⊗Q1·2 = Σ⊗Q1·2.

By the CLT,

n−1/2

(
Z ′u

Z ′v

)
=


Z′1u√
n

Z′2u√
n

Z′1v√
n

Z′2v√
n


= n−1/2

n∑
i=1

(
ui

vi

)
⊗

(
Z1i

Z2i

)
→d N (0,Σ⊗Q)

=


Φ1

Φ2

Ψ1

Ψ2

 .

One can extend the same arguments as in the proof of Theorem 1.2(b), equation (1.17), to
show that (

Z′1M2u

n1/2

Z′1M2v

n1/2

)
→d

(
Φ1·2

Ψ1·2

)
,

where Ψ1·2 satisfies
Ψ1·2 = Ψ1 −Q′12Q−122 Φ2.

The denominator in the second term on the right-hand side of (1.11) can be re-written as

y′2PM2Z1y2 =

=
(
Z ′1M2Z1π1 + Z ′1M2v

)′
(Z ′1M2Z1)

−1 (Z ′1M2Z1π1 + Z ′1M2v
)

=
((
Z ′1M2Z1

)1/2
π1 + (Z ′1M2Z1)

−1/2Z ′1M2v
)′ ((

Z ′1M2Z1

)1/2
π1 + (Z ′1M2Z1)

−1/2Z ′1M2v
)

=
∥∥∥(Z ′1M2Z1

)1/2
π1 + (Z ′1M2Z1)

−1/2Z ′1M2v
∥∥∥2 , (2.8)
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and therefore from (1.11),

γ̂ = γ +

(
π1 + (Z ′1M2Z1)

−1Z ′1M2v
)′
Z ′1M2u∥∥∥(Z ′1M2Z1)

1/2 π1 + (Z ′1M2Z1)−1/2Z ′1M2v
∥∥∥2 (2.9)

= γ +

(
C/
√
n+ (Z ′1M2Z1)

−1Z ′1M2v
)′
Z ′1M2u∥∥∥(Z ′1M2Z1)

1/2C/
√
n+ (Z ′1M2Z1)−1/2Z ′1M2v

∥∥∥2
= γ +

(
C + (Z ′1M2Z1/n)−1Z ′1M2v/

√
n
)′
Z ′1M2u/

√
n∥∥∥(Z ′1M2Z1/n)1/2C + (Z ′1M2Z1/n)−1/2Z ′1M2v/
√
n
∥∥∥2

→d γ +

(
C +Q−11·2Ψ1·2

)′
Φ1·2

‖Q1/2
1·2 C +Q

−1/2
1·2 Ψ1·2‖2

(2.10)

= γ +

(
C +Q−11·2σvQ

1/2
1·2 Zv

)′
σuQ

1/2
1·2 Zu

‖Q1/2
1·2 C +Q

−1/2
1·2 σvQ

1/2
1·2 Zv‖2

= γ +
σuσv
σ2v

(
σ−1v Q

1/2
1·2 C + Zv

)′
Zu

‖σ−1v Q
1/2
1·2 C + Zv‖2

,

where the equality in the third line holds by multiplying and dividing by
√
n in the numerator.

2.3 The null distribution of the t-statistic under weak IVs

We now consider testing hypotheses about γ using its IV estimator and the t-statistic

t(γ0) =
n1/2(γ̂ − γ0)√

(y1−y2γ̂)′M2(y1−y2γ̂)
y′2PM2Z1

y2

.

Recall that the t-test rejects H0 : γ = γ0 in favor of H1 : γ 6= γ0 when

|t(γ0)| > z1−α/2.

The null asymptotic distribution of the t-statistic, i.e. when γ = γ0, is given in the following
theorem

Theorem 2.3. Suppose that Assumptions 1.1 and 2.1 hold.

t(γ)→d
‖λ+ Zv‖(λ+ Zv)′Zu(

((λ+ Zv)′Zu)2 + ‖λ+ Zv‖4 − 2ρuv ((λ+ Zv)′Zu) ‖λ+ Zv‖2
)1/2 , (2.11)

where Zu and Zv are defined in (2.4).
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Remark. 1. As one an see from the statement of the theorem, since Zu appears both in
the numerator and the denominator of the expression in (2.11), the null distribution of
the t-statistic is different from N(0, 1) even when ρuv = 0. As a result, using standard
normal critical values for test decision rules may lead to invalid tests: the null rejection
probabilities (when γ = γ0) may exceed α, where α is the null rejection probability one
expects to see when using critical values z1−α/2. See the discussion below and Figure 1.

2. The limiting distribution in (2.11) depends on ρuv and two random variables ‖λ + Zv‖
and (λ+ Zv)′Zu. It is show in Lemma A.10 in the Appendix that

‖λ+ Zv‖2 =d (‖λ‖+ Zv,1)2 +

l1∑
j=2

Z2
v,j ,

(λ+ Zv)′Zu =d (‖λ‖+ Zv,1)Zu,1 +

l1∑
j=2

Zv,jZu,j ,

where the notation “=d” stands for equal in distribution, and means that the random
variables on the left- and right-hand sides have the same distribution. Thus, while λ is
a vector, it affects the null distribution of the t-statistic only through its norm or the
concentration parameter:

‖λ‖2 =
C ′Q1·2C

σ2v
.

We conclude that the limiting distribution in (2.11) is completely determined by three
scalar parameters: the concentration parameter ‖λ‖2, the number of IVs l1, and the
endogeneity parameter ρuv.

3. Since γ̂ is inconsistent when IVs are weak, the endogeneity parameter ρuv cannot be
estimated consistently. Hence, the distribution in (2.11) is unknown as ρuv remains
unknown.

4. Weak IVs asymptotics nests strong IVs asymptotics as a limiting case. One can show
that as ‖λ‖ → ∞, the distribution on the right-hand side of (2.11) becomes standard
normal:

((λ+ Zv)′Zu) ‖λ+ Zv‖/‖λ‖2(
((λ+ Zv)′Zu)2 + ‖λ+ Zv‖4 − 2ρuv ((λ+ Zv)′Zu) ‖λ+ Zv‖

)1/2
/‖λ‖2

=
(λ/‖λ‖+ op(1))′Zu(1 + op(1))

(‖λ/‖λ‖+ op(1)‖4 + op(1))1/2

→p `
′Zu, where ‖`‖ = 1,

= N(0, 1).
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Proof of Theorem 2.3. By the definition of the t-statistic and since

γ̂ =
y′2PM2Z1y1
y′2PM2Z1y2

= γ +
y′2PM2Z1u

y′2PM2Z1y2
,

we have:

t(γ) =
γ̂ − γ√

σ̂2
u

y′2PM2Z1
y2

=
y′2PM2Z1u

σ̂u
√
y′2PM2Z1y2

=
(Z1π1 + v)′

(
M2Z1(Z

′
1M2Z1)

−1Z ′1M2

)
u

σ̂u
√
y′2PM2Z1y2

=

(
π1 + (Z ′1M2Z1)

−1Z ′1M2v
)′
Z ′1M2u

σ̂u

∥∥∥(Z ′1M2Z1)
1/2 π1 + (Z ′1M2Z1)−1/2Z ′1M2v

∥∥∥ (2.12)

where in the second line we used the arguments from (1.11), and in the last line we used the
arguments from (2.8) and (2.9).

By (1.19),

σ̂2u =
u′M2u

n
+

(γ̂ − γ)2y′2M2y2
n

− 2
(γ̂ − γ)y′2M2u

n
.

Recall that the first term converges in probability to σ2u. In the case of strong IVs, the last
two terms were negligible as γ̂ was consistent for γ. Now since γ̂ − γ →d ∆σu/σv, they have
to be taken into account as ∆ 6= 0 with probability one.

y′2M2y2
n

=
v′M2v + π′1Z

′
1M2Z1π1 + 2π′1Z

′
1M2v

n

=
v′M2v

n
+
C ′Z ′1M2Z1C

n2
+ 2

C ′Z ′1M2v

n3/2

→p σ
2
v ,

y′2M2u

n
=
v′M2u+ π′1Z1M2u

n

=
v′M2u

n
+
C ′Z ′1M2u

n3/2

→p σuv.

Hence,
σ̂2u →d σ

2
u(1 + ∆2 − 2∆ρuv). (2.13)

One can see that inconsistency of γ̂ causes inconsistency of σ̂2u.
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By (2.12) and (2.13),

t(γ)→d
1

σu (1 + ∆2 − 2∆ρuv)
1/2

(
C +Q−11·2Ψ1·2

)′
Φ1·2

‖Q1/2
1·2 C +Q

−1/2
1·2 Ψ1·2‖

=
1

(1 + ∆2 − 2∆ρuv)
1/2

(λ+ Zv)′Zu
‖λ+ Zv‖

.

where we used (2.10) in the first line. The result follows by plugging in the definition of ∆

from equation (2.6):

1 + ∆2 − 2∆ρuv = 1 +

(
(λ+ Zv)′Zu

)2
‖λ+ Zv‖4

− 2ρuv
(λ+ Zv)′Zu
‖λ+ Zv‖2

=
1

‖λ+ Zv‖4
(
‖λ+ Zv‖4 +

(
(λ+ Zv)′Zu

)2 − 2ρuv (λ+ Zv)′Zu‖λ+ Zv‖2
)
.

Figure 1 plots the density of the simulated asymptotic null distribution of the t-statistic
under weak IVs against the standard normal density.4 The number of instruments l1 = 2,
the concentration parameter ‖λ‖2 = 1, and the correlation coefficient ρuv = 0.95. One can
see that the distribution of the t-statistics substantially deviates from N(0, 1). Moreover, the
distribution is skewed to the right and puts a lot of mass in what would be the rejection region
if one uses standard normal critical values. For example, if the significance level α = 0.05,
z1−α/2 ≈ 1.96, the probability of rejecting the null hypothesis is about 43.3% instead of
the expected 5%! Thus, weak instruments can cause substantial distortions to inferential
procedures (tests and confidence intervals).

4The Matlab code used to generate the graph and its data appears in Section B.1 in the Appendix.
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Figure 1: The standard normal distribution (dashed line) and the asymptotic null distribution
of the t-statistic under weak instruments (solid line) for 2 IVs, ρuv = 0.95, and the concentra-
tion parameter ‖λ‖2 = 1
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3 Detection of weak IVs

In this section, we discuss whether it is possible and how to detect weak IVs. We will see
that while it is not possible to formally test if instruments are weak, one can test hypotheses
concerning the distortions to the size of t-tests due to the presence of weak IVs. The discussion
follows Stock and Yogo (2005).

In the previous section, we saw that IVs are said to be strong when the population con-
centration parameter is infinite:

‖λ‖2 =
C ′Q1·2C

σ2v
=∞,

i.e. the sample concentration parameter diverges to infinity:

‖λn‖2 =
π′1Z

′
1M2Z1π1
σ2v

→∞.

While it is possible to approximate ‖λn‖2 using data by replacing π1 and σ2v with their esti-
mators5, the resulting estimator for ‖λn‖2 is always finite for any value of n. Thus, one cannot
formally test H0 : ‖λ‖2 < ∞ against H1 : ‖λ‖2 = ∞. We need a different working definition
of weak IVs.

3.1 Stock and Yogo’s (2005) quantitative characterization of weak IVs

We saw in Section 2.3, that the asymptotic probability of Type I error, i.e. the probability of
rejecting H0 when it is true, can substantially exceed assumed significance levels (size) of tests
when IVs are weak. Since such distortions are the main concern of having weak instruments,
it is reasonable to use the magnitude of such distortions as a practical measure of weakness of
instruments.

Theorem 2.3 shows that when IVs are weak in the sense of ‖λ‖2 <∞ and the null hypothesis
about the structural parameter γ is true, the usual t-statistic for γ converges to the following
distribution:

T‖λ‖2,ρuv ,l1 = ϕ(Zu,Zv, ‖λ‖2, ρuv, l1)

≡
X 1/2
‖λ‖2,ρuv ,l1Y‖λ‖2,ρuv ,l1(

Y2
‖λ‖2,ρuv ,l1 + X 2

‖λ‖2,ρuv ,l1 − 2ρuvX‖λ‖2,ρuv ,l1Y‖λ‖2,ρuv ,l1
)1/2 ,

5π1 and σ2
v are parameters in the first-stage equation and therefore can be consistently estimated using the

usual OLS techniques.
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where

X‖λ‖2,ρuv ,l1 = ‖λ+ Zv‖2 = d(‖λ‖+ Zv,1)2 +

l1∑
j=2

Z2
v,j ,

Y‖λ‖2,ρuv ,l1 = (λ+ Zv)′Zu =d (‖λ‖+ Zv,1)Zu,1 +

l1∑
j=2

Zv,jZu,j ,(
Zu
Zv

)
∼ N

((
0

0

)
,

(
1 ρuv

ρuv 1

)
⊗ Il1

)
.

Hence, the asymptotic size of a two-sided t-test with nominal size α is given by

Rα,l1(‖λ‖2, ρuv) = P
(∣∣T‖λ‖2,ρuv ,l1∣∣ > z1−α/2

)
,

and the corresponding size distortion is given by

Rα,l1(‖λ‖2, ρuv)− α.

As one can see from the above expression, size distortions depend on the chosen significance
level α, the number of instruments l1, the concentration parameter ‖λ2‖, and the endogeneity
parameter ρuv. While α is chosen by the econometrician, l1 is known, and we can extract some
information about ‖λ2‖ from data, the endogeneity parameter ρuv is unknown and cannot be
estimated since γ̂ is inconsistent. We therefore have to look at the worst case scenario with
respect to ρuv, i.e. the maximum size distortion of a t-test:

Rmax
α,l1 (‖λ‖2)− α,

where
Rmax
α,l1 (‖λ‖2) = max

−1≤ρuv≤1
P
(∣∣T‖λ‖2,ρuv ,l1∣∣ > z1−α/2

)
is the maximum with respect to ρuv probability of Type I error.

Stock and Yogo (2005) propose to measure weakness of instruments in terms of the dis-
crepancy between the nominal size α and the actual size Rmax

α,l1
(‖λ‖2). More specifically, they

suggest to call instruments weak if the difference Rmax
α,l1

(‖λ‖2)− α exceeds a certain threshold
chosen by the econometrician.

Definition (Stock and Yogo, 2005). Instrumental variables with concentration parameter
‖λ‖2 are weak if Rmax

α,l1
(‖λ‖2) ≥ r for some chosen 0 < α ≤ r < 1.

For example, with α = 0.05 and r = 0.10, we say that instruments are weak if the null
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rejection probability of a nominal 5% t-test exceeds 10%. In other words, size distortions
exceed 5%. According to this approach one would treat IVs as sufficiently strong if by using
5% standard normal critical values, he obtains a test with actual significance level of 10%.
While strictly speaking such IVs are still weak given our earlier definitions, nevertheless when
Rmax
α,l1

(‖λ‖2) < r one can have a valid testing procedure with significance level equal to r by
choosing standard normal critical values corresponding to significance level α.

In practice to test whether IVs are strong according to definition of Stock and Yogo (2005),
one would consider the following testing problem:

H0 : Rmax
α,l1 (‖λ‖2) ≥ r vs. H1 : Rmax

α,l1 (‖λ‖2) < r. (3.1)

Note that under H1, instruments are sufficiently strong according to the above definition of
Stock and Yogo (2005). Hence, when H1 is true, one can design a valid testing procedure for
γ despite the instruments being actually weak. One simply has to use larger critical values
corresponding to α to obtain a valid level r test.

Since the maximum rejection probability depends on the concentration parameter, one has
to calculate the function Rmax

α,l1
(‖λ‖2) for different values of ‖λ‖2 to perform the test in (3.1).

While it is difficult to obtain an analytical closed-form expression for Rmax
α,l1

(‖λ‖2) as a function
of α, ‖λ‖2 , and l1, one can easily simulate it by taking many draws from the joint distribution
of Zu and Zv and computing the number of average rejections over the draws. It can also be
computed by numerical integration of 1

{∣∣ϕ(Zu,Zv, ‖λ‖2, ρuv, l1)
∣∣ > z1−α/2

}
with respect to

the joint density of Zu and Zv.
It turns out that the maximum rejection probability and, therefore, the maximum distor-

tion is a non-negative and decreasing function of the concentration parameter. This is related
to our previous observation that

T‖λ‖2,ρuv ,l1 →p N(0, 1) as ‖λ‖2 →∞,

see Remark 4 following Theorem 2.3.
Since Rmax

α,l1
(·) is a decreasing function (monotone), it can be inverted. Let Lα,l1(·) denote

the inverse function of Rmax
α,l1

(·):

Lα,l1(r) ≡
(
Rmax
α,l1

)−1
(r).

Thus, for a given value r, Lα(r) is the smallest value of the concentration parameter ‖λ‖2

needed so that the nominal size-α t-test would have the maximum significance level (rejection
probability) not exceeding r.

Once Lα,l1(r) is computed, the testing problem in (3.1) can be re-formulated in terms of
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hypotheses about the concentration parameter ‖λ‖2:

H0 : ‖λ‖2 ≤ Lα,l1(r) vs. H1 : ‖λ‖2 > Lα,l1(r). (3.2)

Again under H1, the instruments can be viewed as sufficiently strong so that one can design a
valid testing procedure about γ with significance level r. The reversion of inequalities in (3.2)
relatively to (3.1) is due to the fact that Rmax

α,l1
(‖λ‖2) is a decreasing function of ‖λ‖2.

3.2 Testing hypotheses about the concentration parameter

Recall that the finite-sample version of the concentration parameter is given by

‖λn‖2 =
π′1Z

′
1M2Z1π1
σ2v

.

Using consistent estimators of π1 and σ2v , we can estimate the above expression by

‖λ̂n‖2 =
π̂′1Z

′
1M2Z1π̂1
σ̂2v

, (3.3)

where π̂1 was defined earlier in (1.8), and σ̂2v is a consistent estimator for the variance of the
first-stage error v. The latter can be constructed as

σ̂2v =
y′2My2

n− l1 − l2
, (3.4)

where for Z = [Z1 Z2], M = In − Z(Z ′Z)−1Z ′. Consistency of σ̂2v can be shown in the same
manner as that of σ̂2u in (1.19). With those definitions, ‖λ̂n‖2 in (3.3) becomes

‖λ̂n‖2 =
y′2M2Z1 (Z ′1M2Z1)

−1 Z ′1M2y2
y′2My2/(n− l1 − l2)

=
y′2PM2Z1y2

y′2My2/(n− l1 − l2)
,

which is related to the usual F -statistic for testing the hypothesis that π1 = 0:

F =
y′2PM2Z1y2/l1

y′2My2/(n− l1 − l2)
.

In finite samples with an additional assumption of normality of the first-stage errors v,
and when π1 = 0, the F -statistic has the Fl1,n−l1−l2 distribution. Without the normality
assumption and when π1 = 0, the F -statistic converges in distribution to χ2

l1
/l1. Note also

that
Fl1,n−l1−l2 →p χ

2
l1/l1

as n→∞.
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While Fl1,n−l1−l2 (or χ2
l1
/l1) critical values are appropriate for testing the hypothesis that

π1 = 0, they cannot be used for testing weakness of IVs as specified in (3.2), since in the latter
case π1 6= 0 but only local-to-zero as specified by Assumption 2.1:

π1 = n−1/2C.

Hence, to use the F -statistic for testing the problem in (3.2), we need to obtain its distribution
under the local-to-zero specification for π1. The distribution turns out to be non-central χ2

with the non-centrality parameter conveniently given by ‖λ‖2.

Theorem 3.1. Suppose that Assumptions 1.1 and 2.1 hold. Then,

Fl1,n−l1−l2 →p χ
2
l1(‖λ‖2)/l1.

Proof. As we argued above,
y′2My2

n− l1 − l2
→p σ

2
v

by the same arguments as in the proof of consistency of σ̂2u in (1.19). Next,

Z ′1M2y2

n1/2
=
Z ′1M2Z1C

n
+
Z ′1M2v

n1/2

→d Q1·2C + Ψ1·2

= σvQ
1/2
1·2

(
Q

1/2
1·2 C/σv + Zv

)
= σvQ

1/2
1·2 (λ+ Zv)

where the convergence in the second line holds by the same arguments as in the proof of
Theorem 1.2, equations (1.12) and (1.17), the equality in the third line holds by the definitions
of Ψ1·2 and Zv in (2.7) and (2.4) respectively, and the equality in the last line holds by the
definition of λ in (2.5). Hence,

F →d
σ2v(λ+ Zv)′Q1/2

1·2Q
−1
1·2Q

1/2
1·2 (λ+ Zv) /l1

σ2v

= ‖λ+ Zv‖2/l1
∼ χ2

l1(‖λ‖2)/l1,

where the result in the last line holds by (A.2) in Lemma A.10.

To test whether IVs are sufficiently strong in the sense of the testing problems in (3.1) and
(3.2), the econometrician can proceed as follows. Let τ denote the significance level of the test
for weak IVs.

26



1. Select α (which determines the normal critical value z1−α to be used for the t-test for
γ) and r (the actual desired significance level of the t-test).

2. Compute Lα,l1(r) (the smallest concentration parameter needed so that the t-test with
the critical value z1−α/2 has significance level r).

3. Compute F (the first-stage F -statistic).

4. Select τ (the desired significance level for the test of weak IVs), and compute χ2
l1,1−τ (Lα,l1(r))/l1

(the non-central χ2 critical value).

5. Reject H0 of “weak” IVs when F > χ2
l1,1−τ (Lα,l1(r))/l1.

Non-central χ2
l1

(δ) critical values can be tabulated and are available with various statistical
packages. For example, in Matlab they can computed using the function “ncx2inv(P,V,DELTA)”,
where “P” is the quantile order, “V” is the number of degrees of freedom, and “DELTA” is the
non-centrality parameter δ.

The most demanding part of performing the test for weak IVs is determining the function
Lα,l1(r). The simplest way to obtaining the values Lα,l1(r) is by simulating the function
Rmax
α,l1

(‖λ‖2) for different values of ‖λ‖2 as Lα,l1 is the inverse function of Rmax
α,l1

: Lα,l1(r) =

(Rmax
α,l1

)−1(r). Once the values of Rmax
α,l1

(‖λ‖2) are computed, Lα,l1(r) can be obtained by
selecting the smallest value ‖λ‖2 so that Rmax

α,l1
(‖λ‖2) ≤ r.

Table 1 below6 reports such values of Rmax
α,l1

(‖λ‖2) for l1 = 1, 2, 5, α = 0.01, 0.05, and a
range of values for ‖λ2‖ from 0.01 to 103. The table can be used as follows. Suppose one
has two IVs (l1 = 2) and would like to use 1% two-sided standard normal critical values
z0.995 (α = 0.01) to construct a valid two-sided test for γ using the t-statistic and significance
level 5% (r = 0.05). According to the data in Table 1, he needs the concentration parameter
value approximately equal to 25 (L0.01,2(0.05) ≈ 25) as the nearest to r = 0.05 value for the
maximum rejection probability is Rmax

0.01,2(25) = 0.045. The corresponding critical value for the
5% F -test for weak IVs is χ2

2,0.95(25)/2 ≈ 22.66. Note that this critical value substantially
exceeds the threshold of 10 on the first-stage F -statistic that has been widely used in the
empirical literature. The critical value for the first-stage F -statistic remains similarly high if
we instead consider l1 = 1 (crit.val ≈ 21.57) or l1 = 5 (crit.val ≈ 23.53) while keeping α = 0.01

and r = 0.05.
Table 1 also shows that to reduce size distortions of the two-sided t-test to nearly zero in the

case of one instrument, one would need the values of the concentration parameter exceeding
100, which corresponds to the threshold value of 135.60 for the first-stage F -statistic. Even
large values would be required when there are multiple IVs.

6The Matlab code used to generate data for Table 1 appears in Section B.2 in the Appendix.
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Table 1: Maximum rejection probabilities of the two-sided t-test Rmax
α,l1

(‖λ‖2) and critical values χ2
l1,.95

(‖λ‖2)/l1 for testing for weak
IVs at the 5% significance level (τ = .05), for different values of the concetration paramer (‖λ‖2), number of IVs (l1), and nominal
significance level of the t-test (α in z1−α/2). The number of simulations used to generate each rejection probability is 100,000

l1 = 1 l1 = 2 l1 = 5

‖λ‖2 α = .01 α = .05 χ2
1,.95(‖λ‖2) α = .01 α = .05 χ2

2,.95(‖λ‖2)/2 α = .01 α = .05 χ2
5,.95(‖λ‖2)/5

0.01 0.530 0.593 3.88 0.817 0.863 3.01 0.992 0.995 2.22
0.10 0.365 0.431 4.22 0.724 0.783 3.15 0.984 0.990 2.26
0.25 0.258 0.322 4.76 0.627 0.699 3.36 0.970 0.981 2.32
1 0.132 0.185 7.00 0.412 0.497 4.32 0.888 0.925 2.63
4 0.070 0.112 13.28 0.175 0.251 7.32 0.585 0.684 3.73
9 0.048 0.088 21.57 0.090 0.154 11.41 0.324 0.440 5.31
16 0.037 0.075 31.86 0.060 0.115 16.53 0.190 0.296 7.32
25 0.031 0.066 44.15 0.045 0.095 22.66 0.124 0.218 9.75
36 0.026 0.059 58.44 0.037 0.082 29.79 0.089 0.171 12.59
49 0.023 0.055 74.73 0.031 0.073 37.93 0.068 0.141 15.84
64 0.020 0.052 93.02 0.026 0.067 47.06 0.055 0.121 19.48
81 0.019 0.051 113.31 0.023 0.063 57.20 0.046 0.107 23.53
100 0.017 0.051 135.60 0.021 0.061 68.34 0.040 0.097 27.98
1000 0.011 0.050 1106.74 0.011 0.052 553.88 0.013 0.055 222.17
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4 Robust inference in presence of potentially weak IVs: Anderson-
Rubin (AR) approach

One can use the methods described in the previous section to design valid tests on the structural
parameter γ by choosing higher critical values and checking that the first-stage F -statistic is
sufficiently large. Nevertheless, this approach cannot give a useful test when the first-stage
F -statistic is not large enough. Moreover, while by choosing larger critical values, one can
somewhat protect himself from size distortions, this leads to the loss of power if IVs are in fact
strong.

In this section, we discuss an alternative approach to dealing with weak IVs that produces
valid tests regardless of the strength of IVs. Such a robust approach has been advocated
by most papers in the econometric literature on weak IVs. The Anderson-Rubin approach
discussed in this section was proposed as a solution to the weak IV problem in Staiger and
Stock (1997).

4.1 AR statistic

The idea of the AR test and other robust tests is based on the fact that, whether IVs are weak
or not, they are uncorrelated with the errors:

0 = EZ1iui = EZ1i(y1i − y2iγ − Z ′2iβ).

In other words, if one imposes right parameter values on the structural coefficients, the result-
ing residuals must by uncorrelated with the IVs. However, when wrong a parameter value is
used for γ, the resulting residuals will contain the endogenous regressor y2i, which is correlated
with the IVs. Hence, one should be able to test hypotheses about the structural coefficients
without estimating them first.

Suppose the econometrician is interested in testing

H0 : γ = γ0 against H1 : γ 6= γ0.

Note that here the focus is only on γ, while the coefficients on the exogenous regressors Z2i are
unrestricted under the null or alternative hypotheses. To eliminate β, consider the following
null-restricted residuals:

M2(y1 − y2γ0) = M2(u+ y2(γ − γ0)),

where again M2 = In−Z2(Z
′
2Z2)

−1Z ′2 so that M2Z2 = 0. One can see that the null-restricted
residuals depend on the true errors u and the distance between the true γ and γ0 (its value
under H0). Moreover, the sample covariance between the null-restricted residuals and the IVs
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is given by

Z ′1M2(y1 − y2γ0) = Z ′1M2u+ (γ − γ0)Z ′1M2y2. (4.1)

When H0 is true and γ = γ0, the null-restricted residuals capture only the true errors u and
therefore,

Z ′1M2(y1 − y2γ0)
n1/2

=
Z ′1M2u

n1/2

→d N(0, σ2uQ1·2). (4.2)

Moreover, the variance parameter σ2u can be also consistently estimated by using the null-
restricted residuals under H0. For Z = [Z1 Z2], let again

M = In − Z(Z ′Z)−1Z,

and note that
0 = MZ = M [Z1 Z2]. (4.3)

When γ0 = γ,

σ̂2u(γ0) =
(y1 − y2γ0)′M(y1 − y2γ0)

n
(4.4)

=
u′Mu

n
(4.5)

=
u′u

n
− u′Z

n

(
Z ′Z

n

)−1 Z ′u
n

→p σ
2
u − 0 ·Q−1 · 0

= σ2u,

where σ̂2u(γ0) is the null-restricted estimator of σ2u.7, 8

The AR statistic is constructed by utilizing the null-restricted residuals and the fact that
under H0, the econometrician knows the true value of γ.

AR(γ0) =
(y1 − y2γ0)′M2Z1 (Z ′1M2Z1)

−1 Z ′1M2(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)/n

7Alternatively, on could use M2 matrix in place of M to construct a null-restricted estimator of σ2
u; such

an estimator would still be consistent under H0. However, using M in place of M2 is preferable when H0 does
not hold and γ 6= γ0. When H0 is false, y1 − y2γ0 = u+ (γ − γ0)(Z1π1 +Z2π2 + v) . Using the M matrix, will
annihilate in such cases both Z1 and Z2 in view of (4.3), while M2 annihilates only Z2.

8In finite samples, one also might want to substitute n− l1 − l2 for n in the definition of the null-restricted
estimator σ̂2

u(γ0). Note that when γ = γ0, (y1 − y2γ0)′M2(y1 − y2γ0)/(n− l1 − l2) is an unbiased estimator of
σ2
u since rank(M) = n− l1 − l2.
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=
(y1 − y2γ0)′PM2Z1(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)/n

, (4.6)

where (Z ′1M2Z1)
−1 in the definition of the AR statistic is used to estimate Q1·2 that appears

in the limiting distribution in (4.2). The fact that the first-stage parameter π1 does not appear
on the right-hand side of (4.2), implies that the null distribution of the AR statistic does not
depend on the strength of IVs.

Theorem 4.1. Suppose that Assumption 1.1 holds. Then,

AR(γ)→d χ
2
l1 .

Remark. 1. Note the use of the true value γ in AR(γ), which implies that the result applies
when H0 : γ = γ0 is true.

2. Note also that no assumptions were imposed on π1. The result remains valid when π1
is fixed and the concentration parameter ‖λ‖2 =∞, when π1 = n−1/2C and ‖λ‖2 <∞,
and when π1 = 0 so that IVs are irrelevant and the concentration parameter is exactly
zero.

3. While γ is a scalar parameter, the null distribution of the AR statistic has l1 ≥ 1 degrees
of freedom. This is because AR tests a single restriction on γ by testing l1 restrictions
on the covariances of the IVs with the null-restricted residuals.

Proof. Since y1 − y2γ = Z2β + u, and M2Z2 = 0,

AR(γ) =
u′M2Z1 (Z ′1M2Z1)

−1 Z ′1M2u

u′Mu/n

=
u′M2Z1/n

1/2 (Z ′1M2Z1/n)−1 Z ′1M2u/n
1/2

u′Mu/n

→d
Φ′1·2Q

−1
1·2Φ1·2
σ2u

for Φ1·2 ∼ N(0, σ2uQ1·2)

=d Z ′uZu for Zu ∼ N(0, Il1)

∼ χ2
l1,

where Φ2 is defined in (1.18), and Zu is defined in (2.4).

In view of the result of Theorem 4.1, the size α AR test should reject H0 : γ = γ0 in favor
of H1 : γ 6= γ0 when

AR(γ0) > χ2
l1,1−α.

While the strength of IVs (π1 or ‖λ‖2) does not affect the distribution of the AR statistic
under the null, it matters under the alternative when γ 6= γ0 as one can see from the second
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term on the right-hand side of (4.1): y2 (and therefore π1) contribute to the distribution when
γ − γ0 6= 0.

Theorem 4.2. Suppose that Assumptions 1.1 and 2.1 hold: i.e. the IVs are weak in the sense
that π1 = n−1/2C and ‖λ‖2 <∞. Suppose further that γ − γ0 is a fixed number. Then,

AR(γ0)→d χ
2
l1

(
(γ − γ0)2σ2v

σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv
‖λ‖2

)
.

Remark. 1. The power properties of the AR test can be analyzed by studying the non-
centrality parameter

(γ − γ0)2σ2v
σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv

‖λ‖2.

For example, when γ = γ0 (i.e. H0 is true), the non-centrality parameter becomes zero
and one obtains the result of Theorem 4.1.

2. The non-centrality parameter is also zero when γ 6= γ0 but ‖λ‖2 = 0, which occurs
when π1 = 0, i.e. IVs are irrelevant. In this case, the distribution of the AR statistic is
central χ2 for any value of γ− γ0, and the probability of rejecting H0 always equal to α.
Thus, when IVs are irrelevant, one can have a valid tests for γ (in the sense of its size
properties), however, the test has no power: it detects deviations from H0 with a trivial
probability α.

3. Since P (χ2
l1

(δ2) > χ2
l1,1−α) is an increasing function of the non-centrality parameter δ2

as is apparent from (A.2), the probability that the AR would detect a deviation from H0

is an increasing function of the concentration parameter ‖λ‖2. Since the concentration
parameter captures the strength of IVs, the AR becomes more powerful as ‖λ2‖ increases.

4. An unusual feature of the AR test under weak IVs is that the non-centrality parameter
does not diverge to ∞ as the distance from the null γ − γ0 increases. Instead,

lim
γ−γ0→∞

(γ − γ0)2σ2v
σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv

‖λ‖2 → ‖λ‖2.

Hence, even for very large deviations from the null hypothesis, the non-centrality param-
eter can be small (if ‖λ‖2 is small), and consequently the probability of detecting very
large deviations from H0 would be finite (and can be arbitrary small). Moreover, the
non-centrality parameter can be non-monotone in γ−γ0 and, as a result, the probability
of detecting certain small deviations from the null hypothesis can exceed that for large
deviations. Unfortunately, these unusual and undesirable features cannot be avoided
when there are weak IVs as follows from the results of Dufour (1997).
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Proof of Theorem 4.2. In the numerator of the AR statistic, we have

Z ′1M2(y1 − y2γ0)
n1/2

=
Z ′1M2u

n1/2
+ (γ − γ0)

Z ′1M2y2

n1/2

=
Z ′1M2u

n1/2
+ (γ − γ0)

Z ′1M2(v + Z1π1)

n1/2

=
Z ′1M2u

n1/2
+ (γ − γ0)

Z ′1M2v

n1/2
+ (γ − γ0)

Z ′1M2Z1C

n

→d Φ1·2 + (γ − γ0)Ψ1·2 + (γ − γ0)Q1·2C

=d Q
1/2
1·2

(
σuZu + (γ − γ0)σvZv + (γ − γ0)Q1/2

1·2 C
)
, (4.7)

where Φ1·2 and Ψ1·2 are defined in (2.7), and Zu and Zv are defined in (2.4). Note also that
by the definition in (2.4) and due to the properties of multivariate normal distributions (see
Theorem A.5 in the Appendix),

σuZu + (γ − γ0)σvZv ∼ N
(
0, (σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv)Il1

)
(4.8)

as σuv = ρuvσuσv.
In the denominator of the AR statistic, we have:

(y1 − y2γ0)′M(y1 − y2γ0)
n

=

=

(
u+ (γ − γ0)(Z1C/n

1/2 + v)
)′
M
(
u+ (γ − γ0)(Z1C/n

1/2 + v)
)

n

=
u′Mu

n
+ (γ − γ0)2

v′Mv

n
+ 2(γ − γ0)

u′Mv

n
+ op(1)

→p σ
2
u + (γ − γ0)2σ2v + 2(γ − γ0)σuv, (4.9)

which is the same as the variance in (4.8).
Putting (4.7)-(4.9) together, we obtain:

AR(γ0)→d

∥∥∥σuZu + (γ − γ0)σvZv + (γ − γ0)Q1/2
1·2 C

∥∥∥2
σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv

∼

∥∥∥∥∥N(0, Il1) +
γ − γ0

(σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv)1/2
Q

1/2
1·2 C

∥∥∥∥∥
2

=

∥∥∥∥∥N(0, Il1) +
(γ − γ0)σv

(σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv)1/2
λ

∥∥∥∥∥
2

=d χ2
l1

(
(γ − γ0)2σ2v

σ2u + (γ − γ0)2σ2v + 2(γ − γ0)σuv
‖λ‖2

)
,
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where recall λ = Q
1/2
1·2 C/σv and the result in the last line holds by the definition of the

non-central χ2 distribution in Lemma A.10, equation (A.2).

4.2 Robust confidence sets (CSs) based on the AR statistic

The AR test can be used to construct CSs for γ that remain valid whether IVs are strong
or weak. Instead of using the standard approach to building confidence intervals (CIs), i.e.
instead of using the formula

CI1−α = estimate± std.err× z1−α/2,

robust CSs can be constructed by inverting any test robust to weak IVs, including the AR
test. Inversion of a test means that we are going to include in the CS all values γ0 that could
not be rejected when testing H0 : γ = γ0 against H1 : γ 6= γ0. In the case of the size α AR
test, the corresponding CS with coverage probability 1− α is

CSAR1−α = {γ0 ∈ R : AR(γ0) ≤ χ2
l1,1−α}. (4.10)

Note that the significance level of the AR test (α) should match the coverage probability of its
CS (1 − α). The validity of the AR CS constructed by inversion is follows immediately from
the validity of the AR test in Theorem 4.1.

Theorem 4.3. Suppose that Assumption 1.1 holds. Then,

P (γ ∈ CSAR1−α)→ 1− α.

Proof. By the definition of the AR CS in (4.10),

P
(
γ ∈ CSAR1−α

)
= P

(
AR(γ) ≤ χ2

l1,1−α
)
→ 1− α,

where the last result holds by Theorem 4.1.

The definition of the AR CS in (4.10) means that one has to perform a sequence of tests
for different values of γ0 and then collect all the values of γ0 that could not be rejected. This
may seem as a computationally intensive/cumbersome procedure. In fact however, when the
model has only one endogenous regressor as in our case, the AR CS can be constructed simply
by solving a single quadratic equation.

Theorem 4.4. γ0 ∈ CSAR1−α if and only if it solves the following quadratic equation:

anγ
2
0 − bnγ0 + cn ≤ 0, (4.11)
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where

an = y′2
(
PM2Z1 − n−1χ2

l1,1−αM
)
y2,

bn = 2y′2
(
PM2Z1 − n−1χ2

l1,1−αM
)
y1,

cn = y′1
(
PM2Z1 − n−1χ2

l1,1−αM
)
y1,

The proof of Theorem 4.4 follows immediately from the definitions of the AR statistic in
(4.6) and AR CS in (4.10).

When there is a single IV, i.e. l1 = 1 and the model is exactly identified, it is easy to
show that CSAR1−α/2 cannot be empty: there are always values γ0 that satisfy the inequality in
(4.11). In particular, one such value is the IV estimator γ̂.

Lemma 4.5. When l1 = 1, γ̂ ∈ CSAR1−α.

Proof. When l1 = 1,

Z ′1M2(y1 − y2γ0) = 0 for γ0 =
Z ′1M2y1
Z ′1M2y2

,

in which case the first line in (4.6) implies that the AR statistic is equal to zero for such a
value of γ0. However, when l1 = 1, (1.9) implies that

γ̂ =
π̂′1Z

′
1M2y1

π̂′1Z
′
1M2Z1π̂1

=
Z ′1M2y1
Z ′1M2Z1π̂1

=
Z ′1M2y1

Z ′1M2Z1
Z′1M2y2
Z′1M2Z1

=
Z ′1M2y1
Z ′1M2y2

,

where the equality in the second line holds because π̂1 is 1× 1 when l1 = 1, and the equality
in the third line holds by the definition of π̂1 in (1.8).

Since the AR CS is defined by a quadratic inequality and cannot be empty when l1 = 1,
in that case it can take one of the three forms, as illustrated in Figure 2:

(a) A compact interval of the form [γ, γ̄] if an > 0.

(b) The union of two half-lines: (−∞, γ] ∪ [γ̄,∞) when an < 0.

(c) The entire real line: (−∞,∞) when an < 0.
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Figure 2: Possible forms of AR CSs when l1 = 1 for different values of an. AR CSs are shown by thick lines

(a) an > 0, CSAR1−α/2 = [γ, γ̄]

γ γ̄

anγ
2
0 − bnγ0 + cn

γ0

(b) an < 0, CSAR1−α/2 = (−∞, γ] ∪ [γ̄,∞)

γ γ̄

anγ
2
0 − bnγ0 + cn

γ0

(c) an < 0, CSAR1−α/2 = (−∞,∞)

anγ
2
0 − bnγ0 + cn

γ0
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The forms in (b) and (c) are unusual and the reason we use the terminology “confidence
sets” (CSs) instead of confidence intervals (CIs). In the case of (b) and (c), CSs are unbounded
and, therefore, a less informative than the usual interval form in (a). Moreover, in case (c)
CSs are completely uninformative.

While the situations described by (b) and (c) thus may seem undesirable, they cannot be
avoided if one wants to construct valid confidence sets. This has been shown in Dufour (1997).
Moreover, one can show that if IVs are in fact strong, AR CSs are bounded with probability
approaching one, as is implied the theorem below.

Theorem 4.6. Suppose that Assumption 1.1 holds.

(a) P (an > 0)→ 1, when π1 is fixed (i.e. IVs are strong).

(b) limn→∞ P (an > 0) = P
(
‖λ+ Zv‖2 > χ2

l1,1−α

)
< 1, when π1 = n−1/2C (and therefore

‖λ‖2 <∞, i.e. IVs are weak).

Remark. Recall that in part (b), ‖λ+ Zv‖2 ∼ χ2
l1

(‖λ‖2), which is an increasing function of
the concentration parameter ‖λ‖2. Hence, the probability of the AR CS taking the form of
a compact interval depends on the strength of identification. However, for every finite value
of the concentration parameter, the probability that a χ2

l1
(‖λ‖2)-distributed random variable

takes a value greater than χ2
l1,1−α is strictly less than 1.

Proof. Write:

an = y′2PM2Z1y2 − χ2
l1,1−α

y′2My2
n

. (4.12)

Since both terms on the right-hand side are quadratic forms constructed using positive-
semidefinite matrices, an > 0 when the first term dominates the second. For the first term,
we have:

y′2PM2Z1y2
n

=
(Z1π1 + v)′M2Z1(Z

′
1M2Z1)

−1Z ′1M2(Z1π1 + v)

n

=
π′1Z

′
1M2Z1π1
n

+
v′M2Z1

n

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n
+ 2

π′1Z
′
1M2v

n

→p π
′
1Q1·2π1. (4.13)

Hence,
y′2PM2Z1y2 = Op(n),

i.e. it diverges to +∞ as n→∞. For the second term, similar calculations show that

y′2My2
n

=
v′M2v

n
→p σ

2
v .
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Hence
an = Op(n)− χ2

l1,1−αOp(1),

and the result in part (a) follows.
For part (b), one can show that the two terms in (4.12) are of the same magnitude. For

the first term, we have:

y′2PM2Z1y2 =
(
Z1C/n

1/2 + v
)′
PM2Z1

(
Z1C/n

1/2 + v
)

=
C ′Z ′1M2Z1C

n
+
v′M2Z1

n1/2

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n1/2
+ 2

C ′Z1M2v

n1/2

→d C
′Q1·2C + Ψ′1·2Q

−1
1·2Ψ1·2 + 2C ′Ψ1·2

=
∥∥∥Q1/2

1·2 C +Q
−1/2
1·2 Ψ1·2

∥∥∥2
=d σ2v ‖λ+ Zv‖2 ,

where Ψ1·2 and Zv are defined in (2.7) and (2.4) respectively. Therefore,

P (an > 0)→ P
(
‖λ+ Zv‖2 − χ2

l1,1−α > 0
)

= P
(
χ2
l1(‖λ‖2) > χ2

l1,1−α
)

< 1,

where the inequality in the last line holds for every ‖λ‖2 <∞.

In the case when the model is over-identified (l1 > 1), there is one additional possibility
for form of the AR CS: it can be empty. AR-based CSs would be empty when there is no
value γ0 that makes the null-restricted residuals y1 − y2γ0 uncorrelated with the IVs Z1, i.e.
even for the true value γ, y1 − y2γ = u remain correlated with the IVs Z1 . This would imply
that the IVs are invalid in the sense that the restriction EuiZ1i = 0 does not hold. Another
possibility is that the model is grossly misspecified and the relationship between y1 and y2 is
non-linear. In either case, one should not use IVs in such situation. Thus, AR CSs have a
built-in model specification test with empty CSs implying that the model (y1i = y2γ+Z2iβ+ui

with EZ1iui = 0 and EZ2iui = 0) is rejected.
To conclude this section, we will show that AR CSs will correctly capture the true param-

eter value when IVs are strong and n→∞.

Theorem 4.7. Suppose that Assumption 1.1 holds and π1 is fixed (i.e. IVs are strong). Then,

P
(
CSAR1−α = {γ}

)
→ 1.

Remark. The theorem indicates that in the case of strong IVs, AR CSs will collapse to a single
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point, which is the true value of the coefficient γ, as n→∞. This is the behavior one would
expect from a good CS/CI when identification is strong as usual CIs based on the IV estimator
and its standard error have this property.

Proof. First note that
anγ

2
0 − bnγ0 + cn ≤ 0

if and only if
an
n
γ20 −

bn
n
γ0 +

cn
n
≤ 0.

As is show in the proof of Theorem 4.6(a),

an
n
→ π′1Q1·2π1.

Next,

bn
n

=
2y′2

(
PM2Z1 − n−1χ2

l1,1−αM
)
y1

n

= 2
y′2PM2Z1y1

n
+ op(1)

= 2
(Z1π1 + v)′M2Z1 (Z ′1M2Z1)

−1 Z ′1M2 (y2γ + u)

n
+ op(1)

= 2
(Z1π1 + v)′M2Z1

n

(
Z ′1M2Z1

n

)−1 Z ′1M2 (Z1π1γ + vγ + u)

n
+ op(1)

→p 2π′1Q1·2π1γ,

cn
n

=
y′1

(
PM2Z1 − n−1χ2

l1,1−αM
)
y1

n

=
(Z1π1γ + vγ + u)′M2Z1

n

(
Z ′1M2Z1

n

)−1 Z ′1M2 (Z1π1γ + vγ + u)

n
+ op(1)

→p π
′
1Q1·2π1γ

2.

Therefore,

an
n
γ20 −

bn
n
γ0 +

cn
n
→p π

′
1Q1·2π1

(
γ20 − 2γ0γ + γ2

)
= π′1Q1·2π1 (γ0 − γ)2 .

Hence, as n→∞, γ0 = γ is the only value that satisfies the limiting version of the inequality
defining the AR CS.
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5 Improving the power of robust inference

The AR approach described in Section 4 allows one to test hypotheses about the structural
coefficient γ and construct confidence sets for γ despite having potentially weak IVs. The ap-
proach “works” in the sense that it remains valid whether IVs are weak or strong. Nevertheless,
it turns out that when IVs are strong, the AR approach is not as powerful as the traditional
approach based on the IV estimator of γ and its standard error. This section discusses the
power issues of the AR approach and how they can be alleviated. We will discuss alternative
weak-IV-robust test statistics that can be used to design inference procedures that remain
valid when IVs are weak, and are as powerful as the traditional t-statistic-based inference
when IVs are strong.

5.1 Power of the t-test under strong IVs

Consider again testing H0 : γ = γ0 against a two-sided alternative H1 : γ 6= γ0. Recall from
Section 1.3 equation (1.20), that the t-statistic is defined as

t(γ0) =
n1/2(γ̂ − γ0)√

σ̂2
u

y′2PM2Z1
y2/n

, (5.1)

and the two-sided t-test rejects H0 when

|t(γ0)| > z1−α/2.

The following theorem shows that the power of the t-test can be described using a non-central
χ2
1 random variable, and thus is completely characterized by a scalar non-centrality parameter.
In the case of strong IVs to describe the power of a test, we should consider small deviations

of the truth from the null hypothesis:

γ = γ0 + n−1/2δ

for some unknown δ ∈ R.

Theorem 5.1. Suppose that Assumption 1.1 holds, γ = γ0 + n−1/2δ, and π1 is fixed, i.e IVs
are strong. Then,

P
(
|t(γ0)| > z1−α/2

)
→ P

(δ(π′1Q1·2π1
σ2u

)1/2

+ Z

)2

> χ2
1,1−α

 ,

where Z ∼ N(0, 1).
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Remark. By the definition of the non-central χ2 distribution,(
δ

(
π′1Q1·2π1

σ2u

)1/2

+ Z

)2

∼ χ2
1

(
δ2
π′1Q1·2π1

σ2u

)
. (5.2)

The non-centrality parameter on the right-hand side of equation (5.2) describes the power of
the t-test in the case of strong IVs. It depends on two components: δ2 measures the distance
from H0, and π′1Q1·2π1/σ

2
u measures the strength of IVs relatively to the noise of the errors in

the structural equation. Thus, the power of the t-test increases with the distance between γ
and γ0; it also increases with the strength of IVs.

Proof of Theorem 5.1. Recall that from (1.19) that

σ̂2u → σ2u, (5.3)

and, when IVs are strong,
y′2PM2Z1y2

n
→p π

′
1Q1·2π1, (5.4)

as shown in (4.13) and earlier in the proof of Theorem 1.2. Similarly to the proof of Theorem
1.2,

γ̂ − γ0 = γ − γ0 +
y′2PM2Z1u

y′2PM2Z1y2

= n−1/2δ +
y′2PM2Z1u

y′2PM2Z1y2
,

so that

n1/2(γ̂ − γ0) = δ +
π′1Z

′
1M2u/n

1/2 + (v′M2Z1/n) (Z ′1M2Z1/n)−1Z ′1M2u/n
1/2

y′2PM2Z1y2

→d δ +
π′1Φ1·2
π′1Q1·2π1

=d N

(
δ,

σ2u
π′1Q1·2π1

)
, (5.5)

since Φ1·2 ∼ N(0, σ2uQ1·2). The definition of the t-statistic in (5.1) and the results in (5.3)-(5.5)
imply that

t(γ0)→d

N
(
δ, σ2

u
π′1Q1·2π1

)
√

σ2
u

π′1Q1·2π1
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=d N

(
δ

(
π′1Q1·2π1

σ2u

)1/2

, 1

)
. (5.6)

Next, note that
|t(γ0)| > z1−α/2

holds if and only if

(t(γ0))
2 > z21−α/2

= χ2
1,1−α,

where the result in the second line holds by the definition of the χ2 distribution in equation
(A.1), see Appendix A.5. Hence,

P
(
|t(γ0)| > z1−α/2

)
= P

(
(t(γ0))

2 > χ2
1,1−α

)
→ P

(δ(π′1Q1·2π1
σ2u

)1/2

+ Z

)2

> χ2
1,1−α

 ,

where the result in the last line holds by (5.6) and the definition of the non-central χ2
1 distri-

bution in (A.2).

5.2 Power of the AR test under strong IVs

In this section, we derive the power of the AR weak-IV-robust test from Section 4 when IVs
are strong. Note that Theorem 4.2 in Section 4.1 analyzes the power of the AR test when
IVs are weak (π1 = n−1/2C and ‖λ‖2 < ∞), while the distance between the truth and the
null hypothesis γ − γ0 is fixed. Here, we proceed under the assumption that π1 is fixed while
γ = γ0 + n−1/2δ, i.e. the distance between the truth and the null hypothesis is small in the
local-to-zero sense.

Theorem 5.2. Suppose that Assumption 1.1 holds, γ = γ0 + n−1/2δ, and π1 is fixed, i.e IVs
are strong. Then,

AR(γ0)→d χ
2
l1

(
δ2
π′1Q1·2π1

σ2u

)
.

Proof. From (4.6),

AR(γ0) =

(
(y1 − y2γ0)′M2Z1/n

1/2
)

(Z ′1M2Z1/n)−1 Z ′1M2(y1 − y2γ0)/n1/2

(y1 − y2γ0)′M(y1 − y2γ0)/n
.
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We have: (
Z ′1M2Z1

n

)−1
→p Q

−1
1·2,

Z ′1M2(y1 − y2γ0)
n1/2

=
Z ′1M2(y2(γ − γ0) + u)

n1/2

=
Z ′1M2

(
(Z1π1 + v)δ/n1/2 + u

)
n1/2

=
Z ′1M2Z1

n
π1δ +

Z ′1M2u

n1/2
+
Z ′1M2v

n
δ

→d Q1·2π1δ + Φ1·2

= σuQ
1/2
1·2

(
Q

1/2
1·2 π1δ/σu + Zu

)
,

where recall that Zu ∼ N(0, Il1) as defined in (2.4). In the denominator of the AR statistic,
we have a null-restricted estimator of σ2u:

σ̂2u(γ0) =
(y1 − y2γ0)′M(y1 − y2γ0)

n

=

(
vδ/n1/2 + u

)′
M2

(
vδ/n1/2 + u

)
n

=
u′Mu

n
+ op(1)

→p σ
2
u, (5.7)

where the op(1) term is due to δ/n1/2. We now have:

AR(γ0)→d

∥∥∥Q1/2
1·2 π1δ/σu + Zu

∥∥∥2
∼ χ2

l1

(
δ2
π′1Q1·2π1

σ2u

)
.

By comparing Theorems 5.1 and 5.2, one can see that when IVs are strong, the power of
the t- and AR tests depends on the same non-centrality parameter:

P
(
|t(γ0)| > z1−α/2

)
→ P

(
χ2
1

(
π′1Q1·2π1

σ2u

)
> χ2

1,1−α

)
,

P
(
AR(γ0) > χ2

l1,1−α
)
→ P

(
χ2
l1

(
π′1Q1·2π1

σ2u

)
> χ2

l1,1−α

)
.

The only difference between the two expressions for the power is the number of degrees of
freedom: one in the case of the t-test and l1 in the case of the AR test. Thus, the power of
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the two tests under strong IVs is identical only when the number of IVs l1 = 1 (the exactly
identified model). When the model is over-identified (i.e. l1 > 1), recall that the non-central
χ2 distribution with l1 degrees of freedom can be written as

χ2
l1

(
π′1Q1·2π1

σ2u

)
=d

((
π′1Q1·2π1

σ2u

)1/2

+ Z1

)2

+ Z2
2 + . . .+ Z2

l1 ,

where Z1,Z2, . . .Zl1 are iid N(0, 1) random variables. Thus, in the case of the AR test we have
extra noise components Z2, . . .Zl1 , which appear because the AR test tests l1 restrictions, while
the t-test tests only one restriction. At the same time, the signal component: π′1Q1·2π1/σ

2
u is

the same for both tests. As a result, the AR test is not going to be as powerful as the t-test
(under strong IVs) if l1 > 1, i.e. the model is over-identified.

5.3 LM test

We saw in the previous section that, when IVs are strong and the model is over-identified
(l1 > 1), the AR test is not going to be as powerful as the t-test. Although the AR test still
has the advantage of remaining valid when IVs are weak, it is important to see if it is possible
to improve on the power of the AR test when IVs are strong while preserving the validity when
IVs are weak.

The loss of power of the AR approach occurs because it tests hypotheses about γ ∈ R by
testing l1 restrictions: each of the l1 IVs Z1 is uncorrelated with the error. Thus, we can try
to improve the power by transforming l1 > 1 restrictions into a single restriction by taking
linear combinations. The transformation will be efficient if the power of the resulting test is
determined by the same non-centrality parameter as that of the t-test under strong IVs:

δ2
π′1Q1·2π1

σ2u
.

Recall that the AR test is driven by l1 sample covariances between Z1 and the null-restricted
residuals:

Z ′1M2(y1 − y2γ0) ∈ Rl1 .

Consider the following (infeasible) linear transformation:

π′1Z
′
1M2(y1 − y2γ0) ∈ R.

When IVs are strong and γ = γ0 + δ/
√
n,

π′1Z
′
1M2(y1 − y2γ0)

n1/2
=
π′1Z

′
1M2(u+ y2(γ − γ0))

n1/2
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=
π′1Z

′
1M2(u+ n−1/2δ(Z1π1 + v))

n1/2

= δ
π′1Z

′
1M2Z1π1
n

+
π′1Z

′
1M2u

n1/2
+ δ

π′1Z
′
1M2v

n

→d δπ
′
1Q1·2π1 + π′1Φ1·2

=d δπ′1Q1·2π1 + σuπ
′
1Q

1/2
1·2 Zu

∼ N
(
δπ′1Q1·2π1, σ

2
uπ
′
1Q1·2π1

)
. (5.8)

Hence, the following (infeasible) statistic will have a non-central χ2 distribution with one
degree of freedom and the desired non-centrality parameter:

(π′1Z
′
1M2(y1 − y2γ0))2

σ̂2u(γ0)π′1Z
′
1M2Z1π1

(5.9)

=

(
π′1Z

′
1M2(y1 − y2γ0)/n1/2

)2
σ̂2u(γ0)π′1Z

′
1M2Z1π1/n

→d

(
N
(
δπ′1Q1·2π1, σ

2
uπ
′
1Q1·2π1

))2
σ2uπ

′
1Q1·2π1

=

(
N

(√
δ2
π′1Q1·2π1

σ2u
, 1

))2

∼ χ2
1

(
δ2
π′1Q1·2π1

σ2u

)
,

where the null-restricted estimator σ̂2u(γ0) = (y1 − y2γ0)′M(y1 − y2γ0)/n remains consistent
for σ2u when γ = γ0 + δ/n1/2 as we saw in (5.7).

The statistic described above is infeasible because π1 is unknown. One could try to replace
it with the estimator

π̂1 =
(
Z ′1M2Z1

)−1
Z ′1M2y2.

When IVs are strong, π̂1 →p π1, which would produce the desired result. However, when IVs
are weak and as is shown in the proof of Theorem 3.1,

π̂′1Z
′
1M2Z1π̂1 = y′2M2Z1

(
Z ′1M2Z1

)−1
Z ′1M2y2

=

(
Z ′1M2Z1

n
C +

Z ′1M2v

n1/2

)′(Z ′1M2Z1

n

)−1(Z ′1M2Z1

n
C +

Z ′1M2v

n1/2

)
→d σ

2
v‖λ+ Zv‖2.

Moreover, when IVs are weak and under the null γ = γ0

π̂′1Z
′
1M2(y1 − y2γ0) = y′2M2Z1

(
Z ′1M2Z1

)−1
Z ′1M2u
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=

(
Z ′1M2Z1

n
C +

Z ′1M2v

n1/2

)′(Z ′1M2Z1

n

)−1 Z ′1M2u

n1/2

→d σuσv (λC + Zv)′Zu.

Hence, the null distribution of the statistic in (5.9) with π1 replaced by by π̂1 would be(
(λC + Zv)′Zu

)2
‖λC + Zv‖2

.

This distribution is nonstandard when Zu and Zv are correlated, which happens when the
regressor y2 is endogenous and ρuv 6= 0 (see the definition of Zu and Zv in (2.4)). However, if
ρuv = 0, then Zu and Zv are independent by the properties of joint normal distributions, see
Section A.2 in the Appendix. In that case,

(λC + Zv)′Zu
‖λC + Zv‖

| Zv ∼ N
(

0,
‖λC + Zv‖2

‖λC + Zv‖2

)
= N(0, 1).

Thus, when (λC + Zv) and Zu are uncorrelated,(
(λC + Zv)′Zu

)2
‖λC + Zv‖2

| Zv ∼ χ2
1. (5.10)

Since the conditional distribution in (5.10) does not depend on Zv, it is the same for all
realizations of Zv, i.e. it is the same as the unconditional distribution: χ2

1.
The result in (5.10) suggests the following approach for obtaining a test statistic that:

1. has a χ2
1 distribution under H0 whether IVs are strong or weak.

2. has a non-central χ2
1 distribution with the non-centrality parameter δ2π′1Q1·2π1/σ

2
u when

IVs are strong and γ = γ0 + n−1/2δ.

To obtain such a statistic, one needs to replace π̂1 with an alternative estimator that:

1. converges in probability to π1 when IVs are strong (so that we have the right non-
centrality parameter under the alternative.

2. is asymptotically uncorrelated/independent with Zu when IVs are weak and γ = γ0 (so
that we have χ2

1 distribution under the null).

The approach was suggested and developed in Kleibergen (2002)and Moreira (2001). Let S(γ0)

denote the statistic that measures the violation of the null hypothesis:

S(γ0) =
Z ′1M2(y1 − y2γ0)

n
.
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We need to construct an estimator of π1 that would be uncorrelated with S(γ0). To construct
such an estimator, consider “regressing” π̂1 and keeping the residuals from that “regression”:

π̃1(γ0) = π̂1 − ÂsyCov(π̂1, S(γ0))
(
ÂsyV ar (S(γ0)

)−1
S(γ0),

where ÂsyCov(π̂1, S(γ0)) denotes an estimator of the asymptotic covariance between π̂1 and
S(γ0), and ÂsyV ar (S(γ0)) denotes and estimator of the asymptotic variance of S(γ0).

Recall that

n1/2S(γ) =
Z ′1M2(y1 − y2γ)

n1/2
=
Z ′1M2u

n1/2
,

n1/2(π̂1 − π1) =

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n1/2
.

Hence, the asymptotic variance of S(γ0) and the asymptotic covariance between π̂1 and S(γ0)

are given by

AsyV ar (S(γ0) = σ2uQ1·2,

AsyCov(π̂1, S(γ0)) = Q−11·2σuvQ1·2 = σuvIl1 .

We therefore can define the following null-restricted estimator of π1:

π̃1(γ0) = π̂1 −
σ̂uv(γ0)

σ̂2u(γ0)

(
Z ′1M2Z1

n

)−1
S(γ0), (5.11)

where σ̂uv(γ0) and σ̂2u(γ0) denote the null-restricted estimators of σuv and σ2u respectively:

σ̂uv(γ0) =
y′2M(y1 − y2γ0)

n
, (5.12)

σ̂2u(γ0) =
(y1 − y2γ0)′M(y1 − y2γ0)

n
. (5.13)

With those definitions, Kleibergen/Moreira’s statistic (referred to as the LM statistic9)
can be written as

LM(γ0) =
(π̃1(γ0)

′Z ′1M2(y1 − y2γ0))2

σ̂2u(γ0)π̃1(γ0)′Z ′1M2Z1π̃1(γ0)
, (5.14)

=
(nπ̃1(γ0)

′S(γ0))
2

σ̂2u(γ0) (π̃1(γ0)′Z ′1M2Z1π̃1(γ0))
, (5.15)

where the expression in the first line matches the infeasible efficient statistic in equation
(5.9), but with unknown π1 replaced with the estimator π̃1(γ0). The lemma below gives an

9LM stands for Lagrange Multiplier.
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alternative and more compact expression for the LM statistic.

Lemma 5.3. The LM statistic in (5.14) can be also written as

LM(γ0) =
(y1 − y2γ0)′Pỹ2(γ0)(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)/n

,

where

ỹ2(γ0) = M2Z1π̃1(γ0), and

Pỹ2(γ0) = ỹ2(γ0)
(
ỹ2(γ0)

′ỹ2(γ0)
)−1

ỹ2(γ0)
′.

Proof. Using the definition of ỹ2,

(π̃1(γ0)
′Z ′1M2(y1 − y2γ0))2

π̃1(γ0)′Z ′1M2Z1π̃1(γ0)
=

(ỹ2(γ0)
′(y1 − y2γ0))2

ỹ2(γ0)′ỹ2(γ0)

=
(y1 − y2γ0)ỹ2(γ0)ỹ2(γ0)′(y1 − y2γ0)

ỹ2(γ0)′ỹ2(γ0)

= (y1 − y2γ0)ỹ2(γ0)
(
ỹ2(γ0)

′ỹ2(γ0)
)−1

ỹ2(γ0)
′(y1 − y2γ0)

= (y1 − y2γ0)′Pỹ2(γ0)(y1 − y2γ0),

and the result follows from the definition of the LM statistic in (5.14).

The next theorem shows that the LM statistic has the same χ2
1 asymptotic null distribution

whether IVs are strong of weak, i.e. the LM statistic is robust to weak IVs. Therefore, the
size α weak-IV-robust LM test of H0 : γ = γ0 against H1 : γ 6= γ0 is

Reject H0 when K(γ0) > χ2
1−α.

Theorem 5.4. Suppose that Assumption 1.1 holds.

(a) Suppose that γ = γ0 + n−1/2δ, and π1 is fixed (i.e. IVs are strong). Then,

LM(γ0)→d χ
2
1

(
δ2
π′1Q1·2π1

σ2u

)
.

In particular when γ = γ0 (i.e. δ = 0), LM(γ0)→d χ
2
1.

(b) LM(γ0)→d χ
2
1 when π1 = n−1/2C (i.e. IVs weak as in Assumption 2.1 and ‖λ‖2 <∞).

Proof. For part (a), first note that when IVs are strong and π1 is fixed,

π̂1 →p π1.
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Furthermore,

S(γ0) =
Z ′1M2(u+ y2(γ − γ0))

n

=
Z ′1M2(u+ n−1/2δ(Z1π1 + v))

n

=
Z ′1M2u

n
+ op(1)

→p 0.

Hence, by the definition of π̃1(γ0) in (5.11),

π̃1(γ0)→p π1.

The rest of the proof for part (a) follows the same steps as those for the infeasible statistic in
(5.9):

LM(γ0) =
(π̃1(γ0)

′Z ′1M2(y1 − y2γ0))2

σ̂2u(γ0)π̃1(γ0)′Z ′1M2Z1π̃1(γ0)

=

(
π̃1(γ0)

′Z ′1M2(u+ n−1/2δ(Z1π1 + v))/
√
n
)2

σ̂2u(γ0)π̃1(γ0)′Z ′1M2Z1π̃1(γ0)/n

=
(π̃1(γ0)

′Z ′1M2u/
√
n+ δπ̃1(γ0)

′Z ′1M2Z1π1/n+ op(1))
2

σ̂2u(γ0)π̃1(γ0)′Z ′1M2Z1π̃1(γ0)/n

→d
(π′1Φ1·2 + δπ′1Q1·2π1)

2

σ2uπ
′
1Q1·2π1

∼ (N(δπ′1Q1·2π1, π
′
1Q1·2π1))

2

σ2uπ
′
1Q1·2π1

=d

(
N

(
δ

√
π′1Q1·2π1

σ2u
, 1

))2

=d χ2
1

(
δ2
π′1Q1·2π1

σ2u

)
.

For part (b), suppose that IVs are weak and γ = γ0, so that

M2(y1 − y2γ0) = M2u.

In that case,

n1/2S(γ0) =
Z ′1M2u

n1/2
→d Φ1·2

σ̂2u(γ0) =
u′Mu

n
→p σ

2
u, (5.16)
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σ̂uv(γ0) =
v′Mu

n
→p σuv.

Moreover,

n1/2π̂1 = n1/2π1 +

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n1/2

= C +

(
Z ′1M2Z1

n

)−1 Z ′1M2v

n1/2

→d C +Q−11·2Ψ1·2.

Therefore,

n1/2π̃1(γ0)→d

(
C +Q−11·2Ψ1·2

)
− σuv

σ2u
Q−11·2Φ1·2. (5.17)

Denote the expression for the limiting distribution of n1/2π̃(γ0) as Υ:

Υ =
(
C +Q−11·2Ψ1·2

)
− σuv

σ2u
Q−11·2Φ1·2, (5.18)

and note that Υ is normally distributed. We have(
n1/2π̃1(γ0), n

1/2S(γ0)
)
→d (Υ,Φ1·2) . (5.19)

Next, the asymptotic covariance of n1/2π̃1(γ0) and n1/2S(γ0) is zero by construction of π̃1(γ0):

Cov (Υ,Φ1·2) = Q−11·2Cov(Ψ1·2,Φ1·2)−
σuv
σ2u

Q−11·2Cov(Φ1·2,Φ1·2)

= Q−11·2 (σuvQ1·2)−
σuv
σ2u

Q−11·2
(
σ2uQ1·2

)
= σuvIl1 − σuvIl1
= 0,

where the equality in the second line follows from the definition of Φ1·2 and Ψ1·2 in (2.7).
Hence Υ and Φ1·2 are uncorrelated. However, since Υ and Φ1·2 are jointly normal, they are
also independent.

The results in (5.16) and (5.19) as well as the representation of the LM statistic in (5.15)
imply that

LM(γ0) =

(
n1/2π̃1(γ0)

′n1/2S(γ0)
)2

σ̂2u(γ0)
(
n1/2π̃1(γ0)′ (Z ′1M2Z1/n)n1/2π̃1(γ0)

) , (5.20)
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→d
(Υ′Φ1·2)

2

σ2u (Υ′Q1·2Υ)
.

Since Υ and Φ1·2 are independent,

Υ′Φ1·2 | Υ ∼ N
(
0, σ2uΥ′Q1·2Υ

)
.

Therefore,

(Υ′Φ1·2)
2

σ2u (Υ′Q1·2Υ)
| Υ ∼

(
N
(
0, σ2uΥ′Q1·2Υ

))2
σ2uΥ′Q1·2Υ

=d (N(0, 1))2

∼ χ2
1.

Since the conditional distribution given Υ does not depend on Υ, it is the same for all values
of Υ, i.e.

(Υ′Φ1·2)
2

σ2u (Υ′Q1·2Υ)
∼ χ2

1.

5.4 Robust CSs based on the LM test

Similarly to AR CSs, one can construct robust CSs for γ by inverting the LM test:

CSLM1−α = {γ0 : LM(γ0) ≤ χ2
1,1−α}. (5.21)

Since the LM test is more powerful than the AR test when IVs are strong and the model is
over-identified (l1 > 1), LM-based CSs are expected to be more precise than AR-based CSs in
such situations. Moreover unlike AR CSs, LM-based CSs cannot be empty even when l1 > 1.

Theorem 5.5. CSLM1−α defined in (5.21) cannot be empty.

Proof. The result will be established by showing that (i) the LM statistic is proportional to
the derivative of AR(γ0) with respect to γ0, and that (ii) AR(γ0) has a minimum as a function
of γ0. This implies that the value γ that minimizes AR(·) also satisfies LM(γ) = 0 , which in
turn implies that γ ∈ CSLM1−α.

We first show (i).

1

2

dAR(γ0)

dγ0
=

1

2

d

dγ0

(
(y1 − y2γ0)′PM2Z1(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)/n

)
= − y′2PM2Z1(y1 − y2γ0)

(y1 − y2γ0)′M(y1 − y2γ0)/n
+
y′2M(y1 − y2γ0)/n ((y1 − y2γ0)′PM2Z1(y1 − y2γ0))

((y1 − y2γ0)′M(y1 − y2γ0)/n)2
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= − 1

(y1 − y2γ0)′M(y1 − y2γ0)/n

×
(
y′2PM2Z1(y1 − y2γ0)− y′2M(y1 − y2γ0)

(y1 − y2γ0)′PM2Z1(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)

)
= −y

′
2PM2Z1(y1 − y2γ0)

σ̂2u

(
1− y′2M(y1 − y2γ0)

y′2PM2Z1(y1 − y2γ0)
AR(γ0)

)
. (5.22)

At the same time, in the numerator of the LM statistic we have:

(y1 − y2γ0)′M2Z1π̃1(γ0) =

= (y1 − y2γ0)′M2Z1

(
π̂1 −

σ̂uv(γ0)

σ̂2u(γ0)

(
Z ′1M2Z1

n

)−1 Z ′1M2(y1 − y2γ0)
n

)
= (y1 − y2γ0)′M2Z1

×
(

(Z ′1M2Z1)
−1Z ′1M2y2 −

y′2M(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)

(Z ′1M2Z1)
−1Z ′1M2(y1 − y2γ0)

)
= (y1 − y2γ0)′PM2Z1y2 − y′2M(y1 − y2γ0)

(y1 − y2γ0)′PM2Z1(y1 − y2γ0)
(y1 − y2γ0)′M(y1 − y2γ0)

)

= y′2PM2Z1(y1 − y2γ0)
(

1− y′2M(y1 − y2γ0)
y′2PM2Z1(y1 − y2γ0)

AR(γ0)

)
= − σ̂

2
u(γ0)

2

dAR(γ0)

dγ0
, (5.23)

where the equality in the last line holds by (5.22).
Next, we show (ii). Minimization of AR(γ0) is related to the theory of the LIML estimator,

see for example p. 549 in Davidson and MacKinnon (2004).

n−1AR(γ0) =
(y1 − y2γ0)′PM2Z1(y1 − y2γ0)

(y1 − y2γ0)′M(y1 − y2γ0)

=
a′0Y

′PM2Z1Y a0
a′0Y

′MY a0
,

where

a0 =

(
1

−γ0

)
and Y = [y1 y2] ,

so that
Y a0 = y1 − y2γ0.

Next,

1

2

d

da0

(
a′0Y

′PM2Z1Y a0
a′0Y

′MY a0

)
=
Y ′PM2Z1Y a0
a′0Y

′MY a0
− Y ′MY a0

a′0Y
′PM2Z1Y a0

(a′0Y
′MY a0)

2
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=
1

a′0Y
′MY a0

(
Y ′PM2Z1Y a0 − Y ′MY a0AR(γ0)

)
.

Setting this to zero and denoting by γ the minimizer of AR(γ0), a = (1 γ)′, and κ = AR(γ),
we obtain:

Y ′PM2Z1Y a− κY ′MY a = 0,

or

0 =
(
Y ′PM2Z1Y − κY ′MY

)
a

=
(
Y ′MY

)1/2 ((
Y ′MY

)−1/2
Y ′PM2Z1Y

(
Y ′MY

)−1/2 − κI2) (Y ′MY
)1/2

a.

Now, defining
a∗ =

(
Y ′MY

)1/2
a,

we can re-write the first-order condition for minimization of AR(γ0) as((
Y ′MY

)−1/2
Y ′PM2Z1Y

(
Y ′MY

)−1/2 − κI2) a∗ = 0.

The last equation means that
κ = min

γ0
AR(γ0)

is the smallest eigenvalue of the 2× 2 matrix (Y ′MY )−1/2 Y ′PM2Z1Y (Y ′MY )−1/2.
Using the derivative of AR(γ0) in (5.22), the first order condition for minimization of the

AR statistic implies that

0 = 1−
y′2M(y1 − y2γ)

y′2PM2Z1(y1 − y2γ)
AR(γ)

= 1−
y′2M(y1 − y2γ)

y′2PM2Z1(y1 − y2γ)
κ.

Hence,
y′2PM2Z1(y1 − y2γ) = y′2M(y1 − y2γ)κ,

which can be re-written as

y′2 (PM2Z1 − κM) y1 = y′2 (PM2Z1 − κM) y2γ,

or
γ =

y′2 (PM2Z1 − κM) y1
y′2 (PM2Z1 − κM) y2

.
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We conclude that AR(γ0) is minimized at γ, therefore

dAR(γ)

dγ0
= 0.

Equation (5.23) now implies that

(y1 − y2γ)′M2Z1π̃1(γ) =
σ̂2u(γ)

2

dAR(γ)

dγ0
= 0.

Hence
LM(γ) = 0,

and therefore
γ ∈ CSLM1−α.

Remark.

1. The minimizer of the AR statistic γ appearing in the proof of Theorem 5.5 is known as
the limited information maximum likelihood (LIML) estimator:

γ̂LIML = γ =
y′2 (PM2Z1 − κM) y1
y′2 (PM2Z1 − κM) y2

.

Thus, the LIML estimator is always included in CSs constructed by inverting the LM
test.

2. The proof of Theorem 5.5 reveals a peculiar property of CSs based on the LM statistic.
Define

κ̄ = max
γ0

AR(γ0),

and let γ̄ denote the maximizer of AR(γ0), i.e.

γ̄ = arg max
γ0

AR(γ0),

and
AR(γ̄) = κ̄.

Since κ̄ is the largest possible value of the AR statistic, γ̄ is the value that the AR test
would reject as long as CSAR1−α does not contain the entire real line. At the same time,
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γ̄ must satisfy the first-order condition for maximization of AR(γ0), and therefore,

d

dγ0
AR(γ̄) = 0.

By the same arguments as in the proof of Theorem 5.5,

LM(γ̄) = 0

and therefore,
γ̄ ∈ CSLM1−α.

This implies, that CSs based on inversion of the LM test are built around two values
γ and γ̄. Including the first in a CS makes a lot of sense: this is the value of γ0 that
makes the correlation between the null restricted errors y1 − y2γ0 and IVs Z1 as small
as possible (given the data). On the other hand including the latter, γ̄, appears to be
wrong as this is the value that maximizes the correlation between the null-restricted
errors and IVs.

3. Since LM(γ) = LM(γ̄) = 0, the LM test can suffer form undesirable loss of power
around the values γ̄. In practice, this issue can be a problem only when IVs are weak
since, as we have seen, in the case of strong IVs and the LM test has the same optimal
power as usual tests based on the IV estimator. Thus, when IVs are strong, the LM test
is expected to outperform the AR test. Nevertheless, the AR test can be more powerful
than the LM test when IVs are weak.

4. Computation of LM-test-based CSs is discussed in Mikusheva (2010). She shows that
LM test CSs can be constructed by solving three quadratic equations, and as a result
LM test CSs can take one of the three possible forms: i) [γ1, γ2]∪ [γ3, γ4], ii) (−∞, γ1]∪
[γ2, γ3] ∪ [γ4,∞), and iii) (−∞,∞). Cases ii) and iii) tend to occur when IVs are weak.
Also, when IVs are strong, case i) typically becomes [γ1, γ2].

5. The fast and accurate methods of Mikusheva (2010) for construction of robust CSs
have been implemented in Stata (see Mikusheva and Poi (2006)). Stata command is
condivreg; its option ar provides AR-based CSs, and option lm provides LM-based
CSs.

5.5 CLR test and CSs

The LM test discussed in the previous section, delivers weak-IV-robust inference. Moreover
when IVs are strong, it attains efficiency in the sense that it has the same power properties of
the t-test under strong IVs. Nevertheless when IVs are weak, the LM test might suffer from
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power loss and be inferior to the AR test. These issues to a great extent can be alleviated
by using the conditional likelihood ratio (CLR) test proposed by Moreira (2003) (see also
Andrews et al., 2006).

The CLR statistic is derived following the Likelihood Ratio principle and its construction
assumes that the errors ui and vi are jointly normal.10 It turns out, however, that the CLR
statistic combines the AR and LM statistics. When IVs are strong, it becomes equivalent to
the LM statistic in large samples. When IVs are weak it utilizes the information contained in
the AR statistic to deliver inference that is always more powerful than that of the LM test
and typically more powerful than that of the AR test. However, there are certain scenarios
where the AR approach can dominate the CLR approach. This occurs when the correlation
between the structural error ui and the first-stage error vi is zero or very close to zero (see
Andrews et al., 2016). While there is no optimal test when IVs are weak, the CLR test is the
preferred test overall.

To introduce the CLR statistic, we need some additional definitions. Recall from (5.17)
and (5.18) that when IVs are weak,

n1/2π̃1(γ0)→d C +Q−11·2Ψ1·2 −
σuv
σ2u

Q−11·2Φ1·2

= C +Q
−1/2
1·2

(
σvZv −

σuv
σu
Zu
)

= C + σvQ
−1/2
1·2 (Zv − ρuvZu) ,

where ρuv = σuv/(σuσv) is the correlation between ui and vi. Let

Zv·u =
Zv − ρuvZu√

1− ρ2uv
∼
N
(
0, (1− ρ2uv)Il1

)√
1− ρ2uv

= N(0, Il1).

Thus,
n1/2π̃1(γ0)→d C + σv

√
1− ρ2uvQ

−1/2
1·2 Zv·v,

and the limiting variance of π̃1(γ0) is

σ2v(1− ρ2uv)Q−11·2 =
σ2vσ

2
u − σ2uv
σ2u

Q−11·2.

Let T ∗(γ0) denote the standardized version of the estimator π̃1(γ0) constructed so that the
limiting variance of π̃1(γ0) is Il1 :

n1/2T ∗(γ0) =

√
σ̂2u(γ0)

σ̂2v σ̂
2
u(γ0)− σ̂2uv(γ0)

(
Z ′1M2Z1

n

)1/2

n1/2π̃1(γ0), (5.24)

10CLR’s large sample properties are unaffected by the distributional assumption.
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where the estimators σ̂2v , σ̂uv(γ0), and σ̂2u(γ0) were previously defined in (3.4), (5.12), and
(5.16). Note that when IVs are weak and γ = γ0,

n1/2T ∗(γ)→d

√
σ2u

σ2vσ
2
u − σ2uv

Q
1/2
1·2 C + Zv·u ≡ XT , where

XT ∼ N

(√
σ2vσ

2
u

σ2vσ
2
u − σ2uv

Q
1/2
1·2 C

σv
, Il1

)
= N

(
λ√

1− ρ2uv
, Il

)
, (5.25)

λ = Q
1/2
1·2 C/σv, and ‖λ‖2 is the concentration parameter. Also, note that Zv·u and Zu are

independent by construction since

Cov(Zv·u,Zu) =
Cov(Zv,Zu)− ρuvV ar(Zu)√

1− ρ2uv
=
ρuvIl1 − ρuvIl1√

1− ρ2uv
= 0. (5.26)

Since
n1/2S(γ) =

Z ′1M2(y1 − y2γ)

n1/2
→d σuQ

1/2
1·2 Zu,

T ∗(γ0) and S(γ0) are asymptotically independent. Let S∗(γ0) denote the standardized version
of S(γ0):

n1/2S∗(γ0) =
1

σ̂u(γ0)

(
Z ′1M2Z1

n

)−1/2
n1/2S(γ0)

→d Zu, when γ0 = γ. (5.27)

Lastly, note that

AR(γ0) = nS(γ0)
′
(
Z ′1M2Z1

n

)−1
S(γ0)/σ̂

2
u(γ0) = nS∗(γ0)

′S∗(γ0).

Recall from (5.20) that

LM(γ0) =

(
n1/2π̃1(γ0)

′n1/2S(γ0)
)2

σ̂2u(γ0)
(
n1/2π̃1(γ0)′ (Z ′1M2Z1/n)n1/2π̃1(γ0)

)(
n1/2T ∗(γ0)

′ (Z ′1M2Z1/n)−1/2 n1/2S(γ0)
)2

σ̂2u(γ0)
(
n1/2T ∗(γ0)′n1/2T ∗(γ0)

)
=
n (T ∗(γ0)

′S∗(γ0))
2

T ∗(γ0)′T ∗(γ0)
.
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The CLR statistic is defined as

CLR(γ0) = 0.5

(
QSS(γ0)−QTT (γ0) +

√
(QSS(γ0)−QTT (γ0))

2 + 4Q2
ST (γ0)

)
, (5.28)

where

QSS(γ0) = nS∗(γ0)
′S∗(γ0), (5.29)

QTT (γ0) = nT ∗(γ0)
′T ∗(γ0), (5.30)

QST (γ0) = nS∗(γ0)
′T ∗(γ0). (5.31)

Since

AR(γ0) = QSS(γ0),

LM(γ0) = (QST (γ0))
2 /QTT (γ0),

the CLR statistic can also be re-written as

CLR(γ0) = 0.5

(
AR(γ0)−QTT (γ0) +

√
(AR(γ0)−QTT (γ0))

2 + 4QTT (γ0)LM(γ0)

)
,

which establishes the connection between the AR, LM and CLR statistics.
The null distribution of the CLR statistic under weak IVs is described in the following

theorem.

Theorem 5.6. Suppose that Assumptions 1.1 and 2.1 hold. Then,

CLR(γ)→d 0.5

(
Z ′uZu −X ′TXT +

√(
Z ′uZu −X ′TXT

)2
+ 4

(
X ′TXT

) (
X ′TZu

))
,

where XT is defined in (5.25) and independent of Zu.

Remark. 1. The null distribution of the CLR statistic is non-standard and cannot be tab-
ulated as

XT ∼ N

(
λ√

1− ρ2uv
, Il

)
and therefore depends on the strength of IVs through unknown λ. However under H0,
the strength of IVs affects only T ∗(γ0) and its limiting counterpart XT .

2. Since the asymptotic null distribution depends on λ only through XT , and XT and Zu
are independent, the null distribution of the CLR statistic can be easily simulated by
conditioning on T ∗(γ0) as described below.
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Proof of Theorem 5.6. The result follows since by (5.25) and (5.27),

n1/2S∗(γ)→d Zu,

n1/2T ∗(γ)→d XT ,

and Zu and XT are independent by (5.26).

One can simulate critical values for the CLR test by following the steps below:

1. Compute n1/2S∗(γ0), n1/2T ∗(γ0), and the CLR statistic CLR(γ0) as described in (5.28)-
(5.31).

2. Generate R independent standard normal l1-vectors {Zr : r = 1, . . . , R}, Z ∼ N(0, Il1).

3. Generate R values from the conditional null distribution of the CLR statistic given
T ∗(γ0) by using (5.28)-(5.31), but with n1/2S∗(γ0) replaced with Zr, r = 1, . . . , R:

CLRr(γ0) = 0.5
(
Z ′rZr − nT ∗(γ0)′T ∗(γ0)

+

√
(Z ′rZr − nT ∗(γ0)′T ∗(γ0))

2 + 4n (T ∗(γ0)′Zr)2
)
, (5.32)

which simulates the null distribution of (5.28). Note that Zr ∼ N(0, Il1) captures the
null distribution of n1/2S∗(γ0), which is free of any parameters.

4. The critical value cv1−α(γ0) is given by the (1−α)-th empirical quantile of {CLRr(γ0) :

r = 1, . . . , R}.

Remark.

1. Note that critical values for the CLR test depend on the value γ0 and data: thus, different
data sets and different null hypotheses would require different critical values.

2. Instead of simulations, one can compute p-values for the CLR test by numerical integra-
tion as shown in Andrews et al. (2007).

3. Mikusheva (2010) shows how to compute CLR CSs CSCLR1−α = {γ0 : CLR1−α(γ0) ≤
cv1−α(γ0)} fast and accurately using the numerical integration approach of Andrews
et al. (2007). She also shows that CLR CSs cannot be empty and include the LIML
estimator of γ. In fact, CLR(·) is minimized at the LIML estimator. Mikusheva (2010)
also shows that CLR CSs exclude as undesirable point that maximizes AR(·) (and is
always included in LM CSs).

4. Stata command condivreg produces CLR-based CSs (see Mikusheva and Poi, 2006).
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We conclude this section by showing that the CLR statistic is asymptotically equivalent to the
LM statistic when IVs are strong. This would verify that CLR-based inference is efficient when
IVs are strong (in the sense that it attains the same power as that of the usual t-test-based
inference under strong IVs).

Theorem 5.7. Suppose that Assumption 1.1 holds, γ = γ0 + n−1/2δ, and π1 is fixed, i.e. IVs
are strong. Then,

CLR(γ0) = LM(γ0) + op(1). (5.33)

cv1−α(γ0) = χ2
1,1−α + op(1). (5.34)

Proof of Theorem 5.7. We show the result in (5.33) first. Recall that when IVs are strong and
γ = γ0 + n−1/2δ, π̃1(γ0) →p π1 as implied by (5.11). It follows then from the definition of
T ∗(γ0) in (5.24) that

n1/2T ∗(γ0) =

√
σ̂2u(γ0)

σ̂2v σ̂
2
u(γ0)− σ̂2uv(γ0)

(
Z ′1M2Z1

n

)1/2

n1/2π̃1(γ0)→ ±∞,

or
QTT (γ0) = nT ∗(γ0)

′T ∗(γ0)→∞.

In what follows, we omit the dependence on γ0 for simplicity. Let

J = AR− LM,

and note that both AR and LM are Op(1) when IVs are strong and γ = γ0 +n−1/2δ. We have

CLR = 0.5

(
AR−QTT +

√
(AR−QTT )2 + 4QTTLM

)
= 0.5

(
LM + J −QTT +

√
(LM + J −QTT )2 + 4QTTLM

)
= 0.5

(
LM + J −QTT +

√
(LM − J +QTT )2 + 4J · LM

)
, (5.35)

where the result in the last line follows because

(LM + J −QTT )2 + 4QTTLM = (J + LM)2 +Q2
TT − 2QTT (J + LM) + 4QTTLM

= (J + LM)2 +Q2
TT − 2QTT (J − LM)

= (J − LM)2 +Q2
TT − 2QTT (J − LM) + 4J · LM

= (LM − J)2 +Q2
TT + 2QTT (LM − J) + 4J · LM

= (LM − J +QTT )2 + 4J · LM.
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Consider a mean-value expansion of
√

(LM − J +QTT )2 + 4J · LM around (LM − J +QTT )2:

√
(LM − J +QTT )2 + 4J · LM =

√
(LM − J +QTT )2 − 4J · LM

2
√

(J − LM −QTT )2 + ξ

= LM − J +QTT + op(1), (5.36)

where ξ is the mean-value (i.e. |ξ| < 4|J | · LM), and the op(1) term in the second line is due
to the fact that QTT →∞ in the denominator of the second term in the first line. By (5.35)
and (5.36),

CLR = 0.5 (LM + J −QTT + (LM − J +QTT + op(1)))

= LM + op(1).

The result in (5.34) can be shown by re-writing the simulated CLR statistic in (5.32) as

CLRr(γ0) = 0.5
(
Z ′rZr − nT ∗(γ0)′T ∗(γ0)

+

√
(Z ′rZr − nT ∗(γ0)′T ∗(γ0))

2 + 4n (T ∗(γ0)′Zr)2
)

= 0.5

(
Z ′rZr −QTT (γ0) +

√
(Z ′rZr −QTT (γ0))

2 + 4Q2
ST,r(γ0)

)
,

where

Q2
ST,r(γ0) =

(
n1/2T ∗(γ0)

′Zr
)2

= QTT · LMr(γ0), and

LMr(γ0) =

(
n1/2T ∗(γ0)

′Zr
)2

nT ∗(γ0)′T ∗(γ0)
∼ χ2

1 for any n.

The rest of the proof of the result in (5.34) follows the same steps as that of (5.33). One can
show that

CLRr(γ0)→d χ
2
1,

and therefore the quantiles of the empirical distribution of {CLRr(γ0) : r = 1, . . . , R} converge
to the quantiles of the χ2

1 distribution, since the χ2
1 distribution has a continuous CDF.

Remark. Examination of the proof of Theorem 5.7 reveals that the CLR attains efficiency
when n1/2T ∗(γ0)→∞. By inspecting the limiting distribution of n1/2T ∗(γ0) in (5.25),

n1/2T ∗(γ0)→d N

(
λ√

1− ρ2uv
, Il

)
,
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one can see that n1/2T ∗(γ0) → ∞ when ‖λ‖2 = ∞, i.e. IVs are strong. However, it is
possible that n1/2T ∗(γ0)→∞ even when IVs are weak (‖λ‖2 <∞). With finite values of the
concentration parameter, that can happen when ρuv → ±1, i.e. the correlation between the
structural error ui and vi approaches one. This idea is formalized in Andrews et al. (2016).

5.6 Concluding remarks

While weak IVs can pose serious challenges for empirical research, robust and computationally
simple methods are available for inference with weak IVs. Robust methods are as reliable
with weak IVs as with strong IVs, and when using them the researcher does not need to
be concerned with the strength of identification. Moreover, if the regression model contains
only one endogenous regressor (which is the main object of interest of the econometrician),
weak-IV-robust methods based on the CLR (or LM) approach will be as powerful as the usual
t-statistic-based inference in case IVs are strong. The form of AR, LM, and CLR-based CSs
can also provide information about the strength of IVs. In addition, AR CSs come with built-in
model specification diagnostics.
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A Appendix: Results from probability and linear algebra

A.1 Limit theorems

Large-sample or asymptotic properties of estimators are established using weak laws of large
numbers (WLLNs) and central limit theorems (CLTs), see for example White (2001) for details
and references.

Theorem A.1 (WLLN for iid data). Suppose that {Xi : i = 1, . . . , n} are iid random variables,
and E|Xi| <∞. Then, n−1

∑n
i=1Xi →p EXi.

Theorem A.2 (CLT for iid data). Suppose that {Xi : i = 1, . . . , n} are iid random vectors, and
V ar(Xi) is positive definite and finite, Then, n−1/2

∑n
i=1(Xi−EXi)→d N(0, V ar(Xi)), where

N(µ,Ω) denotes the multivariate normal distribution with mean µ and variance-covariance
matrix Ω.

A.2 Multivariate normal distributions

Suppose that X and Y are jointly normally distributed:(
X

Y

)
∼ N

((
µX

µY

)
,

(
ΣXX ΣXY

ΣY X ΣY Y

))
.

Here, µX and µY denote the means of X and Y respectively, ΣXX and ΣY Y denote their
respective variances, and ΣXY = Cov(X,Y ).

Theorem A.3. X and Y are independent if ΣXY = 0, i.e. Cov(X,Y ) = 0.

Theorem A.4. The conditional distribution of Y given X is normal:

Y |X ∼ N
(
µY |X(X),ΣY |X

)
, where

µY |X(X) = µY + ΣY XΣ−1XX (X − µX) (a vector-valued function of X).

ΣY |X = ΣY Y − ΣY XΣ−1XXΣXY (a fixed matrix).

Theorem A.5. Let Γ be a fixed matrix.

ΓX ∼ N
(
ΓµX ,ΓΣXXΓ′

)
.

A.3 O notation

Definition A.6. A sequence of random variables Xn is said to be Op(1) if for all ε > 0 there
are constants Kε > 0 and Nε > 0 such that

P (|Xn| ≤ Kε) ≥ 1− ε
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for all n ≥ Nε.

Definition A.7. A sequence of random variables Xn is said to be op(1) if Xn →p 0.

A.4 Kronecker product

Definition A.8. Let A be a k × l matrix, and let B be an m × n matrix. The Kronecker
product of A and B, denoted as A⊗B, is defined as

A⊗B =

 A11B . . . A1lB

. . .

Ak1B . . . AklB

 .

The properties of the Kronecker product as as follows:

1. The dimensions of A⊗B are km× nl.

2. (A⊗B)′ = A′ ⊗B′.

3. (A⊗B)−1 = A−1 ⊗B−1.

4. (A⊗B)(C ⊗D) = AC ⊗BD.

A.5 Non-central χ2 distributions

Let Z ∼ N(0, Il) be an l-vector where each component is a standard normal random variable,
and the components are independent of each other. The χ2 distribution with l degrees of
freedom is defined as

Z ′Z = ‖Z‖2 =
l∑

i=1

Z2
i ∼ χ2

l . (A.1)

This distribution depends only on the number of components, i.e. the number of degrees of
freedom l is the single parameter determining the χ2 distribution.

This discussion can be extended to the case of independent normal variables with non-zero
means and unit variances. For λ = (λ1, . . . , λl)

′, consider

λ+ Z ∼ N(λ, Il).

While the distribution of λ + Z involves l parameters the distribution of (λ + Z)′(λ + Z) =

‖λ+ Z‖2 depends only on two parameters: l and ‖λ‖, the norm of the vector of means λ.

Definition A.9 (Equality in distribution). We say that two random l-vectors X and Y are
equal in distribution, denoted X =d Y if the CDF of X is equal to the CDF of Y : for all
u ∈ Rl,

P (X ≤ u) = P (Y ≤ u).
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Lemma A.10. Let Zu = (Zu,1, . . . ,Zu,l)′ and Zv = (Zv,1, . . . ,Zv,l)′ be two l-vectors with a
normal joint distribution: [

Zu
Zv

]
∼ N

([
0

0

]
,

[
1 ρ

ρ 1

]
⊗ Il

)
.

Then,

‖λ+ Zv‖2 =d (‖λ‖+ Zv,1)2 +
l∑

j=2

Z2
v,j , (A.2)

(λ+ Zv)′Zu =d (‖λ‖+ Zv,1)Zu,1 +
l∑

j=2

Zv,jZu,j . (A.3)

Remark. 1. Note that the expressions on the right-hand sides of (A.2) and (A.3) depend
on a scalar parameter ‖λ‖ and not on the entire vector λ.

2. The distribution ‖λ+ Zv‖2 of is called non-central χ2 with l degrees of freedom and
denoted as

‖λ+ Zv‖2 ∼ χ2
l (‖λ‖2).

When ‖λ‖ = 0, the non-central χ2
l distribution becomes the usual (central) χ2

l .

Proof of Lemma A.10. Let b1, . . . , bl be orthonormal l-vectors (b′ibi=1 and b′ibj = 0 for i 6= j)
such that b1 = λ/ ‖λ‖. Define an l × l matrix

B =


λ′

‖λ‖
b′2
...
b′l

 ,

and note that BB′ = Il, (B−1)′B−1 = Il, and

Bλ =


‖λ‖
0
...
0

 .

Define
Xu = BZu and Xv = BZv.
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We have [
Xu
Xv

]
=

([
1 0

0 1

]
⊗B

)[
Zu
Zv

]

∼ N

([
0

0

]
,

[
1 ρ

ρ 1

]
⊗BB′

)

= N

([
0

0

]
,

[
1 ρ

ρ 1

]
⊗ Il

)
,

where the result in the second line follows by Property (iv) of the Kronecker product in Section
A.4. Now,

(λ+ Zv)′ (λ+ Zv) = (B (λ+ Zv))′
(
B−1

)′
B−1 (B (λ+ Zv))

= (Bλ+ Xv)′ (Bλ+ Xv)

= (‖λ‖+ Xv,1)2 +

l1∑
j=2

X 2
v,j .

Z ′u (λ+ Zv) = (BZu)′
(
B−1

)′
B−1 (B (λ+ Zv))

= X ′u (Bλ+ Xv)

= (‖λ‖+ Xv,1)Xu,1 +

l1∑
j=2

Xv,jXu,j .

The result follows since [
Xu
Xv

]
=d

[
Zu
Zv

]
.

B Matlab programs

B.1 Graphing the distribution of the t-statistic under weak IVs

The code below is used to generate Figure 1. It compares the null distribution (PDF) of the
t-statistic under weak IVs as described in Theorem 2.3 with the PDF of the standard normal
distribution.

l=2; %number of IVs

cp=1; %concentration parameter

rho=0.95; %endogeneity parameter
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alpha=0.05; %nominal significance level

R=10000; %the number of simulations

%grid for density plotting

step=0.1; xi=[-4:step:4];

Sigma=[1 rho; rho 1];

V=kron(Sigma,eye(l));

H=chol(V);

T=zeros(R,1);

for i=1:R

Z=H’*normrnd(0,1,2*l,1);

Zu=Z(1:l);

Zv=Z(l+1:2*l)+[sqrt(cp);

zeros(l-1,1)];

Ch1=(Zv’*Zu);

Ch2=(Zv’*Zv);

Numer=Ch1*sqrt(Ch2);

Denom=Ch2^2+Ch1^2-2*rho*Ch1*Ch2;

T(i,1)=Numer/sqrt(Denom);

end

[f,xj]=ksdensity(T); %kernel smoothing of the distribution of T

plot(xj,f,’k’,xi,normpdf(xi),’k--’);

axis([-4 12 0 0.41])

%legend(’T under weak IVs’,’N(0,1)’,’location’,’best’)

disp(’--------------------’)

disp(’Null Rejection Rate:’)

disp(sum(abs(T)>norminv(1-alpha/2))/R)

disp(’--------------------’)

B.2 Simulating the maximum rejection probabilities of the t-test under
weak IVs

The code below is used to generate data for Table 1, which reports the maximum rejection
probabilities of the two-sided t-test when IVs are weak, i.e. the values of the Rmax

α,l1
(‖λ‖2)
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function in Section 3.1. The code somewhat overlaps with the code in Section B.1, however,
here it is implemented without loops over simulation iterations to reduce computational time.

l=1; %number of IVs

alpha=0.05; %alpha value for choosing normal crit.vals

B=100000; %number of simulations

%grid of values for the concentration parameter

CP=[0.01 0.1 0.25 1 4 9 16 25 36 49 64 81 100 1000]’;

%grid of values for rho_uv

Rho=[-.99:0.01:.99];

RAND_N=normrnd(0,1,2*l,B);

Rmax=zeros(length(CP),1);

randseedoffset=81474;

parfor i=1:length(CP);

rng(randseedoffset+i, ’twister’); %to generate the same random sequences

cp=CP(i);

R=zeros(length(Rho),1);

for j=1:length(Rho)

rho=Rho(j);

Sigma=[1 rho; rho 1];

V=kron(Sigma,eye(l));

H=chol(V);

Z=H’*RAND_N;

Zu=Z(1:l,:);

Zv=Z(l+1:2*l,:)+repmat([sqrt(cp); zeros(l-1,1)],1,B);

X=sum(Zv.^2,1);

Y=sum(Zv.*Zu,1);
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Numer=(sqrt(X).*Y);

Denom=Y.^2+X.^2-2*rho*X.*Y;

T=Numer./sqrt(Denom);

%rejections: R function for alpha, the concentr.parm, rho, and # of IVs

R(j)=sum(abs(T)>norminv(1-alpha/2))/B;

Rmax(i)=max(R);

end

end
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