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S1 Literature review

There is a vast literature studying the causal effect of ceteris paribus change of a treatment variable D on some
continuous outcome variable Y using triangular models. In a triangular model, the outcome variable is generated
by an outcome equation Y = g (D, X, ¢€), where X and e are the vectors of observed explanatory variables and
unobserved factors respectively. The treatment variable D is assumed to be endogenous and correlated with € even
after conditioning on X. The treatment status is determined by a selection equation D = m (X, Z,n), where 7 is a
vector consisting of unobserved errors correlated with e. Here, Z denotes the vector of instrumental variables, i.e.,
the vector of exogenous variables that have no direct effect on Y and, therefore, are excluded from the outcome

equation.

Below, we provide an brief review of the econometric literature on treatment effects in triangular models with
nonseparable outcome equations. Chesher (2003) provides conditions for nonparametric identification of the deriva-
tives of the outcome equation. Imbens and Newey (2009) assume that 7 is scalar-valued and D is a monotone
function of 7, and show nonparametric identification of the mean and quantiles of the conditional distribution of
g (d,z,€) given (D, X) = (d,z). D’Haultfeeuille and Février (2015) and Torgovitsky (2015) establish nonparamet-

ric identification of the outcome equation assuming that € and 7 are scalar-valued, and Y and D are monotone
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functions of € and n respectively. The aforementioned papers assume that D is continuous. Chesher (2005) and
Jun et al. (2011) allow for discrete D, multi-dimensional ¢ and 7, and assume weak monotonicity of ¥ and D in
the errors. They provide bounds for the identified sets for the outcome equation. VX assume that ¢ and 7 are
scalar-valued, D and Z are binary, and Y is a strictly monotone function of €. The outcome equation in VX satisfies
the rank invariance assumption: for a given X, the ranks of the two potential outcomes are the same. See, e.g.,
Chernozhukov et al. (2020) for a discussion of the rank invariance assumption. VX also assume that the selection
equation is a latent index model (Vytlacil, 2002), additively separable, and monotone in 1. They show that under
these assumptions, the distribution of the ITEs is nonparametrically identified. There is also a large literature
employing different separability assumptions. Newey et al. (1999) assume that D is continuous, € and 7 are both
scalar-valued and the two equations are additively separable. Newey et al. (1999) show nonparametric identification
of the structural equation and provide a method for nonparametric estimation. For a binary D, Vytlacil and Yildiz
(2007) assume that the outcome equation is weakly separable, € and 7 are scalar-valued and D is weakly monotone
in . They show that in this model, average treatment effects are nonparametrically identified. Abrevaya and
Xu (2021) propose a semi-nonseparable model that incorporates a mean-and-variance-effect structure and yields

simpler estimation of heterogeneous treatment effects.

The triangular model considered in VX and FVX is closely related to the local average treatment effect (LATE)
literature that followed the pioneering work of Imbens and Angrist (1994). The classical LATE model is built on the
potential outcome framework (Rubin, 1974) and assumes a binary endogenous variable and a binary instrument.
The main result of Vytlacil (2002) implies that the LATE model is equivalent to a triangular model with latent
index selection equation as the one assumed in VX and an unrestricted outcome equation. Abadie (2003) shows that
the distributions of the potential outcomes of the complier group as well as quantile treatment effects (QTEs, i.e.,
the difference between the conditional or unconditional quantiles of the potential outcomes.) are nonparametrically
identified (see also Abadie et al., 2002; Frolich and Melly, 2013). The instrumental variable quantile regression
(IVQR) framework of Chernozhukov and Hansen (2005) with discrete or continuous treatment uses different as-
sumptions. IVQR’s restriction on the outcome equation is the rank similarity assumption, which is weaker than the
rank invariance assumption used in VX, and its selection equation is unrestricted. However, the IVQR approach
identifies and estimates the QTE and not the distribution of the ITE.

S2 Proofs of Lemmas 2, 3, 4 and 5

Proof of Lemma 2. Let 14, (y) == Pr[Y <y,D=d,Z=2X =z| and ﬁdw (y) = n 3" Daew Wiy y),
where Dy, (Wi, y) = 1(Y; <y,D; =d,Z; = 2, X; = x). Let lge = Lyame)x=2 = {de’%] It follows from
Kosorok (2007, Lemmas 9.7(iv) and 9.8) that the class ® := {Dg.s (,y) : y € gy} is VC-subgraph with VC index be-
ing at most 2. Then it follows from Giné and Nickl (2016, Theorem 3.6.9) that © is VC-type with respect to the con-
stant envelope Fp = 1. It follows from Talagrand’s inequality (Chernozhukov et al., 2016, Lemma 6.3, with 7 = D,
o =b="Fp=1andt=log(n) that |G ||o = O; (vlog (n)). Note that | Mz — Ma L= e |

and therefore, ﬁdm — Iy

L= Oy ( log (n) /n) It is shown in the proof of Theorem 1 of FVX that
da

(S1)
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with an error term that satisfies £, = O} (nil). Note that ¢4, (y) satisfies

<Hd0r (¢az (y)) . a1z (P (y))> + <Hd’01 (y) . Hang (y)) —0. (S2)

Pozx Piz Doz Piz

Lemma 2.1 and Theorem 3.1 of Abadie (2003) imply that

PriY <y,D=d|Z=1,X=2]|-Pr[Y <y,D= d\Z—OX—x]
PriD=d|Z=1,X=2|-Pr[D=d|Z=0,X =2

Fazjeo, (y) =

Then it is clear that 4. (y) = Iy, () /P1o — g, () /Pox- By Assumption 1(c,h), ¢, = infyer,, [Cax (y)] > 0. It
follows from Hoeffding’s inequality that p.. — p.. = O, ( log (n) / n) and it is easy to check that this also implies

Prw — 02 =0} ( log ( )/n) Note that by construction, ¢ay (y) € Ise. By (S1) and (S2),

(ndo@ (60 @) Hars (s <y>)> ) (nm (6ar ) Mars (Pus <y>>>

Doz Piz Doz Pix
e { (ﬁd;;@) - ﬁdﬁ(y)) - <Hd;:z<y> - nd;;@))}
I 40 ($dz (y)) g1, (qAde (y)) 140, (&m (y)) Udu: ¢dz
- Do - Diz - Do
- { (ﬁdOw (qAﬁdm (y)) - a1z (adz (y))) - (HdO:zz (¢dz ) 41 (¢A5
D1z

Doz ﬁlw pO;L

gl

= O ( log (n) /n), Prs — 0z = O ( log (1) /n) and also

, = (@) ( log (n) /n), i.e., for some constant C1, Ca,
d'x

Then it follows from this

gdw > 0 that H;b\duL - ¢dw

Hdzm - Hdza:

-~ log (n
Pr [“¢dm — Qdz , <C gn()] >1—Cont. (S3)

Decompose
Hize (b () = iz (bt @) = { Tz (a0 1)) = Mz (S ) b+ { Hatze (P (0)) = Haze (G0 ()}

And by this result, (S3) and Hﬁd” .

L= Oy (\/log (n) /n), we also have Hﬁdm o $dm — I .0 © aa
dx
Oy ( log (n) /n) By using this result, (S1), (S2), — g0 = (@) ( log (n) /n) and the equality

Iy,

a a a(b-c) a(b—c)’
b @ e (84)
we have
o (1"% (n)> (T (00 ®) My 0 ) _ (T (00 ®) iy 0 )
P n Poz Poz Piz Dix
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. (ﬁ (1) Mo <y>> - (ﬁ () Mo (y)) G C)) WY TP GV PN
Pox Pox Pix Pix Pox Pix
y0a N Iy, ~
- M (pO:r - pO:L’) + %(y) (pl:v - plx) . (SB)
poz plz
We will later show that

o (9 n i o (T

Hdz:r (¢dw (y)) - Hdza: <¢dw (y)) = Hdzw (d)dz (y)) - Hdza: (¢da: (y)) + Op ( n ) ) (SG)

uniformly in y € Iy,. By a second-order Taylor expansion,

Pix Pozx Pix Doz

(Hdla; ((/gd:v (y)) ~ Maoa ((de (y))) B (Hdlm (¢dz (v)  Haos (Pau (y))> _

~ 1
Gaa e ) (s () = 600 ) + 03 (“EL) o)
uniformly in y € Iy,. Note that if X =z,

1(Y <60 (), D=d) + 1Y Sy D=d) = 1(g(d,) < b (s), D =d) + 1 (g (d',,6) <3, D = &)
= 1(g(d,z,e)<vy). (S8)

Since Z is conditionally independent of € given X, Vz € {0,1},

Rya(y) = EQ(Y <daw(y),D=d)+1(Y <y D=d)|X=u272="
Hdzr (¢dr (y)) +Hd’zz (y)

Pzx Dzx
= Fg(d’,z,e)\X (y | JJ) ; (89)

where Fy(q 2. x (y | ) =Pr[g(d’,z,e) <y | X = z]. Combining (S5), (S6) and (S7) and then using (S9), we have

Car (D0 ) (D () — Gz (1)) =
ﬁdOz (¢dz (y)) . ﬁdlz (¢dz (y)) + ﬁd’Om (y) . ﬁd’lm (y) ﬁox (y) ]/9\195 N O <<10g (TL) ) 3/4)

— Raw (y) — + R
Pozx Diz Pozx Pix Doz 1z

n 3/4
%Z (1(Y; < 4w (y), Di = d) + 1(Yi < y, Dy = d') — Rarw () 70 (Zi, Xi) + O ((logn(”)) ) :

i=1
The assertion follows from this result. It remains to show (S6).

Denote /szx (y,y') = ﬁdm (y) — ﬁdm (') and Agzo (v,9") = Hgee (y) — Hgze (¥'). In view of (S3), denote
€ == C14/log (n) /n. For € > 0, denote P} (Wi, y, &) = 1 (dax (y) < Y; < ¢az (y) + & Di = d, Z; = 2, X; = x) and
Prow Wiy, &) = 1(¢ae (y) =€ <Yi < baw (y) . Di = d, Z; = 2, X; = ). By Kosorok (2007, Lemmas 9.7(iv) and
9.8), the function class B+ == {PF (-, 4.&) 1y € lys,E € (0,€]} is VC-subgraph with VC index being at most 3,
Vn, and by Giné and Nickl (2016, Theorem 3.6.9), B+ is uniformly VC-type with respect to the constant envelope
Fyp+ = 1. P~ is defined similarly. Then,

{faze (Bar 0)) = Tize (B ) } = { Hatzs (Bax () = Mz (B0 () }| <

sup
y€lyr,
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SUp | (G0 (1) + € Gua (1)) = Aaze (G0 () + & 60 )| <
(y,€) €Ly, x[~E.]

Py — IEDWHq3+ + Py —PY|| (S10)

P

where the first inequality holds with probability at least 1 — Con™!, in view of (S3). Jy|pzx is bounded under

Assumption 1. By calculation, we have

B[P, W] = B[(10Y Sow @)+ - 1(Y < 6w @)’ 1(D=dZ=2X=2))|
(bdd.(y)"l‘é
= </ flezx(yl|d,Z7£L')dy/>PI‘[D:d7Z:Z,X:x]
Pax(Y)
and
a%+ = sup PV f? = sup  E {P;bz (W, y,ﬁ)Q} =0 ( log (n)) )
fept (v,6)€Ly, % (0.E] n

Then we apply Talagrand’s inequality (the version given by Chernozhukov et al., 2016, Lemma 6.3) with F = B+,
b= Fp+ =1, 0 = op+ Vby/Vyprlog(n) /n and t = log(n). It is straightforward to check that 0%+ <o? <
b?, no?/b* > log(n) and no?/b* > Vi+log (Ag+b/o), when n is large enough so that Vi+log(n)/n < 1 and
n/log (n) > A2 Therefore, the conditions of Chernozhukov et al. (2016, Lemma 6.3) are satisfied when n is
sufficiently large and by Talagrand’s inequality, we have ||(Grn ||q3+ =0, (log (n)3/4 /n1/4) and ||]P’7VIV - [PWHq3+ =
n~1/2 ||(G},VLVH§J3+ =0, ((log (n) /n)3/4). A similar result holds for ||G¥LV||q3, and ||P}Y — ]P’WH%,,. (S6) follows from
these results and (S10). [

Proof of Lemma 3. By mean value expansion,

fax (v,2;0) = fax (v,2;D) Z = (

Yo sy
(45 @) e,

where A2 denotes the mean value that lies between A\Z and A; so that

the proof of Lemma 2 that (S3) also holds for g&;ﬂ (y) uniformly in ¢ = 1, ..., n. Therefore,

|4 = A = 1D = D[B5) (%) = dox, (V)| + 1(Ds = 0) |35 (¥) = 1, (V)
and by (S3),
A= max 1(X;=2) =0 ( logn(”)> . (512)

In view of Pr [Z > C14/log (n) /n} < Cyn~1, we have

1—Con ' <Pr
n

A<Cy bg(”)] < Pr[A<h],

when n is sufficiently large, since y/log (n) /n = o (h) under the assumption that log (n) / (nh3) | 0. By the triangle

A, —v‘ < A+ ‘Ai —|, if X; = z. Therefore, since ((Al —’U) /b)’ <

inequality, |A; —v| <
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1Ko 1 (| 4i - v

< b), for some constant C5 > 0,
1-Csn ' <Pr[A<h] <

A~
" 4
pr[K (b )

where we denote 1; (v;b) = 1(]A; —v| < 2b). Denote Tax (v,2;b) = (nb) ' Yo 1 (v;b) 1(X; = ). By this

result and the triangle inequality,

1(X; =2) < |K"|| o Li (v;b) 1(X; =),V (i,v,b) € {1,...,n} x I x [h, k]|, (S13)

1—-C3nt <
n \. _ N 2 _
Pr sup 1 Z lK” Ai—v (Al- — Ai> 1(X;=2)|< sup b 2lax (v,x;b) A%l (S14)
N b3 b _
(v,b)EL: x [h,]] i—1 (v,b)EL; % [R,]]

Let Z, (Us,v;b) == b~ 11 (JA, () —v| < 2b) 1 (X; = z). Tt follows from Kosorok (2007, Lemmas 9.7(iv), 9.8 and
9.9(vii,viii)) that J :== {Z, (-,v;b) : (v,b) € I, x [h,h]} is VC-subgraph with VC index being at most 3, VA, and
has a constant envelope F5 = h~!. By Giné and Nickl (2016, Theorem 3.6.9), J is uniformly VC-type with respect
to the constant envelope F5. It is easy to check that H]P’UHj = 0(1) and o2 = supfejIP’Uf2 =0 (h’l) follow
from change of variables. By Talagrand’s inequality (F = J, b = F5, 0 = o3 V by/Vslog(n) /n, t = log(n)),
Vn HIP’,I{ - ]IDUHj = HGTI{HJ =0, ( log (n) /h) and therefore,

ax G Mg, purg = Pl < (P2 =B + [[P7], = 05 (1) (S15)
By this result, (S12) and (S14), we have
1 " 1 1" A,L — v N ) 2 o _ y* IOg (n)
E;?K ( ; )(AZ—AZ) 1(Xz_x)_op( e ) (S16)

uniformly in (v,b) € I, X [h, h]. By the definition of A; and A;,

n n

1 1 AZ_ N 1 1 / Az_ ~N—i

[t n
1 -1 A —wv i
+anzK'< ; )(11),;){ X0 = o1, ()} 1(Xs = 2). (817)
=1
Write
]. n ]_ / Az_'U o . (Z) _1 n 1 ) Ai—/u - -
n;(ﬁK( ; )I(Dzd,xlx){dx (K)%(K)}n;bQK — 1D =d. X, =)

1 ne 1
J#i J#i

It is easy to see from the proof of Lemma 2 that (A.4) also holds for 5&;” (y) and the remainder term is uniform
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ini=1,..,n. By Lemma 2, |[K' ((4; —v) /b)| < [|K'||, Li (v;b) and (S15),

J#i

1 1K’ A; —v L(D: = d'. X = 20y v 1 o vy b o log(n)3/4
E;ﬁ b ( = ) z—x) (bda: (z)_¢dx( z)_mz dx( 7 z) = Yp W )

uniformly in (v,b) € I, X [ﬁ,ﬂ, and therefore

11 A —v\ [~

i — v og (n)*/?
3 bizK/ <Azb ) {(1 = Dy) L1 (W;,Y:) — Dilloy (W), Y)} 1 (X = ) + O (%) _

1
@) )

3/4
LS G, (W Wy 05) + O <1g(”>> . (s18)

" i n3/4h
uniformly in (v,b) € I, X [h, h]. The conclusion follows from this result, (S11), (S16) and (S17). [

Proof of Lemma 4. By definition, we have

HLl] (Ui,’U;b) _ {/ET blzK/ <A"L(eb)_v> Pz (e) {]l (e, <e)— Fe\X (e| x)}de} Ty (Zi,Xi),

=x

where
o fEDX (G,O,Z) fEDX (671,25)

T G (g(Lae)  Cos(g(0,2,e)

Pz (€)

Since € is independent of Z given X,

B[l U, = E “/ b%K' (A(eb)_”) pa (€) {1 (€ <€) = Fyyx (e | 2)} de} | X = x]

=z

1(Zz=1 1(Z=0)>
XE{ ( ) _ U 0)} |X—z]px. (S19)
Pix Pox
Note that )
1(Z=1 1(Z=0 _ _
E{( ) _ 1 ?|X=4m=m$WJ- (520)
Piz Pozx
Then,

E [{ b%K/ <A90(Z)_”>Pa:(€){1(6<e)—FEX(ex)}de} X =2

.{[%;K<&ﬁﬂ”>%@ﬂmwmm%i

(S21)

and
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E {/;K' (A’C(eb)_”)pw(e)ﬂ(ege)de}2|xzx -

= / / K’ (A(eb)‘”> K <A(eb)_”> Fux (e A¢ | 2) ps (€) po (¢/) dede’ =

=z
T

b_4§:2m:/em‘k / K’ (A(Z)_U> K’ (A(eb)_v> F.x(ene | z)ps(€) s (¢) dede’. (S22)

k=1 j=1"€zk=1 Y€z j-1

If j > k, since €3 1 < €4,j—1,
€z .k €x,j AI — Aa: " —
/ / K ( (? v) K <(eb)v) Fyx (e Ne' | @) pr (€) po (¢') dede” =
€x,k—1 Y €x,j—1

{/::1 K’ <A“”(el;)”> Fox ('] x)py (e/)de'} {/:“ K’ (Am(z)v) Pz (€) de}. (S23)

x,j—1

Note that A is strictly monotonic on [€; j_1, €, ;]. We assume without loss of generality that the restriction A, ; is
strictly increasing. Since I, is an inner closed sub-interval of Ay ; ((€5,-1,€z,5)) = (Ag (€x,j-1) , Az (€1,5)), v € I
is an interior point of (Ay (€z,j-1), Az (€2,5)). Let ¢y ; () == pa (A;; () (Ail)/ (t). By change of variables and

x,J

mean value expansion,

Ag (emﬁj)f'u

/ bLQK/ (AI(Z)”) pe(e)de = b’I/Aw(S/%K’(u)pm (A7) (bu+0)) (A7) (bu +v) du

€x,j—1

Ag(eg j)—v

= /u K" (u) {¢hz5 (v) + ¢ 5 (9) bu du, (S24)

where the mean value ¢ depends on u and satisfies [0 — v| < b|u|. Note that [ K’ (u)du = 0, K’ is supported on

[—1,1] and therefore, f((AAI((;I’-JB:)i/);j/b K’ (u)du =0,V (v,b) € I x [h,h], when h is sufficiently small. Therefore,

/:m,j bizK, (AH?—U) pa (€) de

uniformly in (v,b) € I, x [, h], when & is sufficiently small. Denote x,; (t) = Fy|x (A;; (t) | ) ¥g,; (t). Similarly,

€x .k AN
/ biQK/ (Aw(eb)v> Fx (€| z) ps (e)de

uniformly in (v,b) € I, X [ﬁ,ﬂ, when A is sufficiently small. Then, it follows that

E {/ﬁjl b%K/ (AI(Z)_U> ;)I(e)]l(ege)de}2 | X =z| =

z,j—1 Y€z j—1

< sup 45,5 ()], (825)
te[As(€z,j—1),Ac(€x,5)]

< sup Xk (8)] (526)
te[Az(€z,k—1),A%(€x k)]

x

7K (Az(eb)_v) K’ (Ai(eb/)_v) Fox (e Ne' | @) pg(€) px (¢') dede’ + O (1), (S27)

uniformly in (v,b) € I, x [h, h]. By change of variables,
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o

erjr Jewsa ( )_U)K/ (Aw(eg,/)_v> Fix (eNe' | ) ps(€) po (') dede’ =

v I( Tj)
b2 /AI(%%I)HJ Au(eas1)ov K' (u) K' (w) F x (A (bu+v) NA, (bw +v) | @) g; (bu+ v) Yy ; (bw + v) dudw

= 2h2 / K' (w) ¢y, (bw +v) {/ K’ (u) Xz,j (bu+v) du} dw, (S28)
where the second equality follows from symmetry and holds when A is sufficiently small. By integration by parts,

/:U K' (u) Xz,j (bu+v)du = K (w) xz,; (bw +v) — b/j) K (u) X}, ; (bu +v) du. (529)

Then,

b1 / K’ (w) K () {thaj (bt + ) Xag (b0 + ) — by (0) Xy (0)

= (¥ (V) Xaj (0) + Y g (V) X 5 () (bw)}dw:/K' (w) K (w) w { (15, ; (9) Xa.j (0) + 1 () X5 5 (0))
= (V2 (V) Xaj (V) + ¢y (V) X 5 (v) }dw =0(1), (S30)

where the mean value © depends on w and satisfies [0 —v| < b|w| and the second equality holds uniformly in
(v,b) € I x [h, h]. Similarly,

J & @ s o) ([ 8 Gt Gt o) dw vy 06, ©) K @) ([ K@) o

— //:” K' (w) K (u) {the; (bw 4+ v) X} ; (bu +v) — g j (v) X ; (v) } dudw = 0 (1), (S31)

the second equality holds uniformly in (v,b) € I, x [h, h]. By integration by parts, [ K’ (w) (ff’oo K (u) du) dw =

— [ K ()’ du and [ K’ (w) K (w) wdw = (f [ K (u)? du) /2. Now it follows from these equalities, (S28), (S29),
(S30), (S31) and [ K’ (w) K (w) dw = 0 that

v / / ( - )K/ (Am(eb/)_v> Fyx (e Ne' [ z)pa(€) pa () dede’ =

2 (Y% (V) Xaj (V) 4+ Yaj (V) Xy (v /K’ w) wdw
ey 0y @) [ K70 ([ K] dwro (1) = (5 0) 1y (0) = v 0) 0y 0) [ K (0 ko),
(532)
uniformly in (v,b) € I, X [h, h]. Note that

g (V)Xo j (V) = ¥4 5 (V) Xa,j (V)

_ { feDX (A;; (U),O,.’t) . feDX (A;,; ('U) 9 1,1')
C1z ( (1,1"7 A;j» (v )) Co (g (O,:U, A;; (v))

S9



Now it follows from this equality, (S19), (S20), (S21), (S22), (S23), (S27) and (S32) that
E [7—[51 (U, v; b)ﬂ =i (v,2)+o (r71),
uniformly in (v,b) € I, X [h, h]. Denote

9 = {Ho(,vib): (v,b) € I, x [h,h]}
sl = {H;[CH (,v;0) 1 (v,b) € I, X [ﬁ,ﬂ}.

Therefore, we have U%m = supfe;)[l]l?’Uf2 =0 (h_l). By LIE,

E [Hm (U, Uz,u;b)Q] -

1 (A ()—v\’ [1(D=0,X=2) 1(D=1X=x)
—K
b ( b ) { GG Lm ) | G (90,20

E (P +Por)

}FEX(€|m)(1_Fe|X(€|x))

=0 (h7?), (S33)

uniformly in (v,b) € I, X [ﬁ,ﬂ. Therefore, O'% = supsenE [f (Un, U2)2:| =0 (h’3).

Since [|K"||,, < oo, K’ is of bounded variation. There exists a decomposition K’ = K; — K3, where K;
and K5 are non-decreasing and bounded. It follows from Kosorok (2007, Lemma 9.6) that the function class
{(Az(:) = v) /b: (v,b) € I x [h,h]} is VC-subgraph with VC index being at most 4. Then, by Kosorok (2007,
Lemma 9.9(viii)), € == {Kj ((Az (-) —v) /b) : (v,b) € I, x [h,h]} is VC-subgraph with VC index being at most
4. By Giné¢ and Nickl (2016, Theorem 3.6.9) and Chernozhukov et al. (2014a, Lemma B.2), the function class
¢ :={K'((Az (-) = v) /b) : (v,b) € I x [h,h]} is uniformly VC-type with respect to a constant envelope ||K1]| +
| K2|| ., since € can be written as (a sub-class of) the pointwise difference of €; and €,. By Kosorok (2007, Lemma
9.6), {b*2cm tbe [Q,ﬂ} is VC-subgraph with VC index being at most 3 and by Giné and Nickl (2016, Theorem
3.6.9), it is uniformly VC-type with respect to a constant envelope that is a multiple of h~2. By Chernozhukov
et al. (2014a, Lemma B.2), § is uniformly VC-type with respect to a constant envelope Fy = O (h_2).

For a centered VC-type class § of functions defined on .#;; with respect to an envelope Fz (PUf =0, Vf € ),
by standard calculations (see, e.g., the proof of Chernozhukov et al., 2014b, Corollary 5.1) and Chernozhukov et al.
(2014b, Lemma 2.1), there exists a zero-mean Gaussian process {GU (f):fe {3’} that is a tight random element in
> (F) and has the same covariance structure as the empirical process {GY f : f € §} (i.e., E[GY (f1) GY (f2)] =
Cov [f1 (U), f2 (U)], Vf1, f2 € §). The tightness of {GY (f) : f € §} is equivalent to the condition that § (endowed

with the intrinsic pseudo metric § x § > (f1, f2) — \/E [(GU (f1) —GY (fg))2] = [lf1 = fallpv o) is totally bounded

and almost surely the sample paths f +— G (f) are uniformly continuous with respect to the intrinsic pseudo metric
(therefore, Pr [HGUHg < oo] =1). And {GU (f):fe S} is also separable as a stochastic process. See Kosorok
(2007, Lemmas 7.2 and 7.4). Since Fjy is also an envelope of §+ := §U (—F) and the covering number of 1 is at
most twice that of §, §+ is VC-type with respect to Fiz and therefore, there exists a zero-mean Gaussian process
{GY(f): f €3+} that is a tight random element in /> (F1) and has the same covariance structure as that of
{G,({f 1 fe Si}. Moreover, by Giné and Nickl (2016, Theorem 3.7.28), almost surely the sample paths §+ > f +—
GY (f) are prelinear and therefore, almost surely, Vf € §, GV (f) + GY (=f) = 0, and sup;c5, GV (f) = ||GU||g
In our first application, § = $H1, which is also uniformly VC-type (see Lemma A.3 of CK) with respect to the
constant envelope Fgn = Fy.

By the coupling theorem (CK Proposition 2.1 with H = $4, 04 = o5, 0y = 0g, bg = by = Fy, xn = 0,
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v = y/log(n)/(nh3) and ¢ = o0), one can construct a coupling (HU%Q)

’ L i) that satisfies the following
9
conditions: Zg, =4 SUP ;o 01 GY (f) = HGUH:;UM where {GU (f):fe Sﬁ[il]} has zero mean and the same covariance
+
7 S
’5 H+

O, <\/10g (n) /h,\/log (n) / (nh3)) By Dudley’s entropy integral bound (Giné and Nickl, 2016, Theorem 2.3.7),
Lemma A.2 of CK, (A.2) and standard calculations (see, e.g., calculations in the proof of Chernozhukov et al.,
2014b, Corollary 5.1),

structure as that of the (Héjek) empirical process {an :fe .V)[il] }, and (HU%Q)

’ ,Zﬁi) satisfies HUg)
9

sV 2 F oo,
L I 11w (8 (290 o o)
U:‘g[llvn_l/2HFﬁ[1]||1»U,2
< 4\|F,5[1]|\Pu,2/ sl 1+log | sup N<€||F5’J[1]||Q727”6[1]7||'HQ,2) de
0 QeQy,
< (0’53[1] vn~l/2 ||F_;~J[1] H[P’U,z) \/Vy)mlog (4A5[1]n1/2), (834)

when n is sufficiently large. By the Borell-Sudakov-Tsirelson inequality (Giné and Nickl, 2016, Theorem 2.5.8),
Pr [HGUHﬁ[l] >E [HGUHml]] +0ogu/2 - log (n)} < n~!. Therefore, since Zgs, =q4 HGUHﬁm, we have Zg, =

o; ( log (n) /h) and H[Ugf) =0y <\/10g (n) /h, \/log (n) / (nh3)>. The assertion follows from these results. W

;

Proof of Lemma 5. Denote H2™" (u,v;b,h) = E[HE (U,u,v;b,h)], H* = {HS (-,v;b,h): (v,b) € I, x [h,h]}
and $201 = {Hﬁ[” (- v;b, )« (v,b) € I, x [@,j}. Then,

H

By the same arguments for showing that §) is uniformly VC-type, {\/5 “Hy (v30) 1 (v,b) € I, [ﬁ,ﬂ} uniformly
VC-type with respect to a constant envelope that is O (h*3/2). By Chernozhukov et al. (2014a, Lemma B.2), $* is
uniformly VC-type with respect to a constant envelope that is O (h_3/ 2). We now use different arguments to show
that $% is uniformly VC-type with respect to a tighter envelope. Let L (u;b, h) = (h/b)l/2 K ((h/b)u) — K (u) and
denote L' (u;b, h) = OL (u;b, h) /Ou. Then clearly, H2 (U;,Uj,v;b,h) = h=3/2L' ((A; (e;) — v) /h; b, h) Cy (Us, Uj).
Write L' (u;b,h) = Ly (u;b,h) + Ly (u; b, h), where L; (u;b,h) = ((h/b)?’/2 - 1) K'((h/b)u) and Ly (u; b, h) =
K’ ((h/b)u) — K' (u). Then,

sup Vvn Z’HA (Ui, Uj,v; b, h)

(v,b)€L, % [h,]] "3 (i)

A ) — —
H2 (U, Uy, v;b,h) = h=3/2L; (””(G;L)”;b,h)c (Ui, Uj) + h™ 3/2L¢( h) C. (Ui, Uj)

= (UZ,U],H b,h) +HE (U, Uj,v;b,h) .

It follows from the fact that {\/5 “Hg (,0;b) : (v,b) € I, x [ﬁ,ﬂ} uniformly VC-type with respect to a constant
envelope that is O (h=3/2), Chernozhukov et al. (2014a, Lemma B.2) and SUPye (1, 7] (b/h)*/? ‘(h/b)?’/2 -1

O (e,) that {HI (-,v;b,h): (v,b) € I, x [h,h]} is uniformly VC-type with respect to a constant envelope that
is O (,,/h*?). Denote

U = {y|—>L¢ (y;v;bvh) 1 € [h, 7] ’UEIE}
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Bb) = {yi—>L¢ (y;”bh) :ve]w}

so that ¥ = Ube[ﬁ,ﬁ] U (b). We have [|L; (-;01,h) — Ly (302, h)|| . < C1n |b1 — ba|, where Cy,, = || K" || (E/hz).
Clearly, C1pt ([h, h]) = O (gn). Let 8 := {u+> Ly (u;b,h) : b € [h,h]}. Then,

N (Cine 1 []l0) < N (&, [h,h] L) <1+ L([hghj)

and therefore, N (CLnL ([ﬁ,ﬂ) e, 4, ||Hoo) < 1+¢~!. By simple calculation, we have HLQc (-, h)‘ < Capén,

Rx[ﬁ,ﬂ
where Cy , = || K" ||, /(1 —€n) + Clip (1 +€,) / (1 — &5,) and Cjp is the Lipschitz constant for K. Therefore, the
total variation (see Giné and Nickl, 2016, Page 220 for the definition) of Ly (-; b, h) is bounded by 2 (1 + ¢,,) C nén,
uniformly in b € [@, E]. By Giné and Nickl (2016, Proposition 3.6.12), for each b € [ﬁ,ﬂ,

Ap\"®
sup N (2(1 +en) Conene, B (), H||Q2> < () ;
Qe €

where (Ag, Viy) are independent of b, h and n. Now fix some finitely discrete probability measure @ on R. Construct
a minimal Ct ¢ ([h, h]) e-net (with respect to ||-[| ) {u + Ly (u;b,h) 1 b € [ﬁ,ﬁ]o} for 81, where [h,h]" C [h,7]
and # [, E]o <1+e~ ! Foreach b€ [ﬁ,ﬂo7 construct a minimal 2 (1 +&,) C2 nene-net (with respect to ||+ 5)
{y—= L;i ((y—v) /h;b,h) v e I3 (b)} for BV (b), where I3 (b) C I, and #I; (b) < (A /e)"™. For any (v1,b;) and
(ve, b2), by the triangle inequality,

W (L¢ (y_h”l;bl,h) — Ly (y _,1”2;b27h))262(dy> <Ly (5b1,h) = Ly (502, 0|,
+\// <Li (y_hvl;bg,h> — L (W;b%h))zmdy).

Then, Ube[ﬁﬁ]o {y— Ly (y—v) /h;b,h) :v € I ()} is a (Crne ([h, h]) +2(1 + €,) Conen) e-net (with respect to
[[lg,2) for ¥ and has a cardinality bounded by (A /e)"™ (1+&7'). Note that

Foy = Clynb ([ﬁ,m) + 2 (1 + En) C2,n5n =0 (E’ﬂ)

is also a constant envelope for U. Therefore, U is uniformly VC-type with respect to the constant envelope
Fyy = O (e,,). Then it is easy to see that {’Hi (,v;b,h) : (v,b) € I, X [ﬁ,m} is uniformly VC-type with respect to
a constant envelope that is O (g,/h%/2). By Chernozhukov et al. (2014a, Lemma B.2), $* is uniformly VC-type
with respect to a constant envelope Fua = O (gn/h3/2).

By LIE, we have
E [Hﬁ[l] (U, v; b, h)ﬂ
1

= 3{/:””L'(A””(‘jj”’;b,h)px@){n(ege)F€X<ex>}de} | X =a| () +75))

=z

Then,
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By change of variables and mean value expansion,

Ag(eg,j)—v
“o (A (€)= v Sl
/ L (h;b7 h) pe(€)de = h/Az(ﬁw_il) (us b, h) {¥a; (V) + ), ; (0) (hu) } du,
h

€x,j—1

where v denotes the mean value that lies between v and v + hu. It is easy to check by simple calculation that

b e [h7],

1+e, 3| K’
1L wsbo )] < (K | )+ 2
(1—¢,)

Then by these results and the fact [ L’ (u;b, h) du = 0, we have

/ez’j L (Af(i)”;b, h> po (€)de = O (enhz) 7

€x,j—1

01— ‘3%)5n]l(|u| <l4e,). (S35)

uniformly in (v,b) € I, X [h, h]. Similarly,

/6“‘ v <Az(2) b h> x (€| 2) po () de’ = O (,h7),

€x,j—1

uniformly in (v,b) € I, X [h,h]. Then by these results, we have

h- / / ) ( (e) = bh) (A(eh) bh) Fux (e ne | 2) s (€) pa (¢/) dede!
—p3 </ I (A“’(Z)_”;b, h> Fux (e ) ps (e) de> (/k r (A“"(ehl)_”;a h) ps (e')de'> =0 (e2h),

uniformly in (v,b) € I, X [@,ﬂ, if j < k. The same result holds if j > k. By change of variables,

~/em] 1/%, . ( = =it h) L (Az(eh/)_q};b’h) Fox (eN€' | x)ps (€) po (¢') dede’ =

ohp—1 /L/ (w; b, h) s j (hw + v) {/w L' (u;b,h) Xz (hu + v) du} dw.

—00

By integration by parts,

/ L' (u;b,h) Xz,j (hu +v)du = L (w; b, h) Xz j (hw +v) — b/ L (u;b, h) X;,j (hu 4 v) du.

— 00 — 00
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By these results, we have

/em] 1/6“ . ( = =it h) a (Aw(eh/)_?};b’h) Foyx (eNe' | z)pg (€) ps () dede’ =

2hn~1 /L' (w; b, h) g j (hw + v) L (w; b, k) x4, (hw + v) dw

-2 / L' (w; b, h) ¢y j (hw + v)/ L (u;b,h) X, j (hu 4 v) dudw.  (S37)
It is easy to check by simple calculation that Vb € [ﬁ, E],
1 n K
L) < (1 (220 ) + 1 ) enur <14 20, (539)

By (S35), (S38) and mean value expansion,

pt / L/ (w3, B) L (w3 b, h) {ha g (hw + ) X g (bt + 0) — .5 (0) X (0)
= (0 (6) g () oy (0) ey (0) ()} = [ 2 s L a3 (05 (9) X (6) 4 s (D)X, )
(W () e (0) + e (0) Xy () Y = 0 (2)

where © denotes the mean value that lies between v and v + hw and the second equality holds uniformly in

(v,b) € I x [h, h]. Similarly,

/L’ (w; b, B) g (hw + ) (/; L (u:b,h) X, ; (b +v) du) dw
g @ ) [ o) ([ Lt an)au

—0o0

= //j’ L' (w;b, h) L (u; b, h) {¢o; (hw + v) X, ; (hu 4 v) = g j (v) X ; (v) } dudw = O (eh)

where the second equality holds uniformly in (v,b) € I, X [ﬁ,ﬂ. By integration by parts,

/L’(w;b,h)(/_:L(u;b,h)du>dw = —/L(u;b,h)Qdu
/L’(w;bﬁ)L(w;b,h)wdw = —%/L(u;ah)zdu

/L’ (w;b,h) L (w;b,h)dw = 0. (S39)
By using these calculations, (S37) and (S38), we have

/ 1/ B ( =t h) (AI(B;;)v?bvh) Fx (ene' | 2) ps(€) pu (¢) dede’ = O (e7,) -

Then it follows from this result and (S36) that

ogsm = sup PUf2=  sup E [/Hﬁ[l] (U, vsb, h)ﬂ =0 fen):
fenanl (v,b)ElzX[ﬁﬁ]
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By LIE,

E [Hﬁ (U17U2,v;b)2} =

1L,(Am(e)—v;b7h>2{]l(D:0,X:x)+1(D:1,X:m)

El=
ht h Co (9 (Lz,€)°  Cia(9(0,2,€))°

By change of variables and (S35), we have

o3s = sup E {f (Un, UQ)Q} = sup E [Hﬁ (U1, Uz, w3 b, h)z} =0 (2/h%).
fens (v,b)€Ls x [h,]]

By the coupling theorem (CK Proposition 2.1 with H = ﬁi, Oy = Ogalil, Uh = 0ga, bg = by = Fgs, xXn = 0,
log (n) / (nh3) and ¢ = o0), s such that HU(

Oy (sn\/log ), /1og (n) / (nh3) ) y (934) with $H1 replaced by ﬁA[”, E {HGUHﬁAm} =0 (em/log (n)) By
the Borell-Sudakov-Tsirelson inequality, Pr [| GUHyjA oy > E [HGUH;_)A } + 0gany/2 - log (n )} < n~!. Therefore,
o2

_Zﬁi:

‘ﬁA =0, <5n Vlog (n), v/log (n) / (nh3) ) The first assertion follows from this result.

Let 5 (U;,v3b, h) == Vb - & (Ui, v;b) — Vh - & (Ui, v;h) and €2 == {E2 (-,v;b,h) : (v,b) € I, x [h, k] }. Then

we have

sup ‘\/7% (fo (v,2;0) —max (v,:c;b)) —Vnh (fAX (v,z;h) —max (v,x;h))’ = ||(G:7[{||GA
R

(v,b)EL; % [R,]]

and we write 2 (U;,v;b,h) = h™Y2L((A, (¢;) —v) /h;b,h) 1 (X; = z). Tt follows from similar arguments that
¢2 is uniformly VC-type with respect to a constant envelope Fgs = O (En/hl/z). By LIE and (S38), 0%, =
supf-eeAIP’Uj"2 =0 (5%) By Talagrand’s inequality (Chernozhukov et al., 2016, Lemma 6.3 with F = €2, b = Fga,
o = oes Vby/Veslog (n) /n, t = log(n)), = 0, <£n\/M). The second assertion follows from this
result. |

S3 Proofs of Lemmas 6, 7, 8, 9 and Theorem B.1

Proof of Lemma 6. Denote Iy, (y) = g1, (y) + gos (y) and iy, (y) = i (y) + yos (y). Then, Rara (y) =
(i (Baw ) + e (1) /P and Rara (5) = (Haa (B0 (1)) + M (1) /e Part (a) follows from the follow-

= 0y (Viog ) /), || fla = ||, = 05 (Viog ) /) and 5, -
d'z d' e
= 0, (\/log (n) /n) Denote p.|, = Pr[Z =2z | X =z]. Part (b) follows from similar arguments used to
= 0, ( log (n)/(nh)) in the proof of Theorem A.l, P, — p.jz =

ing facts: Hﬁdw ° g/zﬁ\dx — Iz © dan

h HN LT) — Rl
show ||\ fax (-, 25:) —max (-, 2;°) I x[h,h]

Oy ( log (n) /n), Abadie (2003, Theorem 3.1) and standard arguments for the bias of kernel density estima-
tors. |

Proof of Lemma 7. Denote

~ 2
R I 1 A —v
Tax (v,z;0) = anK< 2 > 1(X; =x)
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N 11 (A -0\’
Tax (v,z;0) = anK( > 1(X; =x)
i=1

and rax (v,x;b) = E[Fax (v,2;b)]. Then, 171 (v,2;0) = Tax (v,2;b) — b - fAX (v,x;b)2 and Vi (v,x;b) =

rax (v,x;b) — b max (v,x;b)Q. It follows from arguments used in previous proofs (see the proofs of Lemmas
3 and 4 and Theorem A.1) that

IFax (25) —Tax (,x )”I x [,h] (\/log \/lofhs )

and Tax (v, 2;b) — Tax (v,2;0) = Oy ( log (n) / (nh))7 uniformly in (v,b) € I, x [Q,ﬂ. And also, by using the

fact
log (n \/log
*
I><hh_0 (\/ nh3

shown in the proofs of Lemmas 3 and 4 and Theorem A.1 that

| Fax (o) = max (03)

Fax (v,:0)” = max (v,2:0)” = (Fax (v,2:8) = max (v,2:0)) (Fax (0,2) + max (v,230))

N log (n \/log
=0 (\/ nh3 )’

uniformly in (v,b) € I, x [h, h]. Therefore,

HXA/l (ha;) = Vi ()

N log (n \/log
= . 4
I, x[h.]] =0 <\/ nh3 ) (S40)

Denote
- A —v\ . Ap—v\ .
Vo (v, 25b,be) = ( g Z ( z > Qw (W5, Wisbe) K’ < kb ) Qe (Wi, Wisbe) 1(X; =)
3
(4,9, k)
. A —v Ay —v
‘/2 (’U,.T; b) = (3) Z b3 < J > qx (VVJ7 Wz) K/ <kb> qx (Wk7 Wz) ]l (X,L = l‘)
zgk)
.. A —v A —wv
Vo (v, 2;b) = % Z ( J )qz(W]’,Wi)K’( kb )qz(Wk,Wi)]l(Xi:x).
3

'ij)

Therefore, Vs (v,230,b¢) = Vs (v,2;b,b¢) Py (plm —|—p0x) Then,

Va (v,x;b) — V (v, 2;b) =

Z { <£b_v>—K’(Ajb_v>}qm(Wj,Wi)K’(Akb_v>qx(Wk,Wi)]l(Xi:x)

(3) (3.4, k)
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2 (35w (5 o (55w (5),

(mJ@)
(541)

uniformly in (v, b) € I, x [ﬁ, ﬂ , where the second equality follows from the triangle inequality, mean value expansion,

(S12), (S13) and (S15). By mean value expansion, the first term can be written as

(Z b4 <><A A)Qz(Wj,Wi)K/<Akb_v>qm(Wk,Wi)l(Xi:x)

o (0 (25 e (257 (B 3w (2w =

3) (2,3,k)

n(3)

=:2-Ty (v;b) + T (v;b), (542)
where Aj is the mean value that lies between ﬁj and A;. By using

A; —v
" v
pe o (45°)

which follows from (S13), we have

= e Y5 < (A'b‘v> _K,,(Ajb_v»

(i,5,k)

1(X;=2)(1—-1;(v;b)) =0,V (i,v,b) € {1,...,n} x I X [h,ﬂ] =1-0(n7"), (S43)

1; (v;b) (AAJ- - Aj) ¢z (W;, W) K’ <Akb_v> Gz Wi, W) 1(X; = 2),

uniformly in (v,b) € I, X [ﬁ,ﬂ, with probability at least 1 — O (n’l). Then, by the triangle inequality, (S15) and
(S12),

_ _ 1\ 2 . !
el gy <57 (0% w) (6 + ) o Gl 3 = 05 (E52). (sa

By Lemma 2 and (S15),

1 1 Aj—wv
T = 3 ek () 0 00 W) (2 X (0,79

< K’ (Akb_v) ¢z (Wi, Wi) 1(Xi = 2) + O} <(1og”(n)>3/4 h_2> 7

uniformly in (v,b) € I, x [h, h] and therefore, by (A.5),

1 1 Az (ej) —wv
Ty (v;b) = @ Z ij// ((g> W (Uj){]l(em <€) = Fox (¢ | a)‘)}ﬂ'w (Zm, Xom)
(4,4,k,m)

< (0) {16 < ) - Fax (| )} & (201 o, (03)

3/4
X {]]. (61' < Gk) — F€|X (Ek | Cﬂ)} 1 (Xz = :L') + O; <<log (n)) h2>

n
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log (n) \*/*
> Ke (Ui, Uj, Uy, U, v;b) + O} <n) h?), (S45)

(4) (2,3,k,m)

uniformly in (v,b) € I, X [ﬁ,ﬂ, where the leading term is written as a U-statistic. Let

. 1
Ko (U, Uj, Uy, U, 50) = > Kz (Ui, Ujr, Upr, Uk, 03 b) (S46)
’ (4,4, k" ,K")eperm{i,j,k,m}

denote the symmetrization of the kernel and then,

1 ) 1 3/4
Ty () = — > Ky (Ui, Uy, U, U,y v;b) + O} (( og (n)> hz) , (S47)
" G ) "
uniformly in (v,b) € I, X [h, h]. Denote
]%;w (U, v; b) = E |:I€::17 (U, U17 UQa U37 ) b):|
l%;2> (u1,ug,v;b) = E [ICI (u1,ug, Uy, Us,v; b)} .

It is easy to see that E [ICI (Ul,U27U37U4,U;b)j| = 0. Denote £ = {/Cw (,v;0) : (v,b) € I, x [ﬁ,ﬁ]}, /0 =
{l&ﬁ” (-,v;b) : (v,b) € I, x [ﬁ,ﬂ} and R = {I%f) (-,v;b) : (v,b) € I, X [h,ﬂ} . By similar arguments used in
the proof of Lemma 4, £ is uniformly VC-type with respect to a constant envelope Fg = O (h_4). By Lemma A.3

of CK, &1 and &% are also uniformly VC-type with respect to constant envelopes Fguy = Fg2y = Fg. Since € is
independent of Z conditionally on X, E {I&i” (U, v; b)Q} =E [(E Kz (Uy,Us, Us, Uy, v;b) | U4])2]. Therefore,

B[k (0] [M{/ /ET1 ( 2)_U>ﬁz(e){]1(€§e)—Fex(eIx)}

x{Fyx(eNe |z)— Fx (e|z) Fyx (¢' | 2)} K <A$(2’)—v) Pa (e’)de’de} | X = x] (pia +1pos), (S48)

where
~ — feDX (670,,15) feDX (ea 1717)

Pl = gLl GO

By the ¢, inequality,

H/ /leKﬂ( IZ)_U>[3“’(6){1(6<6)—FEX(6m)}

=x

N _ o 2
x {Fx (ene' | z) = Fyx (e | z) Fyx (¢ |9c} <Az(eb)) pm(e')de'de} |X—x] =

2

{Z K//( z(‘;))—“) pz(e){1(e<e)—Fyx(e|z)}d, (e,v;b)de} | X =2

A

> >E {/ ;K”(Am(z)_v)ﬁgg(e)]l(ege)ﬁw(evb) } X —2|, (S49)
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where U, (e,v;b) = > """ 9, ; (e,v;b) and

j=1

o1 Az (e —wv
Vs 5 (e,v;b) = / b—2K’ ((b)> {Fe\x (ene'|z)— Fx (e|z) Fyx ('] x)} pe (¢') de’.

x,j—1

If k < j,

x { [ E @ o) i (2200 <e’>de’}2. ($50)

€x,j—1

E

By change of variables and integration by parts,

[ e e (2 e -

@,j—1
Ag(eg,j)—v Al(eal:),j)_”
e o U g (0 ) = g Gt )} == [ "R ) (but o) = (bt o)} d
— —

== (r; (V) =Xz ; () +0(1), (S51)

uniformly in (v,b) € I, x [h,h]. Let Vi (t) = pa (A;i () (A;i), (t) and Xu; (t) = . (1) Fox (A;; (t) | z).
By similar arguments used to show (S32),

E [{/ﬁ::l b%K” <A$(?U> pz(e)1(e<e)Fyx (e] x)de}2 | X :x] —

€z, k €z, k _ A
b—4/ / K" (M;))v) K" (Ax(eb)v) Fox (ene' | z) Fx (e | x) pe () Fox (€' | x) py (€') dede’
€x,k—1 Y E€x k-1
AT( z,k

o) Au(enn) v
—9p—2 /AT( e /AT(z "y 1 (u < w) K" (u) K" (w) Fyx (A;}c (bu + v) | x) Xz, (DU + ) Xz 1 (bw + v) dudw

=2p! {bl (/ / 1(u<w)K"(u) K" (w) dudw) Fx (A;}c (v) | :E) Kok (0)° +0 (1)} =0 (h"), (S52)
uniformly in (v,b) € I, x [ﬁ,ﬂ, where the last equality follows from

u//mugmmemedez/Kmmmedwzo (S53)

It follows from (S52), (S50) and (S51) that if k& < j,
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uniformly in (v,b) € I, X [ﬁ,ﬂ. If k£ > j, by similar arguments, we have

B [{ / Ler (“lf) 5o (€)1 (€ < €) D (03 b) de}2 X =2

D [{/ L gen (A”> 5 (€)1(e <€) (1 Fux (e] ) de}2 X =2

b
€ i 1 A ( /) 2
o , z(€)—v
X {/E Fox (€| z) b—zK <b) ps () de’} ,

x,j—1

GE'FE‘ e’a:bizK’ S0 p(eae =0
G (A(e') ) () de’ =0 (1)

x,j—1

and

=0 (h).

2
B [{/k b%K” (%2‘“) pu(e)L(e<e)(1—Fyx (e a;))de} | X =z

Therefore, (S54) also holds if k < j. If k = j, by change of variables, integration by parts and using the equality

Fac el {310 (2220 (40 ) — v (A )

1 Fplel0) 11 (F57) v a0 @) =0

for e € (eac,j—la 6I,j)7

basent) = Foxtela{ [T 0= Fa o) r (2200 e}

Ag (e j)—v

= Fuxlelo) [0 K@ e but o) (bu o) b du
’ Ag(e)—v
b

C(1-Fux(e] @) /Am,,-,l)w K (w) x5 (bu+ ) du. (S55)

Let K (u) == [¥ K (w)dw and K (u) == K" (u) K (u). Then, ¥, (e,v;b) = U4 (e,v;b) + O (h), uniformly in
(e,v,b) € (€x,j—1,€x,5) X Iz X [Q,m, where

Bugleit) = ~Fux(elo) (1= & (25=2) ) fur, 0=y )
(- Fi el ) & (297, 0

= Fue (e 0) (0 0) = Xy () + (Fux (e [ )0, () = iy 0) K (2220 556

(=l

Then,
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E [{/,il bigK" (Aw(eb)—“) pz (€)1 (e <€)Uy (e,v;b) de}2 | X = x] _

B {/ FE (P @1 < 00 i }2|X—x

+O(h™"). (S57)

Then we have

B [{/ ol (A(b)) P () L(€ < €)1, (e, v5b) de }2|Xx] -

/6:2]11/61]1 ( ),5 )Uq,; (e, 05b) 6|X(e/\e|a:)K”<A9”(6b/)U) 2 () Dsj (¢, 0; b) dede’
/ / ( ) Fox (e]z) Fox (ene | o) K" (AI(QZ)/)U) pr (€) Fux (¢ | ) dede’

(0 0) =y ) =200,y ) [ [ e (S @ R e
< Fae (e [a) K (25020 @) (s (€10) 0L (0) = ey (0) deae
[ e (B @ (e vy (0 =y ) Fax e
XK(bv> Pz (¢') (Fyx (¢ [ 2) ¥ 5 (v) = Xa; (v) dede’ = I1 (v,0) + Iz (v,b) + I3 (v,b) . (S58)

It is shown by (S52) that Iy (v,b) = O (h™'), uniformly in (v,b) € I, x [h, h]. Then,

Ag(eg j)—v Ag(eg,j)—v
b b

Iy (0,0) = =272 (¥, ; (v) = X ; (v) /() ot o K0 (G t0)

X Fox (A} (bu+v) A AL (bw +0) | 2) K (w) (xj (bw +v) ¢, (0) = Dy (b + ) X5 @)) dudw

Az (e m,j)fU Ag (e m,j)fﬂ
b b

=27 (0,5 (1)~ Xy () {/<> ot @S 0K @)Xy Gu0) Fox (A7) Gu ) [ ) K ()

Ag (e —v Ag(eg )=

@)
~ b

o (R O 08 0) = oy G 00, ) ludur [,

w(ex,j—1)—v [Az(ep j—1)—v
b

1 (u>w) K" (u) Xs,; (bu+v)

XFox (A7) (bw +0) [ 2) K () (R (0w + 0) 65 (0) =y (b +0) Xy (0)) dudw | = <2572 (0, (0) = X, (v)

A [ 5@ & ) audw) (e 0 Fa (42500 1) (o (00, (0) = 5 (0) ey (0)) + O}

uniformly in (v,b) € I X [h, h]. Then, it follows from this result and [ [ K" (u) K (w)dudw = 0 that I (v,b) =
0] (h ) Similarly,

Aw(eﬂc,j)*” Aw(ﬁw,j)*“
b

BB = [ fa o VR (Ras (ot 0000 (0) = i G+ 0) X, 0)

X Fopx (A3 (bu+v) A AZS (bw +0) | 2) K () (R (0w +0) 8 (0) = g (bw + ) X (0) dudu

([ [rwE dudw)(ng()¢ ) = s (00, ) P (473 0) [ ) 400 f =0 (07Y),
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uniformly in (v,b) € I, X [ﬁ,ﬂ, where the last equality follows from

/ K (u)du = / K" (u) K (u / K' (u = 0. (S59)

Then it follows from these results, (S57) and (S58) that

B {/ ;K”<A”C(Z)_U)ﬁm(€)1(6§6)l9 (e, v:b)d }2|X—x o),

€x,j—1

uniformly in (v,b) € I, x [k, h]. It follows from this result, (S54), (S48) and (S49) that 0% = supseqm PV f2 =
O (hil). It follows from the ¢, inequality, change of variables and tedious but straightforward calculations,
E|KE U1, Us,050)°| < B [(BIK, (U1, U, Us, Uy, v5b) | Ur,Ud))?| + B (B[, (U, Us, Us, Us, 05b) | U, Ua)?
+E [(B (K, (U1, Ua, Us, Us, v3b) | U, Ui])?]
= 0(h),

uniformly in (v,b) € I, x [h, h]. Therefore, Uém = SUPfeq B [f (Uy, U2)2:| = O (h7%). By the coupling theorem
(Proposition 2.1 of CK with H = R4, G4 = 0z, 0y = g, bg = by = Fg and ¢ = 00), when n is sufficiently large
so that Vi, -log (Aﬁi \% n) < n'/3, ¥y € (0,1), there exists a random variable Z§y m =d HGUHﬁ<1> such that

2o [ og @) oz (n)
! n1/6h5/3vi/3 nt/2hi~y,

By the Borell-Sudakov-Tsirelson inequality, Pr [|}GU||R<1> > E[[|GY| ] + 00 /2 Tog (n)] < n~!. By Dudley’s
entropy integral bound, E [HGUHWU] < (Jﬁm VT2 || Faa HPU’Q) V1og (n). Therefore,

v >Cl< log (n)**  log(n) 1og<n>>

n1/6h5/3,ﬁ/3 nl/2hdy, h

Pr < (Cy (’}/1 + n_l) .

4)
‘R - Zﬁiﬁl

Pr

<Cy(m+nt). (S60)

It follows from this result, (S41), (S42), (S45) and (S44) that when n is sufficiently large, Vy1 € (0,1),

Pr <Cy(m+nt). (S61)

. log (n)** o (n)
rox[wi] T U\ (k)PP B nhiy

“"/’2(.795;.) V()

Next,

Va (v, ;b,b¢) — Va (v, 5b) =

~

2 1 A —wv A —w
. Z b3K/< Jb )Qx(WpWi?bc)K’( kb >qw(Wk,Wi)1(Xi:$)
)

"3 (i 7k
1 1 A~ Ay —
+’n,7 bsKI( ]b ’U) Qm(Wj7Wi;b<)K/< kb 'U> Qm(kawi;bC)]]-(Xi:x)a (862)
3) =
(4,5,k)

where .Qm (Wj, Wi; b{) = Z]\m (Wj, Wi; b(:) — (z (Wj, Wz) Let Qdm (Wj, Wi; bg) = (/]\dm (Wj, Wi; bg) — qdzx (Wj, Wz)
Denote
Pae (Wi, Wi) = 1(Y; < ¢z (Y;), Di = d) + 1(Y; <Y}, D; = d’) — Rarye (V)
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and let 34, (W;, W;) be defined by the same formula with (¢ge, Ras) replaced by @dx, ﬁd,x). Then, by (S4),

@dm (W]7Wz) . de:r( )
Co (dz (Yj))  Caa (¢dx ( i)

a3 W) (G (¢?dm<n>;b<)—<dm<¢>dmm)>) Baz (W, W) (Cae ((?sdx( i) ~ Caw (6 (1))
Gar (B (V7)) Cto (Ban (V1) 3¢ ) Cat (602 (V7)) |

Rz (ijwi;bg“) = Il.(Dj = dl7Xj = LU){

(S63)

Then, by this result,

1 1 A —w , AA,fv
— b3K/< Jb )de(WpWi;bc)K( kb )qgc(kaWi)]l(Xi—x)—
) (ij.k)
T3 (v;b) + Ty (v;b) + T5 (v;b,b¢) + T (v3 b, be)
where

Aj —

T3 (v;b) = (

3) (zgk

{ (Y < ¢dw<d:)(25d - 1)/) < Pa ( 4))}](’ <AAkb_U> gz Wi, Wi) 1(X;

Ty (v;b) = st ( ”) (D; =d X, =)

n@ 5

:x)

XRd’ (Yj) = Rara (Y} ')K/<£k_v> ¢z (Wi, W) 1(X; = )

Cdz (Paz (Y5)) b
1 1, (A —v e
T5 (v;b,be) = n(g)(ijk)b?’K< Jb )]l(Djd,ij)
X@dac (W],Wz) {de (¢d$ (}/J)ybﬁz - Cda: ((bdm (}/J))}K/ <A\k — U> 0 (Wk’WZ) 1 (Xz _ ;13)
Ts (U;b,bc) = 73) Z bSKI< ‘h— ) ]]_(D] :d’,X]- :.T)
(4,3:k)

Bue (W5, W) {Cae (B ) 10¢) — e (00 ()}
Cao (B (Y1) b ) oo (90 (¥7))°

A
K’( ’“b ”) o (Wi, W) 1(X; = ).

X

In view of (S12), by using similar arguments for proving (S13),
Ai—v
K | —=—

175 (0:6)] < b1 (0¥ /ngsy) € (g; +§ggj) Lax (v,2:5)° 6,

1-0(n ') <Pr 1(X; =) < |K'|, Li (;b) 1 (X; = 2), Y (i,0,b) € {1,...,n} x I, x [h, 7]

(S64)
and therefore,
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where

By using

|1 (¥ < 00 ) = 1% < b0 )] =1 (¥ < b ) 1(¥i > 6s (0) +1 (Vi > b () 1(¥i € 6 (1)

)
Id’:::)

S 1 (¢dm (y) < Y; S d)dz (y) + H(gda: - (bd:z:

o)1 (00 02 ¥ 600 ) [0 - 00,

and letting

Pr.(Wiy,&) = 1(daw (y) <Yi < paw (y) +€) 1(D; = d, X; = )
Bro= {PL (0.9 0.9 € Luw x (0.8}

P Wiy,8) = 1(¢ar (y) =€ <Y < baa () L(D; =d, X; = )
P o= {PL(0.9: 0.9 €l x (0.8},

where £ := C14/log (n) /n in view of (S3), we have

1< ~
sup | =3 [1 (¥ < bur () — 1% < s (5))| 1 (D1 = d, Xy = )| <
yelyry i=1
1< ~
sup |~ 31 (asdm (y) < Vi < bar 1) + |[faz — D ) 1(D; = d. X; =)
Y€y, n i=1 Iyry
1 & ~
+ sup nZﬂ(% () > Yi > bue () = ||Pae — b, )ﬂ(Dizd,Xizx) < [P llge + 1P Il
yelare i=1 d'z

where the second inequality holds with probability at least 1 — Con~!. By similar arguments used in the proof of
Lemma 2, we have H(G,VLVH%+ =0; (log (71)3/4 /n1/4) and HG,I/LVH53+ =0; (log (n)?’/4 /111/4)7

1
PYlge = s B[ (@) <Y < 6u@+O1D=dX =2)] =0 ( g(”))
(y,€) €Ly, % (0,E] n
and H]P’WHQ:J,, = O( log (n) /n) By these results, ||]1F",VLVHQ~3+ < n1/2 ||(Gz7‘fLVHq~3+ + HIF)WHq}Jr =0, ( log (n) /n)
and ||]P’TVLVHQ~3, =0; ( log (n) /n) Now it follows that
5< s |23 (¥ < du ) 1% = 0| = 07 (/e
5= s LS [1 (32 e ) ~ 107 S s )] 1D = X = —0,,< : ) (565)

and (S15), ||T3lex[ﬁ,ﬁ] =0; ( log (n) / (nhQ)). Similarly, when n is sufficiently large, with probability at least
1-— an_l,

_ 1
5 (it)] <57 (0 rcw) € () 4 G2) Bax (st R = ( = )>
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uniformly in (v,b) € I, X [ﬁ,ﬂ, where

R:= max 1(D; =d, X; =) |Ras (Y;) — Rars j)’O;< 10gn(”)>

=

and the equality follows from (S15) and Lemma 6.

For Ty (v; b, be), write

1 L A — , Car (Wi, W) [~ (=
v; b b — 73 j — da =) T 3 T z \Lj 7b — Qdz x \Lj
Ts (v3bb) = o (JZ = ( >1<D] X =) S {Car (P (¥3)50¢) = Car (000 (V) }
—v _d X =1 Pdx (ijWi)
( )q”” W Wl =+ 2 0 % bd ( >“Dj GXi =0 ur (v;))?

< {Caw (Gur (V1) 1b¢) = Car (6 (1)) | {K (A’“b_ ”) - K’ (A’“b_ “) } 4. (Wi, W) 1 (X, = )

iz K,<A Bax (W5, Wi) = paz (W, W,

) (D; = d', X, = x) O ) 2 {Edz (975(1@ (Yj)§bc> — Cio (bas (Yj))}

@) (i
, A\k — v
x K 2 qx Wi, W) 1(X; =) = T5.1 (v;b0,b¢) + Ts.2 (v;0,b¢) + Ts.3 (v; b, b¢) .
By (S3),
~ log (n _
Pr [ sup @gs (y) — sup oz (y)| < Ch g()] >1—Con~?
yel'd/z yEI.d/m n
and

inf Ggy (y) — inf Gax (y)

yeld/z yEId/I n

<Gy log(n) (n)] >1—Cyn?,

/|

where fd/z is any closed sub-interval of I;,. By these results and Lemma 6, de ((EM (y) ;bg) — Cdz (adw (y)) =

Oy (w/log (n)/ (nhe) + h%), uniformly in (y, be) € Igrp X [QC,EC]. By this result and (g, ((Edw (y)) — Caz (Paz () =
Oy ( log (n) /n), which follows from (S3) and mean value expansion,

~ o/~ 1
Cda ((bdz (y); bc) — Cdz (Paz (y)) = O, ( OE}E?) + hf) ; (S66)
uniformly in (y,b¢) € Iy X (B¢, he]. (S66) implies that
1 o
br (y, b()eld/ >< h hC ’de <¢dm ) )‘ - QCdm] >1 an : (867)
Denote
(= jDnax 1(Dj = d', X; =) 1; (v;h) }de @dx (Y5) 5b<) — Caz (Paz (Y5))] - (568)
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Then, ¢ = O} (\/log (n) / (nhe) + h%), uniformly in (v,b¢) € I x [h¢, h¢]. Then,

ITs.5 (03 b, )| < p1 (”3/n(3))§;; (QS +§(;z1) Tax (v,x;b)2 (54_?)2 _ O; ( log (n) ( log (n) + h?)) ,

nh? nhe¢
(S69)
uniformly in (v,b,b¢) € I, % [Q,ﬂ X [QC,EC]. Then,
Ts.2 (v,50)| < = Zc 2005 (030) LDy = &', X; = @) [Caw (e (V1) 30¢) = Caw (6 ()]
AAk—v ’ Ak—v
Z Z Pdz WJ’W){ < b >—K ( 5 )}qm(Wk,Wi)ﬂ(Xizx) <
(n #J k#5,k#j
a1 ~ - (N 1
22 (G + 600 ) 1ax (e’ ¢ A= 0; < Osfgf) < OS}E?) +h§>) . (S70)

uniformly in (v,b,b¢) € I % [Q,ﬂ X [ﬁoﬁc]- Denote
/ A, (ek) - v
Z. (U;, Ug,v,e;b) = b—zK — )%= (Uk) (]l (€: < ex) — Fyx (ex | x)) (]l (s <e)—Fyx (e] m)) 1(X; =x).

Then,

Tsa (0:5,50)] € —— 3 C267°1, (0s0) 1 (D; = &', X; = ) G (Ban (V3 55c) = Cas (B0 (V7))

JA{C) Rt

T (<) = Fax (g | 0) K (2297 o 0 (1 (e < ) — Fupx (e | ) 1(X: = )
b

<C 2]1AX (U X, b) sup ZZ U'LaUk7U7e;b) .
c€le, ] | " (in)

Let Z, (U;, Uy, e50) == (2, (U, Ug, v, €;b) + 2, (Uk, Ui, v, e5b)) /2 denote the symmetrization of Z, (U;, Uy, v, e;b)
so that n(; Z(i’k) Z, (U;, Uy, v,e;b) = n}% Z i k) Z, (U;, Uy, v, e;b). By Chernozhukov et al. (2014a, Lemma B.2),
3= {Zz (,v,e50) : (v,e,b) € I, x| [h T} is uniformly VC-type with respect to the constant envelope
F3 =0 (h_2>. Let

2 (u,v,e;0) = E [Zoz (u, Uﬂ”e;b)}
3<1> = {éﬂgm (-,v,e;b) : (v,e,b) €l X [h T}
Note that
1
sup — > 2. (Ui, Uk, v, 6b) — Vg (€,0;b) po | = ™ /2 HUS)H3

(v,e,b)eI,; X [Em ,Em] X [ﬁ,ﬁ] (2) (3,k)

since by calculation, E [Z, (U1, Us, v, e;b)] = 9, (e,v;b) pp. It is shown by (S55) that ¥, (e,v;b) = O (1), uniformly
n (v,e,b) € I, X [€,,€] X [Q,ﬂ. By the ¢, inequality,

E[(BIZ. (U1, Us,v,e50) | U2])°] =
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/:m {/:r b%K’ (Am(eb’)—v> pe(€) (L(e" <€) —Fx (€| z)) de'} (L(e" <e)— Fx (e :r:))2 fex (€', x)de”

= i > / {/ e (A(b)> pa (<) (L(e" <€) = Fyx (€' | 0)) d} fex (¢, z) de”,

where feX (671’) = fe|X (6 | ‘T)pr If k <j7

/em,j
P

z,j—1

2
{/ a b%K/ (Ax (eb) — ’U) 0 (el) (]1 (8” < 6/) _ Fe\X (e/ | l‘)) de’} fox (8”,3’:) e’ =

and if k > j,

/€m>.7
€

z,j—1

{/ﬁ:lkl beK/ (Az(ebl)_v) Pz (€) (]1 (" <€) - Fox (¢ x)) de/} fex (€' x)de” =

[ { / K () @ (- R @ 1) d} fox (@) de” =0 1),

x,j—1

uniformly in (v,e,b) € I, x [€,, €] X [h, h]. If k = j, since €’ € (€,,j—1,¢€s,5), by integration by parts and change of

variables,

€x.j N "y

/ %K’ (A(eb)"’) pe (€)1 (e <é)de! = —K <A(‘2)”) b i (Ag ()
, Az(s?j)—v
!
b /AMH K (u) ), (bu+v)du  (ST1)
b

and

/Em,j EK/ <A$(i)_v) pz (€') F. €|X (e[ z)de ij (v) +0o(1), (S72)

€x,j—1

uniformly in (v,b) € I, x [ﬁ,ﬁ]. Therefore, E [(E [Z: (U1, Us,v,e;b) | Ul])z} =0 (h_l), uniformly in (v,e,b) €
I, X [€,,€] ¥ [h,ﬂ. By change of variables,

E [(E (22 (U1, U2,v,€50) | UQ])Q} =

S

x,j—1

A 2
( ) (eb) ) fu (¢) {Fux (e Ae' | w) = Fyx (e | 2) Fyx (¢ | 2)}” fox (¢, 2) de’ = O (h™2) |

and E[ZI (Ul,Ug,v,e;b)Q} = O(h_S), uniformly in (v,e,b) € I, X [e,, €] X [ﬁ,ﬁ]. Let ‘7%<1> =
supse3 PV f? and 03, = supgezeE [f (Ul,U2)2]. We have shown that 03, = O(h™*) and 03,

O(h_?’). By the coupling theorem (CK Proposition 2.1 with H = 34, 74 = o030, oy = 03, by =
by = F3, xon = 0, v = log (n) /(nh) and ¢ o0), Dudley’s entropy integral bound and the

Borell-Sudakov-Tsirelson inequality,

L =0 (\/10 n /h3,\/log(n)/(nh)>. Therefore, Ts1 (v;b,b;) =
o, (\/log / (nh¢) + b2, \/log ( )/(nh)), uniformly in (v,e,b) € I, x [e,,€] X [h,h]. Now it follows
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that HT5”1zX[ﬁﬁ]X[bc,hc = 0} (,/log / (nh¢) + hZ, y/log ( )/(nh)) By (S67) and similar arguments,

HTGHQx[gﬁ]x[Q(,EC] =0; (( log (n) / (nh¢) + h%) , v/ 1og (n)/ (nh)) Then it follows that

1 1 Aj— Ay~
= K/< ] U) “de(WjaWi;bC)K/< kb v) Gz (Wi, W) 1(X; = z)

b
o« [ flog(n) | [log(n) [log (n)
=0 ( nh? + nhe + hé’ nh ) '

By tedious algebra, (S63), Lemma 6 and (S65),

1 1, A\’—U ) , A\k—v . o .
%(ijk)bﬁ,]{ ( Jb )Q(WjaWnbOK ( b >Q(WkaWwa)1(Xz—x)—
. L (A 1(Y: < 6ur (7)) = 1(Y; < 60 (V7))
— Y K ([Z )1, =d,X
n(g) (m;f) b3 ( b ) ( SC) Cd:v (¢dz (Y]))
(Ao o ﬂ(nsadm(m)—ﬂ(i@s«bdm(Yk)) o
x K <b> 1(Dy=d, X, =x) NI 1(D; =d, X; =)

log (n log (n 9 * log (n log (n 2
0 (2 (1) 2] ) ot 0 (252 o500 02)),

uniformly in (v,b,b¢) € I X [h,h] x [h¢, he]. Then, [T (v;b)| < lflg;j]lAX (v,2;0)* ¢ = Oy ( log (n)/(nhQ)),
uniformly in (v,b,b¢) € I X [h,h] x [h¢, h¢]. Then, by these results and (S62),

~ [log (n [log (n llog

uniformly in (v,b,b¢) € I x [Q,ﬂ X [ﬁoEC]' By (A.5), we can write

st = *Z (w)“z(Uﬂ{ﬂ(wa)—FEX(qx>}
(wk)
><K/(W)wx(Uk){ll(@Sezc)—Fex(ekg;)}]l(Xi:m)

= — Y Ju(Ui,U;,Up,v5b).

n(3) (1.7,

Let

A3 A2_'U

Vo (v,2;0) = E LﬁK’( ; )qz (Wg,Wl)K’<

) dx (WQ, Wl) 1 (X1 = x)] =E [jx (Ul, UQ, U3, % b)]

and therefore, Vs (v, x;b) = Vo (v, 2;b) p; ! (pl_xl erazl). Write Vs (v, 2;b) = n(_gi Z(i%k) g (U;,U;, Uk, v;b), where
J» denotes the symmetrization of 7, (see (S46)). Denote

T (u,v0;0) = B [jw (u, Ul’U2’U;b)}
jx<2> (uhug,v; b) = E |:j93 (Ul,UQ, Ulvv; b):| .
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Let

3R]
I

{\71 (,v;b):v € II}
0= {j’w<1> (,v;b) : (v,b) € I x [@,ﬂ}
{Jl§2> (,0;0) : (v,b) € I, x [@,ﬂ}.

Then, we have HVg (yz;) = Vo (oyz;-) UP

_ n—l/Q‘

_ ‘ . By similar arguments used in the proof of Lemma
I, % [h,R] 3

4, J is uniformly VC-type with respect to a constant envelope Fy = O (h*S). By Lemma A.3 of CK, 3V and J¢%
are also uniformly VC-type with respect to constant envelopes Iy = Fyy = Fy. Then we have

E [(E [Tz (U1,Us, Us,v;b) | U1])2} =

/: b% {/e: %K/ (Aw(?_v) pz(e) {1(e' <€) = Fyx (e| 2)} de}4fex (¢/,z)de’ <

>3

k=1 j=1" €e.k-1

. 4
/ ? %K/ <Ar(6b)v) px(e){]l(e’ge)—F€|X(e|az)}de} fex (¢/,x)de’. (S74)

€x,j—1

If k < j, by (S51),

/:1 b% {/ %K, <AI((Z)U> pa () {1(¢ <€) — Fyx (e ] 2)} de}4fex (¢ z)de’ =

z,j—1

— / b12 {/ %K, (Aﬂ?—”) pe (€) {1 - Fx (e a:)}de}4fex (¢, z)de’ = O (h?),

x,j—1

uniformly in (v,b) € I, X [ﬁ,ﬂ. Similarly, if & > j,

R e P

i1 | 4
/ | biz {/ ,.7 %K/ (AI(?_U) pa (€) Fex (e | ) de} fex (¢ x)de’ = O (h?).

x,j—1

If k = j, by (S71) and (S72),

x,j—1

€x,j 6/ —v 4
[ 5 (B0 a0 s st 01 000

€x,j—1

uniformly in (v,b) € I, x [k, h]. It follows from these calculations and (S74) that E [(E [To (U1, Uy, Us, v:b) | Ul])ﬂ _
O (h™1), uniformly in (v,b) € I, x [k, h]. We have

B [(B(7, (U1, U, Us.:b) | Us))?] = { [ (205

529



X (/Ee’" blz[(/ (Ai(el;)_v) Pz (e/) {F€|X (6/\6’ ‘ x) _FE|X (6 | :I:)FE\X (6/ | l’)}dd) de}pi <
ZZ {/EM blzKl (Am(z)v> P (6)2 Y (e,v;b)2 de}pi (S75)
k=1 j=1 €r,k—1

and E {(E [T, (Uy, Uz, Us, 0:b) | UQ])Q} - E [(E [T, (Uy, Uz, Us, 03 b) | Ug]ﬂ. If k < j, by change of variables, inte-
gration by parts and (S51),

€.k _ 2 €x.k _ 2
/ b%K/ (Al(?v> b (€)° Vg (e,03b)% de = {/ blzK’ (AI(?U) pz (€)? Fyx (e | 2)° de}
€x,k—1

. / —v i
x{/ {LFE\X(ewx)}%K' (W)”“el)de/} o

uniformly in (v,b) € I, X [ﬁ,ﬂ. Similarly, if & > j, by change of variables, integration by parts and (S72),

/ LK (M;—)p (€)1 05 b)? de = { / LK (A(;—) 5o (O (1— Fuyx (0| 2))° de}

x { [ rae o g (220 0 <e'>de'}2 —o(m),

€251

uniformly in (v,b) € I, x [k, h]. If k = j, by (S55), ¥,.; (e,v;b) = I, ; (e,v;b)+O (h), (S56) and change of variables,

61,]' _ 2
/ blzK’ (Ax(eb)v> P (6)2 Vs j (€,0; b)2 de=0 (hil) ,

€x,j—1

uniformly in (v, b) € I, x [h, h]. It follows from these calculations and (S75) that E [(E [Tz (U1, Uz, Us, v;b) | Ug])ﬂ
E [(E [T (U1, Uz, Us,v;b) | U3D2:| = O (h™!). Then, by the ¢, inequality,

E |0 W) £ E[(BIT, (U1, Uz, Us,v50) | Th])*] + B[ (1T, (Ur, Ua, Us,v;b) | Ua))?]
+E [(E (7, (U1, Us, Us, v;b) | Us))*]
= o),
uniformly in (v,b) € I, x [ﬁ,ﬂ. Therefore, 0§<1> = supf63<1>PUf2 =0 (h_l). It is easy to check that

E |72 U0z 00| £ E[(BIT (U1, U, Us,v30) | Un, U])*| + E [(B1T, (U1, Un, U, v:0) | Uy, Us])?

+E [(B17, (U1, Uz, Us,vib) | U, Ua))?]
= O0(h™),

uniformly in (v,b) € I, x [k, h]. Therefore, 0'§<2> = SUp ey E [f (Uy, U2)2} = O (h™*). By the coupling theorem
(Proposition 2.1 of CK with H = J4, 04 = 031y, 0y = 052, by = by = F;5 and g = 00), when n is sufficiently large
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so that V5, -log (A;ji \% n) < nl/3, ¥y € (0,1), there exists a random variable 234 e =d HGUH3<1> such that

/
>Cl< log (n)*” + log (n) )1 <Cy(r2+n7t).

Pr n1/6h4/3’}/21/3 nl/2h3~,

o

‘3 - Zﬁiﬂz

By the Borell-Sudakov-Tsirelson inequality, Pr {HGUH‘~J<1> >E {HGUHJUJ +o5m4/2 - log (n)} < n~! By Dudley’s
entropy integral bound, E [HGUHJM} < <03<1> V12 HFJ<1> HIP’U,Q) V/log (n). Tt now follows that

Y OV oy

Pr n1/6h4/3’721/3 n/2h3~, L

<Cy(y2+nt) (S76)

and therefore, we have

Pr < Oy (’)/2 + n_l) . (877)

Cl( log (n)** , log(n) log<n>>

n2/3h4/3721/3 nh3~, nh

va (,x;) — Vs (,x;-) L x[1F]

Since Va (v, 2;b,b¢) = Va (v,2;0,0¢) Byt (Brat + Post)s Vo (v, 23b) = Va (v,2;0) py* (p1) + pot) and
Vs (v, 2;b,b¢) — Va (v, 25b) = (‘72 (v,2;b,b¢) — Vy (v, x; b)) + (Vg (v,2;b) — Vy (v, ; b))
+ (‘/2 (’U,.’E,b) - ‘72 (’07.’15,b)) )

it follows from (S73) and taking v; = v2 = v in (S61) and (S77), p, — p. = O} (n‘1/2) and p.z — pzz = O, (n_1/2)
that ¥y € (0,1),

Pr sup 172 (v,2;0,be) — Va (v, x; b)‘ > C’m‘Y )] < ané’ (),
(v,b,b¢) €Ty X [l R] X [ Bc]

when n is sufficiently large. The first assertion follows from this result, (S40), and

o~ = . = . 9
V(v|zbbe)—V(v]|ab) = Vi (v, z;b) + Vo (v, 23 b, b¢) (px )

P2 Z
+%{(‘71 (U,I;b)—‘/l(vrx§b)) + (‘72 (vw;b»bc)—‘@(”’x;b))}'

For the second part, note that Vi (v, z;b) = rax (v,2;b) —b-max (v, x; b)g. Let

L (u;b, h) = (’;) K (ZU)Q — K (u)?= ((Z)UZK (Zu) + K(u)> L (u;b,h).

It is easy to check that
/ L (u; b, h) du = / uL (u;b,h)du =0 (S78)

follows from change of variables. By (S38), Vb € [ﬁ, E],

7 2” ” / 1+en ”K”
. < (21Kl K ) e, 1 (Jul <1 .
’L(u,b,h)‘_( — 1K) )t )en (Jul <1 +e,)
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Then, by this result, change of variables, Taylor expansion and (S78),

rax (v,x;0) —rax (v,z;h) = E Lllf/ <A}:U;b, h) 1(X = x)} =0 (h2€n) ,

uniformly in (v,b) € I, X [ﬁ,ﬂ. Similarly, by change of variables and (S38),

Vb-max (v,2:b) — Vi -max (v,z;h) = E L/lEL (Ah_“;b, h> 1(X = w)} -0 (hl/%n) . (S79)

uniformly in (v,b) € I, x [h,h|. Therefore, b-max (v,2;0)> — h - max (v,z;h)> = O (h-e,), uniformly in
(v,b) € I x [h,h]. Then it follows that

Vi (v,2;0) — Vi (v,2;h) = O (h- &), (S80)

uniformly in (v,b) € I, x [k, h]. Then note that Vs (v,z;b) = Va (v, ;b)) p;* (p1, + o, ) and

(v, 2:b) _b—/ / K’( x )K’ (A(eb)_“) Fix (e A, 3) pu () pa () dede’

s {/ K’ (AI(?‘”) Fyx (e | z) ps (€) de}sz, (S81)

where Fex (e,x) == I x (e | ) p.. By change of variables and integration by parts ,

/ 32K <A(€b)”> pa (€) Fuyx (¢ z)de — / W32 K (Aﬂ”(eh)”) pa (€) Fuyx (e | ) de

£a

_ h—3/2/ ’ I <Aw(2)_”;b7 h) ps(€) Fyx (e | z)de =0 (h1/25n) , (S82)

=x

=z

uniformly in (v, b) € I, x [k, h], where the second equality follows from [ L’ (u;b, h) du = 0 and (S35). And similarly,

[ (070 / e (200 e

:h—3/2/ 7 (Aﬂ”(;)”;b,h) Pa (e)de—0<h1/2 ) (S83)

=x

uniformly in (v,b) € I, X [ﬁ,ﬂ. Therefore, by this result and (526),

b3 {/:1 K’ (Aw(?_v) pa (€) Feix (e | @) de}Q—h—3 {/; K’ (M}?_U) Pz (€) Fyx (e | @) de}2 —O(h-e).

i . (S84)
Then, it is easy to see that

b_/ / ”( - )K/(Aw(i)_v>FGX(e/\elvx)Pz(e)Pw(e/)dede’:

Y [T we () e (B Fcen o o) (¢ e -

k1]1€zk1
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i (v, 2;0) pp+2b~ ?’Z (/:1: K’ <Am(?v) Fex (e,x) ps () de) (/e:jjl K’ <Af’3(€b/)v> Pz (e’)de’> )

k<j
(S85)
where
Va i (v, 2;b) —b?’/ewl/éw1 < U>K’<Az(eb/)_v>Fe|X(e/\e/|x)pm(e)pz(e’)dede/.
By(S25), (S26), (S82) and (S83),
>y < [ (2920 Fx o a0 de) ( [ (Z=2=1) (e’>def> _
Y ( [ (B e de> ( [ (2 <e’>de’> _O(h-c), (850)

uniformly in (v,b) € I, x [@,ﬂ. By change of variables and integration by parts,

= [ (4 ((2)o) (3 )t e
L) (25 (2)) e m o
L
G R (()e)5((2)e) o 0 /
JG) R ((3)+) 8 () )vem [rrmamians s

By tedious but straightforward calculations, Vb € [@ E],

DR OPR(BERTR

2| K K/ 1+ n 1+5n
< (”(1”)”+||K|| I8 (1522) + 11 (_5)>en1<|w S1te) Ll S 14en). (589)

By (S87), (S88) and Taylor expansion,

h*1/ <Z>2K’ (<Z> w> K ((Z) w> Vs (hw +v) Xu,j (hw +v) dw

—h~ /K’ W) Yy ; (hw +v) Xg,; (hw +v) dw = O (h%e,),

S33



uniformly in (v,b) € I, X [ﬁ,ﬂ. By change of variables and integration by parts,

L) ()0 ((2)-) = [0t =

By this result and (S88),

//: (Z)Q I <<Z> w) K <<Z> “) Y (hw + ) X, ; (hu + v) dudw

w
- // K’ (w) K (u) $y j (hw +v) X}, ; (hu 4 v) dudw = O (h - €,),
uniformly in (v,b) € I x [h,h]. Then, Vo (v,2;b) — Vo j (v,;h) = O (h - &), uniformly in (v,b) € I, x [h,h].
Then it follows from this result, (S81), (S84), (S85) and (S86) that V5 (v, x;b) — Vi (v,2;h) = O (h - €,), uniformly

in (v,b) € I, X [h,h]. The second assertion follows from this result and (S80). n

Proof of Theorem B.1. If follows from Lemma 7(a), Pr [iAL € [ﬁ,ﬂ] >1—90y,, Pr [ﬁg € [EC’EC” >1— 49 and

prM9(|ﬂa&)_v(.%z)l

§Pr[

> Gl ()

’17 ( | x;;\l,ﬁg) -V ( | :z:,ﬁ)

>Qﬁwm@ﬁQGWmewﬂ+@+ﬁ

x

<Pr sup “7(@ | ;0,b¢) =V (v \x;b)‘ > Ciky ()| + 60+ 65 (S89)
(v,b,b¢) €Ly X [, h] x [he sh]

that
Pr [ “7 ( | x;ﬁ,ﬁg) -V ( | x,ﬁ)

The conclusion of the theorem follows from this result and the fact that with probability 1 — Cs6,,

o> CirY (7)] < kY (7) + 6y + 65

V(vlmh) =Vlsh < s [VElsb) -V (]sh)]=0eEh),
(v,b) €I, X [, R]

where the equality follows from Lemma 7(b). [

Proof of Lemma 8. By definition, we have Pr[Y, > Cya,] < C58, and Pr [Prlwln [ Xn] > C1Yn] > Cayn] <
C56,. Part (a) follows from

1-C38, — Csd,, <Pr [Yn < Caap, Prjyyn [ X, > C1Y,] < C47n] <Pr [Pr|W1n [ Xn| > C1Ca,] < 04%1] .
Part (b) follows from
Pr [Pryyn [[Va| > Coan] > ] = Prl(|Y,] > Coan) > e,] = Pr|Y,] > Coan] < Csf,.
|

Proof of Lemma 9. Denote Sjmb (v, ;b) := pzSjmp (v | 2;b), g’jmb (v,2;b,b¢) = ﬁngmb (v | @;b,b¢) and Ly, (v;b) =
Vb fax (v, z;b). Then, we write
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i=1

3 v; {LA{,E] (Wi,v;/ﬂ, ﬁg) —yl! (Wi,v;fz)} + % zn: v { (Wl,v h) — Al (Wi, v h)}
i) -

1n im{ (Wi, v h) =, (v3 h)}. (S90)

%Zm {Z;{\g[cl] (Wl,v;ﬁ,/ﬁc) Ul (Wz,v h)}
i=1

% i vih 2K’ <Aﬁ_”> (4i-a)1(xi = %7 En: h 32K (Ah_i’) (4:- Ai)z 1(X; =)
+ in i Vi ﬁ ;ﬁ—w}{’ (%‘”) (@ (W5 Wishe) 7o (26, X0) = a0 (W5, W) 70 (2, X))

i=1 i

i . » L T-3/2 ’ A\j_v 7 Aj_v ) AP ) )
+\/ﬁz i n_lzh <K< E ) K( E >>qm(W],W2) :L’(ZMXZ)
= T} (0) + T5 (v) + T (v) + TF (v), (S91)

where A; denotes the mean value that lies between A; and A\l By the concentration inequality for the maximum
of normal random variables (e.g., Giné and Nickl, 2016, (2.3)) and E [maxi<;<n |vi]] < v/log(n) (Giné and Nickl,
2016, Lemma 2.3.4), we have Priwn [maxlSiSn |vi| > C1+/log (n)] < 2n~1. By (S15) and Pr [ﬁ IS [ﬁ,ﬂ] >1—90,,

H]lAX (-,x;ﬁ) HI =0, (1,5n + n’l). Then, by these results, Lemma 8, (S13), Pr [ﬁ € [ﬁ,m} >1-6, and (S12),

72 4 log (n)®
I =0 PR ’

i, <1 e v B (s ] ) [tax (i)
|22, < o v R (el ) L (i
where the inequality holds on the event given by A < h with probability 1 — O (n‘l). Then by

log (n)"
nh3

log (n)?
2 I > Cl g( ) > CQTL71 S Pr PI"Wln H

Pr | Pry | | B

> (]
2 I,

3

— 1
Ao o2 ()" | - Cynt |10 (071

+O( _1) < Pr |Pryysn K" V- h3/2 (max |VZ) H]lAX (.735;/];) S

1<i<n

we have HT%1

- oy (e )

Let s; (v) = h—3/2K" ((A —v) /ﬁ) (A‘ - A) 1(X; =) and § == {(s1 (v),....5n (v)) ER" :v € [,}. Then
HTle = SUD(s,, s )eSU{0} |n=Y2 300 visi|, where {n=Y2 3" vis;i: (s1,...,8,) € SU{0}} is a centered Gaus-

sian process, conditionally on the data. Let Han be the implicit norm on S induced by the Gaussian process:

x
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[(815s80) [l 0 = \/wa [( S125 ) } VoY s?. Tt s easy to see

n

3 i (0) = s () < IR B A= o).

i=1

Therefore,

L (I
N (2 1K1 BB, ) <V (e L ) < 14 S22

where ¢ (I;) denotes the length of I.. Let o7, = sup(y, s yes (51, sn)H?12 = sup,ey, Ejwn {Tlu (v)g] and then,

on <A, | sup— Z ﬂ 2]1(Xi=x)< g Hllax( =0; log (n) 6 +nt
=T\ vern 4 h “\h L 7 nh* "’ ’

(892)
where the second inequality follows from ‘K ! ((AZ — ) /ﬁ)‘ < || K| L (v;iAz) and the last equality follows from

(S12) and Pr [ﬁ > Q] > 1 —0,. By Dudley’s metric entropy bound (Giné and Nickl, 2016, Theorem 2.3.7), the
above inequality and calculations in the proof of Chernozhukov et al. (2014b, Corollary 5.1),

ouvn 2| K| _R/7A
ol = [
Nt L W i
" 5/2
S (HK//H 5/2A)/ HK H o 2 \/1+10g(N(57Ig;5||))d€
0
< (oa v 2K 2R) flog (1(L)nt/2), (593)

when n is sufficiently large. Then, by the Borell-Sudakov-Tsirelson concentration inequality (Giné and Nickl, 2016,

Theorem 2.5.8), Prjyn U > Ejwn [H ] + o2 log (n)] <n~l. By Lemma 8, (592) and (593),
log (n) _ -
_ Nt 1 1
\ ; Iw_op< bt ) (S94)
Write
n N v
# 3/2 / J E W. [/V..A = . A W. W . .
T K < h ) \/nf Vi <QI ( VEl uhC) Ty (ZlaXl) Qw( VRl z) Ty (ZzaXz)> .

i#j

Then, in view of (S64), with probability 1 — O (n™! + 6,),

S e
H SNy, ~ n—1 AX

Zj=1 (”ﬁ) \/% ZVi (qA:c (Wja Wiﬁ() o (Zis Xi) — qo (W5, Wi) ma (Zi,Xi)) :
i)

. =0 (595)

where

Conditionally on the data (W7*), (=1, ..., =) are centered and jointly normal. Then, since Pr {ﬁ € [ﬁ,ﬂ] >1—10,,
by calculating the conditional variance and the ¢, inequality, with probability 1 — O (d,,),
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Ewy [55°] S 1; (k) Y ﬁZ (ffdz (WwWiéﬁc) — Qar (Wj’Wi))Z)m (2, X;)?

de{0,1} i
_ 1 =R ~\ 2 . - -
+1; (vsh) Y -1 > s (Wa‘vWi% hc) (Fo (Zi, X3) = 70 (Z2, X3))? = T + Ty
de{0,1} i#]

By (S66) and Pr [h¢ € [hg, he]] > 1 - 45,

uniformly in y € Iy, where Iy, is any closed sub-interval of Iy ,. (S96) implies that

~

Cin (&u (v); hc)‘ > ;Cdz] >1—Co (' +45). (597)

Pr [ inf

yelyr,

By (S63) and the ¢, inequality,

1; (v;h) > (qu:r (WJ»Wi%ﬁc) — i (WwWi))Q% (Zi, Xi)* <

i#]

n—1

1D;=d,X;=2) 1 G (W W, — W WV 7 (7o X2
Can (dan (V;))? n_%(%( W) — gan (W W) (Zi, X)

W, W)*1(D; =d\, X; =a) 1 T AN A N e X))
Gar (602 (¥7))" n_1§{<dw (Bus 05) ) = 00 ()} 2 (20

o, x 5 1 2 j = dl) j = = "N T 4
P W, W WD =% =) L S22, (G () ) — an (00 (5} e (22, X007
Caw (Pao (¥V3) 1) Gaw (b () "7 i

L (v;h)

1, (0s7) 2

+1; (v;ﬁ)
By this result, (S97) and (S96), and using the fact

(1(% <00 () ~ 1% < 6us () =

(1(% < B (%)Y > 60s (V) =1 (¥ > o (%)Y < 600 (1)) = [1 (¥ € 3 (1)) — 10% < 6 (1))
we have
j:rrllaxnlj (v;ﬁ) % Z (quz (Wj,Wi;ﬁg) — Qdz (Wj7Wi))2 T (Zi,XZ-)2 <
i#]
(n/ (0= 1)) (o + ) {2 (6+ 7 ) + (1T +2¢,.%C } = 0; ( @ nt an> ,

where ( is given by (S68) and the inequality holds with probability 1 — O (nil + 5,4;) in view of (S97). It follows
from this result that max;<;<p |Tfj| =0, ( log (n) /n,n~t + 8, + 5%) By (S97),

_ 1 N ~ \2 .
j:ffll??f,nlj (U5 h) n_1 ;de (ij Wi; hq) (7Tm (Zi; Xi) — Ty (ZiaXi))z <
i#£]

(/= G @0t~ 6 + @i = i)’y = 05 (Bt 40, )

n
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where the inequality holds with probability 1—O (nil + 5};) Therefore, maxi<j<n ’Tfj’ =0, (log (n) /n,n~1 + 5n)
and it follows that 02 = O} ( log (n) /n,n~ + 5n>, where 0% = max;<j<,Ejw; [57]. By Giné and Nickl (2016,
Lemma 2.3.4), Ejwn [maxicj<n|Zj[] S oz4/log(n). Then by using the concentration inequality for Gaussian

maxima (Giné and Nickl, 2016, (2.3)), we have Prjy» {maxlgjgn |=;| > Co=+/log (n)} < 2n~l. Tt now follows

from these results, (S95), H]lAX (', x,ﬁ) HI =0; (1,n~' +6,) and Lemma 8 that

log ( )3 1/4
g _ ogn -1, -1
HT3 Iw_og ( oy ) o hnt s, | (598)
Clearly,
A; A —wv
?i 3/2 _ K J . ; ) )
7w < Z” ( 2 ) w (2 >‘ | D (0, W) (20 |

Vi) i#]

(S99)

where (n — 1)71/2 Zi# vige W5, Wi) 7y (Z;, Xi), j = 1,...,n, are centered and jointly normal, conditionally on the
data. By calculating the conditional variances,
2

(Wj,Wi) Tg (Zz;Xz) = maXx

j=1,..nm —1

Z(Ix ijwz) Ty (Z“X) O; (1)
i#£]

1
e n 7’” _il ;qum
1F)

By mean value expansion, (S13), Pr [h > h} =1-0(4,) and H]lAX (-,x;ﬁ)

L =0 (1,n" +4,),

<y aih VA Lax (aB)|,
:o;< 105}5;1>,n—1+5n>.

Then if follows from the concentration inequality for Gaussian maxima (Giné and Nickl, 2016, (2.3)), Lemma 8 and
(S99) that HTfHI =0} (log (n) /Vnh3,n=tn=t + 5n). Now we have shown that

h-3/2 ||

UEI

P

n 3 3 1/4
o (T (W) ) (k) } = 0f tos ) +<10§§§;;>> Py
) (S100)

uniformly in v € [,.

Since n=1/23"" 1, ~ N (0,1) is independent of the data,

n
n—1/2 ZV"

i=1

Prjwp [

> /2 log (n)] <2nl. (S101)
Decompose

Hut, (v;ﬁ) T, ( (f fAX (v x; h) — \/ﬁ-fAX (v,x;ﬁ)) + (\/ZJFAX (v,x;/ﬁ) — \/E'fAX (U,x;h))
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~Vh Z’H (U;, Ur, v; h)
@ G

By Lemmas 3 and 5,

(ﬁ,fo (v,x;ﬁ) — \/Z fAX (v,x;ﬁ)) —vh (1 Z Ho (Uj,Uk,’U;h))

. <€n log (n) | log(n) +10g(n)3/ b flog (n) n 5n>7

n nh3/2 n3/4p1/27 nh3
uniformly in v € I,. By Lemma 5 and (S79),
\/ﬁ-fo (v,x;ﬁ) —\/HfAX (v,z;h) = \/ﬁ (fAX (v,x;ﬁ) —Mmax (v,m;ﬁ))—\/ﬁ (fAX (v,z;h) —max (v, x; h))
+ (\/ﬁ-mAX (v,x;ﬁ) —Vh-max (v, x; h)) = O; ({-:n log (n),Tfl + 5n) ,

uniformly in v € I,.. It follows from these results and Lemma 8 that

~ ) log (n) = log(n)
( Zm) (Mu( )—Muz(v,h)>:02<nh3/2+n3/4h1/2 eny/log (n),n”~ +5 . (S102)
uniformly in v € I.
Decompose
1 « .
1 TR (W e BY — 7 (Y —
~ ;m {Ux (Wi, v; h) — iy, (v; h)}

— | — i U -h = i —— h—S/QK/ “i — U . Wi W . e
( n;V> 2)(]2;% D) +ﬁ;u nA; ( - )q( W) 7o (25, X))
72 VI fax (v,z;h) — 1/2K( ) (X, =)

v =1 J#Z h

= T (v) + T¢ (v) + T (v).

It follows from (S101), Lemmas 4 and 8 that HT5ﬁ

L 0; (log (n) /v/n,n~t, \/log (n) /(nh?’)). Write

J#i

Let Nyz (Ui, y) = Lz (9 (D4, X4, €:), Dy, Zi, Xi,y). Then, by (S8), (S9), Kosorok (2007, Lemmas 9.6), Kosorok
(2007, Lemmas 9.6, 9.8 and 9.9(vi,vii)) and Chernozhukov et al. (2014b, Lemma A.6), M := {Nuz (-,y) 1 y € Ly, } is
uniformly VC-type with respect to a constant envelope. By Talagrand’s inequality, ||(G || 0w =0p ( log (n)) and

therefore, n=! ijl Laz (Wj,y) = O, ( log (n) /n), uniformly in y € Ig,. And, therefore, by this result, (S15)

and
n

1 1 _,(4;—v 2 )
w2 <h) 1(Xi =) £ [Lax (2 ), = O (1),

539



uniformly in v € I, we have

By [1 (02 = i;hff (Ah) 1(X; = 2) {ni 2 (1= D) €1 (V35) = D (Wj,m)}
o (105152)> :

= (log( )/\/ﬁ) Write

uniformly in v € I,. Then it follows from arguments used to show (594) that HT i ,

x

T (v) IZ ( fAX(vxh)—\/lﬁgyi<nilh1/2K<Aihv)]l(Xi_x)).

By (S101), the fact HfAX (,z; h)’ = 0;(1) and Lemma 8, (n~Y2 51", ;) fax (v,a5h) = og( Tog (n)), uni-

formly in v € I,. Tt follows from arguments used to show (594) that

L T e _ )= ot
v ; vih V2K ( — ) 1(X; =) =0} ( log (1 )) (S103)
uniformly in v € I,. Therefore, = Og (\/log (n)/n) and

N ZV,{ (Wi, v; h) — iy, (v;h)} = Of, (l(\)/g%nz),n_l, 105;?) , (S104)

uniformly in v € L.

By (S104), we can write

Smb (0,23 h) = ;yz{uH (Wi, v; h) — ﬁum(v;h)}+0§, (1‘;%2,711, 105;?)
— T (0) + T (v) + TE (v) + O <10gn(h"2),n—1, 105;?), (S105)
where
i) = lnéyl{h—l/%(@ "’)n(xi—w—iéh—”%(ﬂjh ”)1<XJ=x>}
() = lngv{ni ;h‘gﬂf(’@ %) ac W)m(ZZ,X)}
We have
Tg@)fgmvzx(ﬂlh ”)nmx)(lné )(xf Fax (v,a;h)) = 0% (Vieg (n))
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where the second equality follows from (n=Y/2 37" ;) fax (v, z;h) = 0} ( log (n)) and (S103). Write

E_j 5 (Ui, vih) + Zuz{h 3/2K’( - )ng (Wi, Wi) 7y (Zz-7Xi>},
where HE (U;,v;h) i=n"1 > i1 Vh-H, (U;,U;,v; h). By arguments used to show (S94),

Zl’% 3/2K’<Aih_ )qz(WZ,W)m(Zz,X) Og(l%y(”))

h
By CK Lemma 5.4, the (data-dependent) function class $* = {H%(-,v;h):v € I,} is uniformly VC-type
(conditionally on the data) with respect to a constant envelope Fg: = Fy = O(h*S/Q) so that we have

N (5 i llp o » 9%, ||-||Pg,2) < (4A5/e)™"™, Ve € (0,1]. Denote G¥(f) = n~Y2S" wif (U). Then,
{G” (f):fe f)ﬁ} is a centered Gaussian process, conditional on the data. The intrinsic pseudo metric for §?
induced by {G” (f) : f € H*} is given by $* x §* > (f,g) — Ejwr {(G" (f)—G* (g))z] = |lf = gllpy 5 - Clearly, all
sample paths of {G” (f) : f € $"} are continuous with respect to (f,g) — | f — QHPg,z- Let 8%,1 = supfeﬁnIP’ng =
sup,e; n Yo HE (Us, v h)?. Then we have

*ZH” (Ui, v; h)? BZZZhBK’( . ')_ )Cx(Uj,Ui)K'<A’”(€h’“)”’>Cx(Uk,Ui)

=1 1=1 j=1 k=1
~ O (n7Y) ~
= SZZZ% (U U5, U, vih) = —— 3 T (Ui, U, Upy 05 h) + 5—2- 92 Jo (Ui, Ui, U, w3 1)
[ g " (3)(131@) A e
3 T U U U h) + 32 o (U U Uiy b = —— 37 7, (U, U Up.v n+0; ((nh?) ™),

(i.k) i=1 ™M3) (i7%)

uniformly in v € I, where the third equality follows from V-statistic decomposition (Serfling, 2009, 5.7.3) and
the fourth equality follows from the fact that Ny Z i k) T (U;, Ui, Uk, v; h), ) Z(Z I T (Uk,U;, U, v; h) and

n~! S T (Ui, U;, U, v; h) are all bounded by a constant that is O (h ) By using similar arguments that are
used to show (S77),

1 N log (n log (n
(— Z (Ui, Uj, Ug,v; h) = V3 (v, 23 h) + O <\/ = \/ = )
.5,k

uniformly in v € I,,. Therefore, since ||V2 (-, z;h)|; = O (1), we have E%n =0, (1, log (n) / (nh3)> By Dudley’s

metric entropy bound,

y 3ﬁ“v”71/2|‘Fbﬂ||Hb7l{,2
Ejwp [||G ||5u] < /0 1+ log (N (E,YJﬁ, H'HPE{,?))dE
f)ﬁH]PgQ

abuva*l/Q”F
F
Bl [ T o (3 (295 1y )

(aﬁu V2| Fy, ||Pg,2) \/Vﬁlog (16A51§/2n1/2).

1%\

By the Borell-Sudakov-Tsirelson concentration inequality, Prjyn [HGV”m > Ejwp 1G] 4¢] +0g:1/2 - log (n)] <
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n~!. Therefore, by Lemma 8,

sup
vel,

Z% (Us, vy h)

= 16" s = (Wg =y )

We have shown that ||T7 = 0! (log (n n,n"1,\/log (n) /(nh3)). Then it follows that ||Sims (-, x;h =
5 I p J I,

O (Vo8 (n),n ™", 1og (n) / (h%)).

Write
1 < A, —v
bh = 7 [1] 7, b 7 h 1/2L : ;b,h )1 Xz:
S% (v, z; \/ﬁ;I/ {L{ L0;b) — UM (W, s } \FZ { b ( x)
1 n
+— h~ 3/2L’( Y, h> Wi, W) e (Zi, Xi) ¢ = T (v;b,h) + Ty (v;b, h).
D3 n1§ o (Wj Wi e (20, X0) ¢ = T (03, ) + T3 (056, h)

Then we have T (v;b,h) = n~Y2 31 1,EL (Us,v;b,h) and

T2 (v;b, h) = (n:) <n1/2zym§ﬁ (Ui, v; b, h)) Zul (Ui, v;b,h),
=1

where HL* (U, v;0,h) = n~' Y21 HE (Uy, Uy, 03 b, h) and

A st = 1752 (2200 ), 0 (1 B (e ) o (21,0,

Let 62, = supjeesPUf? < o2, + |[PY =PV .., where €58 := {5§ (b, B)? - (0,b) € I x [@,ﬂ}. It
is shown in the proof of Lemma 5 that 0%, = O(e2). By Chernozhukov et al. (2014a, Lemma B.2) and
the fact that €2 is uniformly VC-type with respect to an O (En/hl/ 2) constant envelope, €22 is uniformly
VC-type with respect to a constant envelope Fgan = O(si/h). Let 0%,, = supfeeAAIF’Ufz = O(sﬁ/h),
where the second equality follows from Taylor expansion, change of variables and (S38). By Talagrand’s in-
equality (Chernozhukov et al., 2016, Lemma 6.3 with F = €G22, b = Fgaa, 0 = Ogas V b\/m

= 0y ( log (n) /h) Therefore, HIP’g - IP’UHGM =0, (5% log (n)/(nh)) and 0%, =
03 (¢2). By Dudley’s metric entropy bound, Ewr [IG"lgs] = O (gn log (n)) By the Borell-Sudakov-

t = log(n

Tsirelson concentration inequality, Pryn [HG”H e > Bwn [

|GV llgs] +esy/2 Tog(m)| < n~t. By Lemma 8,
IT2 Gy = 167 s = O (enm) Let $%% = {H2 (,v;b,h): (v,b) € I, x [b,A]}. Then
we have SUP () 1, x [, 7] |n=Y23 " v HA? (Ui, v3b, h)| = ||G¥||ge:. By CK Lemma 5.4 and the fact that $°
is uniformly VC-type with respect to an O (En/h?’/ 2) constant envelope, $2f is uniformly VC-type with re-

spect to a constant envelope Fyex = O (e,/h%?), conditionally on the data. Let 3., = supscnesPYf? =
Sup,ey,nt > or | HAH (U, v5b, h)?, where

1< e 1 1 Ay (ej) —v Ay () — v
~ Y M (Ui vib )" = HSZZZHL’(;L,b,h>cm(Uj7Ui)L’(h,b,h Co (Ur, Uy)

i=1 i=1j

1 n.n o n 1 -
== > > > T8 Ui U, Urvibh) = n3) Y T2 (UL Uy, Uy, vib, h)
i=1j=1k=1 ?) (i,g.k)
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@) (n_l)

70 . 70 . oy 78 ) . e
m 22!-7;3 (Ui7UiaUk7’Uab7h)+Z\7w (UkaUl7Ulav7b7h)+Zt7w (UlaU’HUlavab7h)

(4,k) (i,k) i=1

- Tl § : TL (U, U;, Ug,v3b,h) + O (2] (nh?))
(3) =
(4,3,k)

where the third equality follows from (S35). By Chernozhukov et al. (2014a, Lemma B.2) and the fact that % is
uniformly VC-type with respect to an O (sn/h3/2) constant envelope, g% = {jﬁ (-,v;b,h) : (v,b) € I, x [h, E]} is
uniformly VC-type with respect to a constant envelope F5, = O (5% / h3). Therefore,

G%M < sup E[f (U1, U2, Us)] + n~1/?2 HUS))HjA + 0 (2/ (nh?)) .
feg®

It is shown in the proof of Lemma 5 that

sup E [f (U1,Us,Us)] = sup E {jﬁ (U1,Us,Us,v;b,h)| = sup E [Hﬁm (U, v; b, h)2] =0 (5%) )
feje (v,b) €L, x [, (v,b)€L, % [h.h]

Then we use similar arguments for proving (S77), which involve
N 2 _ 2
E [(E [Jf (U1,Uz,Us, 030, h) | U1D ] +E [(E {jf (Ut1,Uz,Us, v3b, h) | UBD } =0 (ep/h) (5106)

and

B [(E [j; (U1, Us, Us, v: b, h) | UQ,U?,])Q] +E [(E [ij (UL, Us, Us, v; b, 1) | UQ,Ug})2:|
+E {(E [jj (U1, Uz, Us, v: b, h) | UQ,USDQ] =0 (4/h%), (S107)

uniformly in (v,b) € I, x [h,h]. (S106) and (S107) follow from calculation and (S35). By CK Proposition
2.1 with H = ji, Gy = 03u01), Oh = OFacz), bg = by = F5., xn = 0, ¢ = o0 and v = /log(n) / (nh?), we

have n~1/2 HUS)H:‘A = O, (5%\/10g (n) / (nh3), \/log (n) / (nh3)>. Therefore, E%An = 0, (5%, V1og (n)/ (nh3))
By Dudley’s metric entropy bound, Ejwy [[|G¥[lq.:] = O} (En Vlog (n), /log (n) / (nh3)). By the Borell-

Sudakov-Tsirelson concentration inequality, Prjy» [||G”|| 5ot > Eppp [

GV llges] + Foery/2 Tog ()| < 7l
Then it follows from Lemma 8 that [|G¥[g.e = OFf (en\/log (n),n=1, \/log (n)/ (nh3)). Let 2% =
{AZ (-,v;b,h) : (v,b) € I, x [h,h]} and therefore, SUP (b1, x [1.F] |n=Y2 50 v AL (Ui, vsb,h)| = [|G||ge- Let
T3 = SUD s PYS? < supeqa PV S + [PY = PV, where 228 = { A2 (v, 1) s (0,0) € I x [,B] }. By
using similar arguments for proving the fact that $* is uniformly VC-type with respect to an O (5n /h3/ 2) constant

envelope, 2A* is also uniformly VC-type with respect to an O (sn / 3/ 2) constant envelope. By Chernozhukov et al.

(2014a, Lemma B.2), A** is uniformly VC-type with respect to a constant envelope Fysa = O (¢2/h%). Then,
by change of variables and (S35), 03ss = supfemM]P’U f? =0 (g4 /h®). By Talagrand’s inequality (Chernozhukov
et al.,, 2016, Lemma 6.3 with F = A*%, b = Fyaa, 0 = ogas V by/Viaslog (n) /n, t = log(n)), [|Gnllges =
O3 (sfﬂ/log (n) /h5> and therefore, ||PY —PY||,,, = O} (sis/log (n)/ (nh5)>. By change of variables and (S38),
sup seqs PU f2 = O (2 /h?). Therefore, 53. = O} (¢%/h?) and by Dudley’s metric entropy bound, Ejyp [[|G”[lg.] =

Oy (sm/log (n)/ h2) by Borell-Sudakov-Tsirelson concentration inequality, |G [|o. = Og (sn\/log (n)/ h2). There-
fore, |73 (5 M)l 1, ufu] < (0 (0= D)IG” [ gos + Gl / (n=1) = O (eny/Iog (m),n", /log (n) / (nh?) ).
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Therefore,

HSA ('7 h‘)

»x[hh] < Vlog (n nh3 ) (S108)

By Pr [ﬁ € [ﬁ, EH > 1 — §,, and monotonicity of conditional expectations,

Pr |:PI'W17L |:‘

S8 (-,x;ﬁ,h)

, > Cie,4/log (n)] > C’gn_l]

< Pr {inf‘ [HS’A (-,x;/f;,h)

, > Cre,/log (n)} > an_l,/}\L S [h,m} + 0

log (n)

< Pr [Pr|W1n [HSA (yx3-,h) nh3

> Cheny/log (n)} > cgn—l] 6, < Cy 46

o X [,h]

Then it follows that ‘ S (-,m;ﬁh) L= Of, ( log (n L Vlog (n) [ (nh3)+ 6 ) It then follows from this
result, (S90), (S100), (S102) and (S104) that
)4 O + 65, )

Svjmb (U,l’;fl,ﬁc) <pz ) amb (vvxaﬁvﬁg) - Sjmb ('va; h)
— -1+
Pz Dz Dz

1/4
. - og (n)” _ (log ()"
Simb (v,x; h, hC) — Sjmb (v, 23 h) = O]% ( YR + 2 env/10g (n

It follows from this result,

Sy (v @3 ) = Sy (0| 1) =

)

Pe/Be 1= 05 (/log (n) /n) and ||Sims (-, )|, = O} (v/Iog (), n ™", /log (n) / (nh?) ) that

1/4
~ ~~ log (n)? log (n)®
Simb (U | x;h,hc) — Sjmb (v | 23 h) = OF nh3) + < nhQ) eny/log (n + O + 05

(S109)

Write

o (08, ) i (0 1) = Sio (v 1w:0.0¢) [ V@ Tam) ) +§jmb (v\x;ﬁ,ﬁc)—sjmb(vmh).

Z v h - Vv h
VV (v z:h) \/17 (le;ﬁ,ﬁc) wlaih)
(S110)
The conclusion follows from  this  result, (B.9), (S110), (5109), [Sjmb (523 B[} =
o; (\/log (n),n=1, \/log (n)/ (nh3)) and Lemma 8. |

S4 Bias correction

We maintain all the notations with K replaced by the bias-corrected version M (-;b,bp). We also change the
definitions of fax (v, x;b), fax (v,z;b), max (v,2;b), Hy (U, Uj,v;b) and #HY (Ui, v;b) by replacing K (-) with
M (-;b,b,) to get /ECX (v,2;0,bp), ~ZCX (v,2;b,bp), Mm%y (v, 256, by), HEE (U;,Uj,v;b,b,) and HlIlbe (Ui, v;b,by).
Similarly, we use the superscript “bc” to denote the bias-corrected versions constructed by replacing K (-) with

its bias-correcting counterpart. The result presented in Section 4.3 is implied by the following theorem.

S44



Theorem S1. Suppose that Assumptions 1-5 hold with P = 2, the third-order derivative functions in Assump-

tion 2(a) are Lipschitz continuous, h o n~* with 1/7 < X\ < 1/4 and he o n=*¢ with 1/8 < \¢ < 1/2. As-
b sb

n»vn

sume that there exists some deterministic bandwidth hy and positive sequences that decay to zeros such that

Pr Hﬁb/hb - 1‘ > 52] < 0. Assume that h/hy, — ¢ € [0,00). Then,

Pr [fA|X (v]x)e CBJ-b,f,b (v | x;ﬁﬁ(ﬁo , Yo € Iz} =(1-a)

1/16
1 5
+0 < Oigg) ) + log (n) ﬁ}fn +1log (n) (en +€2) + &, + 62 + 65 + /log (n)Vnhihy | . (S111)

We show that Lemmas 3 and 4 still hold if fax (v,2;b), fax (v,2;b) and My (U, Uj,v;b) are replaced by their
bias-corrected versions. The proofs are based on modifications of the proofs of Lemmas 3 and 4. We present these
results as lemmas and sketch how the proofs of 3 and 4 are modified. Denote hy, := (1 —€5) hy and hy, == (1 + €2) hy.
M’ (u;b,by) and M" (u; b, by) are defined by M’ (u; b, by,) = OM (u; b, by) /Ou and M" (u;b, by) == 0> M (u; b, by) /Ou?.

Lemma S1. Under the assumptions of Theorem S1,

3/4
7 : 7 ) = L b . log (n) | log(n)
fax (v,230,00) — fA% (v, 230, b5) = @ (z:)ch (Ui, Uj,v; b, by) + O; < nh2 + n3/4p )
2

uniformly in (v,b,by) € I, x [ﬁ,m X [ﬁb,ﬁb].

Proof of Lemma S1. Denote C;?) = HK(’“)HOO \Y, HKt(,kJrz)H HEK,2, lz(k) (v;b,bp) = 1; (v;b) + (b/bb)3+k 1; (v; by)
oo

and

. 24k
1%), (v, 23 b, bp) = 7112; %]15.’“) (0;6,b) 1 (X; = ) = Lax (v,23b) + (bbb> Lax (v,25by).
By using
e (A )| < o 1(|4i—v| <)+ v 51((A'-—v‘<b)
b y Uy Ub = YK g - bb ‘ =k ’
we have

1-0(n")=Pr[A<hAh) <
Pr HM” (Aibv;b,bb>

Then, by (S15), ||[Tax (-, x; ~)||wa[ﬁbﬁb] = 0, (1), which follows from similar arguments used to show (S15), and
h/hb —GE [0,00),

1(X; = 2) < O 1 (0;0,b6) 1(X; = ), ¥ (4,0, b,bp) € {1,...;n} x I x [hyh] x [hb,hb]] .

(S112)

-\ 2+k
h x
< Tax Gzl xwm + (hb) ax Gl wnym) = Op (1) (S113)

15 (e
[ o] e

Then, by this result and (S112), we have

sup
(v,b,b6) €L X [, h] x [y v




S H]l(jA)X (',.T; ) )

b2A° = O (log (")) . (S114)

Lo % [ B] [y i) p nh?

where the inequality holds with probability 1 — O (n_l). By

b 3+k b
‘M(k) (u; b, bb)‘ < C%C) (]l (Ju| < 1)+ (b) 1 <u| < ;)) , (S115)
b

(815) and | Lax (25|, x[n, 7] = Op (1),

liiM’ Aizvyy (A A) (X; —Z’HbCW - v1b, by) + OF log ()" (S116)
n & b2 b ™ ne) £ DS RIITE e T )
1= 2,7
Then the assertion of the lemma follows from (S114) and (S116). [

Lemma S2. Under the assumptions of Theorem S1,

log (n log (n
- bc f b b \/ \/
n(2 Z H U ) Uja v; b nh3 )

(1,5)

uniformly in (v,b,by) € I, x [h,h] X [ly, ho].

Proof of Lemma S2. It is easy to check by simple calculations that [ M’ (u;b,bp)du = 0 and
[ M’ (u;b,by) M (u;b,bp) du = 0. By using these results, (S115), repeating the same arguments with K (-) re-
placed by its bias-corrected version M (-;b,b,) and h/hy, — ¢ € [0,00), we have E {’H‘L}]’bc (U, v; b, bb)Q] =0 (h™)

and E [’ch (Ur, Uz, v; b, bb)ﬂ =0 (h*?’), uniformly in (v,b,by) € I, X [Q,ﬂ X [@b,ﬁb]. Since

Am i) — U
HE (Ur, Us, v3b,by) = bQM/((Eb);b7bb)CI(UiﬁUj)

() (&) (202 e

and it follows from the same arguments that {Kég) ((Az () —v) Jbp) : (v, by) € I, x [ﬁb,ﬁb]} is uni-
formly VC-type with respect to a constant envelope. By Chernozhukov et al. (2014a, Lemma B.2),
{HE (-, v;0,bp) : (v,b,by) € Iy X [, h] x [hy, hy] } is uniformly VC-type with respect to an O (h=2) constant enve-
lope. Then the assertion follows from the same arguments. |

The following result is an analogue of Lemma 5 under bias correction.

Lemma S3. Under the assumptions of Theorem S1, (a)

7(2)

1
ST M (U, Uy, 03b, b, b ) | = O ((anﬂz)mog(n), 05;?) (S117)

(4,9)

uniformly in (v,b,by) € I, x [h,h] X [hy, hs]. (b)

Vnb (J?ZCX (v, 2;0,bp) — mtXX (v, x; b, bb))—\/% (J?ZCX (v, x; h, hp) — mbACX (v, x; h, hb)) = O; ((En + 62) log (n)) ,
(S118)
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uniformly in (v,b,by) € I, X [ﬁ,m X [ﬁwﬁb].

Proof of Lemma S2. Let N (u; b, by, b, h) == (h/b)"? (b/by)® KI' ((h/bp) u) — (h/hs)® K (h/hs)w). Then,

1/2
(ﬁ) M <(Z) u;b,bb> — M (u; b, hy) = L (u; b, k) — N (u3b, by, by hy) purc2- (S119)
Let
N/ (U, b, bb, h, h/b) — aN (U’) b7 bb7 h? hb)
ou
3/2 4 4
_ ﬁ/ﬁKm YN (PY k@ (1),
b by b by hy b hy
N (0N (RN e (B M\ [ ([ h @ ([ h
- = —) (= K = = K = _ K =
() () - Go) e (Ge) o) = o) o (Go) ) - (1))
=t Nj(u;b,bp, h, hy) + Ny (u; b, bp, h, hy)
And let
A (e:) —
H;bc (U'u UJ7 (% b, bb7 h/7 hb) = h_3/2NT ( = (e;l) U;b7 bba h, hb) Civ (Ui’ UJ)
Aa: 1) —
HED(U;, Uy, 050,bp, by hy) = h73/2Ny (W;babbyh,hb)cm(UiuUj)~
Then

HE (U, U, 03, by, by hy) = Vb - HES (U, Uy, 050, by,) — Vh - HEE (Ui, Uj, w3 by )

_ Az () —v Ay (€) —v
=h 3/2 {L/ <(h)7ba h) _N/ ((h);bv bb7h7hb> N’K,Q}Cx (UMU])

= H2 (U;,Uj,v;b, h) — {HLP (Us, Uj, 03 b, b, hy hy) + HEP (U;, Uy, 036, by, by ho) } 2. (S120)

It is easy to check that

CB,’IL = Sup
(b,by) € [BR] X By T

() () -

()
=|— sup
ho /(.)€ [n, ] x [y 0]

b/h)>/? B3
Ebt{/fib)i" - 1‘ =0 ((hb) (en +5';)> . (s121)
And similarly,

Cip = sup
(b,by) €[] X By ]

3/2 4 4 4
()G -G o) ) o
By similar arguments and using h/h, — ¢ € [0,00), {Hl’bc (-, v;b,bp, hy hp) : (v, b,bp) € T, X [ﬁ,ﬁ] X [ﬁb,ﬁb]}
is uniformly VC-type with respect to an O ((6n —|—52) /h3/ 2) constant envelope. Similarly,
{Hi’bc(~,v;b, by, b, hp) = (v,b,by) € I, X [ﬁ,ﬁ] X [Qb,ﬁb}} is also uniformly VC-type with respect to an
O ((en +¢€5) /h3/?) constant envelope. — Therefore, by (S120) and Chernozhukov et al. (2014a, Lemma
B.2), {Hﬁ’b°(~7v;b, by, b, hp) : (v,b,b) € I ¥ [ﬁ,ﬂ X [ﬁmﬁb]} is uniformly VC-type with respect to an
O ((en +€5) /h3/?) constant envelope. (S39) holds if L (+;b, k) is replaced by L (-;b,h) — N (-;b, by, h, hy) purc 2. By

S47



this result and

h\? 1+eb h
IV (6, by, P )| < {cgnnK e ( )HK&S)H (1+§:)52}ﬂ(|u|s(1+52>,f)
! 1+eb h
N (u; by by, b )| < {@,n Kt(’g)Hoo+<hb> HKé@Hw(ljig)gg}n(|u|<(1+a;:) hb) (5123)
n

we have the first assertion.

It is easy to check that

Vnb (]?ZCX (v,2;b,bp) — mbACX (v, z; b, bb)) —Vnh (fgcx (v,z; hy hy) — mbACX (v, x; h, hb))
= {\/% (fAX (v,2;0) — max (U,J;;b)) —Vnh (fAX (v,z;h) — max (v, 2; h))}

1 - Ai_'U A—w
+ {']’Ll’]/l;zl (N( h ;b7bb)h7hb) -E l:N (h;b,bb,h7hb):|>}'uK)2_

We have

B A—v . A b
Wz; h b by, by ) 1(Xi =) —E|N =—ibbo, hhy ) 1(X = 2) —Op<(5n+€n) 1og(n)),
uniformly in (v,b,by) € Iy X [h, h] x [hy, hs]. [

Let Vb (v | 2;b,bp) be defined by the formula of V (v | x;b) with K (-) replaced by the bias-correcting kernel
M (+5b,by). Let V< (v,2;b,by), VP (v, 250, by), V< (v, 25 b, by), 171b° (v, x;b,by) and ‘72b° (v, ;b,b¢, by) be defined by
the formulae of V' (v, z;b), Vi (v, x;b), Va (v, z;b), Vi (v,x;b) and Vs (v,2;b,bc) with K (-) replaced by M (-;b,by).
Similarly, we replace all the notations defined in the proof of Lemma 7 with their bias-corrected versions, which

simply replace K () with M (-;b,bp). The following result is an analogue of Theorem B.1 under bias correction.

Lemma S4. Suppose the assumptions of Theorem S1 hold. For some constants C1,Co > 0, when n is sufficiently

large,

P

Pr [H‘/}bc ( | x;ﬁ,ﬁg,ﬁb) — VP (| 2 h, ) Lz Cr (kY (7) +en +Ez):| < Cy (kY (V) + 0n + 85 +62), ¥y € (0,1).

Proof of Lemma S4. We apply similar arguments used in the proof of Lemma 7. It can be shown that all

ox 0B x [hy ] T (\/log \/lor%h?) )
Lox (b)) <\/log \/losh:a )

intermediate results are still valid. E.g., by using

||TAX ' T%X (7 ;5 7')

HAZCX (3xa N m%X ( ,1’;'7')

we can show that (S40) is still valid:

H‘/}lbc ('a Zs-, ) - ‘/ibc ('7:73; K )

\/ log (n \/ log (n
I [l B % [y oo nh3 '

Similarly, we use a similar decomposition for V¢ (v, x; b, by) — V< (v, 23 b, by), which is given by the right hand side
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of the first equality of (S41) with K (-) replaced by M (-;b,bp). By (S12), (S112) and mean value expansion, we get
the second equality of (S41). It is easy to see that (S43) also holds for Ké4) ((AJ - v) /bb>. Then, by this result

and (S43),
A — A —
) = o 8 g (v (B ) o (2
3

z;k)
~ A —v
X (Aj—Aj) qx (WJ,WZ)M/( kb

B )

~ Ap—v
X (Aj - Aj) 4w (W, Wi) M’ (kb;b,bb> o (Wi, Wi) 1(X; = )

; :
s 1 b) () (4 —v <4><Aj—v>

D ) - I ol e A Ry WS (e Auii B B PYCRY
n(s) &5 b4 (bb ( b by b by J (v3bb)

N A —
(A= ) ar 5w 007 (25725000 ) 00 (W W) 1 (X, = 0),

uniformly in (v,b,by) € I, X [ ,T [hwﬁb], where the second equality holds with probability 1 — O (n_l). Then
by the trlangle inequality, (S15), (S12), [|[1ax (-, z; ')HIM[hbﬁb] = 0, (1), h/hy — ¢ € [0,00), (S115) and (S113), we

have ||T% ] ¢ [y ) = 03 (log (n) / (nh?)). By (S115), (S113) and Lemma 2, we have

1 1 3/4
lec (U;b7 bb) = Z K:gc (Ui7UjaUk}7Um7’U;b7 bb) +O; <<Ogn(n)) h_2> )

uniformly in (v,b,by) € I, X [Q,ﬂ X [Qb,ﬁb]. By Chernozhukov et al. (2014a, Lemma B.2) and h/h, — < € [0, 00),
&P is uniformly VC-type with respect to an O (h™*) constant envelope. Note that (S53) and (S59) with K (-)
replaced by M (-;b,bp) hold. It also holds that [ M" (u;b,by)du = 0. By calculations with K (-) replaced by
M (+;b,bp), (S115) and h/hy — < € [0,00), we have aém,bc =0 (h_l) and Ufw),bc =0 (h_s). Therefore, by the
same arguments, (S60) with £ replaced by &°¢ holds. Therefore, (S61) with HV2 (a;-) = Va (- 23-)

replaced

I. % [ﬁ,ﬁ]

holds. By

by H"/2bc ('7I;H') - ‘"/ch (',1‘;'7') I x[hﬁ]x[h Eb]
zX|h, hy,,

1(X; = 2) < O (0;0,bp) 1(X; = ), ¥ (4,0, b,bp) € {1,...,n} x I, x [h, ] x [hb,hb}l
=1-0(n""), (S124)

bc

(S113) and (S65), HIIX[Q,E]X[QME] = O;( log (n) /nh2). Similarly, we show that HTECHIIX[@,E]x[Qb,Eb} =

(
(«/log(n)/nhQ). By (S112), (S124), ¢ = O; (w/log(n)/(nhg)—&—hg), R = o;( 1og(n)/n), P
( Tog (1) /n) and (S113), the last equalities of (S69) and (S70) also hold for |7,
HTb_C By (S124) and

17, « (7] [ ] ¢ [ ) 22

o x[BR]x e B ] x [y Bo]

sup Z5¢(U;, Ug,v,e;b,b =0,
ec|e_ € ’I’L( ) Z * b) ( )
€le. 7] (i-k)
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uniformly in (v,b,bp) € I, X [h T [hb,ﬁb} which follows from similar arguments and calculations, we have

HT;’_‘}HIIX (] [ e x B ] = = 03 («/log [ (nh¢) + hZ, \/log ( )/(nh)) By ¢ = 0} (\/log (n) / (nh¢) +hf),
o [ [ ] < [y ] = ((«/log / (nhe) + h2) log (n) / (nh)) Then by similar

(S67) and (S124),

arguments,

‘ Ay — 1
— Z ( Uob, bb> Q2 (W, Wisbe) M’ <kbU;b, bb> Q2 (Wi, Wisbe) 1(X; = z) = OF ( Ogiff>> .
n

(Uk)

|Tbc

Then we have

~ 1 1 I
V€ (v, 250, be, bp) — V< (v, b, bp) = (\/ O§h2 \/ th \/ w >
¢

uniformly in (v,b,b¢,bp) € I, X [Q,ﬂ X [ﬁc,ﬁc] X [ﬁb,ﬁb]. By similar arguments, (S77) with
HVQ(, )= Vo (@) replaced by HVQ'“ (yzyy) = VP (x;-,) holds. And, therefore,

I x[h,] T X [, R] X [y g |
vy € (0,1),
Pr sup Vs (v,2;0,b¢,by) — Va (v, 23 b, bb)' > Cir) (7)| < Card (7)),
(0,0,b¢,bp) EIe X [,h] X [ P | X [y T

when n is sufficiently large. By change of variables and using (S119), (S123), (S38), (S115) and

CR(ORE R

_ ((’;)W M ((’b‘) uh, bb) - M (ush, hb>> (L (us by h) = N (u3 b, by s Bi) .2«

we have r%y (v,2;b) — %y (v,2;h) = O (e, +€2). By (S119), (S38), (S123) and change of variables,

Vb - mbACX (v, 2;b,bp) — Vh - mbACX (v, x; h, hy) 0 (\/E (en + &?EL))
b-m%y (v,2;6,b)° — h-m%x (v, 238, hy)> = O (h(en+22)), (S125)

uniformly in (v, b, b,) € I, X [Q,ﬂ X [ﬁb,ﬁb]. By change of variables, integration by parts, (S38) and (S123),

/ roear (S0 ) ) P (e e = [ nsar (B ) e (0 By (e ) e

=z

E A — A —
=h" 3/2/ (L/ (ZD<§L)U7ba h> - N ($(Z)U7b7 bb7h7 hb) /’LK,2> Pz (6) Fe|X (6 | ZC) de =0 <h1/2 (En +€7l')7,>)

=x

and

/b /QM’(A“; bbb>px de—/ h™ /QM’(W;h,hb)pm(e)de

:h-3/2/ ' (L/ (Az (Z) _;b7h> — N <Ar (2) ‘;b,bb,h,hb) um) pu(e)de = O (W2 (e + b)) |

=x
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uniformly in (v, b, by) € I, x [Q,ﬂ X [ﬁb,ﬁb]. Then, by tedious calculations, we have

h\? h h
(b) M’ (bw;b, bb> M (bu;b, bb> — M (w; h, hy) M (u; by hy)

<Cen (]1(|u| <l+en)+ (&)31 <u| < (1+4eh) f;;)) (]l(|w| <l+e,)+ (Z))S]l (|w| <(1+¢h) %)) 7

for some C; , = O (sn + z—:l,’L). By using this result and

/ <Z)2M’ ((Z) w; b, bb) M ((Z) w; b, bb> dw = /M’ (w; h, hw) M (w; h, hp) dw = 0,

we have

V;; (v,2;b,bp) — VQb; (v, z; hy hy)

conet [ (5 ar () ) ar ((3) ) a0 st s |

X g j (hw +v) Xe,j (hw +v) dw
w h 2 , h ] h . , . .
_2//_00 {(b) M ((b) w,b7bb> M ((b) U,b7bb> - M (w,h,hb)M(u7h’hb)}
X by j (hw 4 v) X}, j (hu +v) dudw = O (en + gz) .

Then it follows that V¢ (v, z;b, by) — V¢ (v, 25 h, hy) = O (5n + 62), uniformly in (v, b, by) € I, x [ﬁ,m X [@b,ﬁb].
Then the assertion follows from arguments in the proof of Theorem B.1. |

The following result is the analogue of Lemma 9 under bias correction.

Lemma S5. Suppose the assumptions of Theorem S1 hold. Then,
me(v‘xhhc>hb) me(U|{Ehhb)

1/4
I
Vnv/log (n) + ( OihZ > + (en +€5) Vlog (n),n~ ", Ky, + 6, + 85 + 65

Proof of Lemma S5. We use an expansion similar to (S91), where we replace K (1) with M (-;/f\z,ﬁb). By
Pr|(hh) € [B,R] X [hy,Bo] | > 1= (3, +8) and (S113), ||[18% (~ashho )| = 05 (1,071 + 0, +95). Then
by this result and (S112),

x

i

< C;?)\/ﬁ~ﬁ_3/2 (max |vil ) H]l(jgc (~,m;ﬁ,ﬁb)

1<i<n

Im

By (S115),

3=

- N\ 5
\l Z(S?c (v) — sbe (v’))2 < C}?) 1+ (;:) h A =]
i=1 b
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Then by this result, Pr {(?L ﬁb) [h _J [hb,ﬁb]] >1- (5n + 52), h/hy — ¢ € [0,00) and repeating the same

arguments in the proof of (594), we have HTﬁ sbe L= o} (log (n) /Vnh2,n=t,n=1 44, + 52). In view of (S124),

with probability 1 — O ((5n + 52 + n_l),
< e (i)

CHESY (v hv ) WZ% (qm (Wj,Wi;EC) o (Zi, X)) — qo (Wy, Wi) 7, (Zi,Xi)).

i~

max |22,
I, 1<5<n

where

i#]
Then by Pr[(RBw) € [B.B] x [y, Fs]] > 1= (60 +3), [[18% (2P )H — 03 (1,n™" 45, +38), and re-
peating the arguments in the proof of (S98), we have HTﬁ’bC = Og ((log nh2))1/4 ,nThnTt 46, + 53).

It also follows from similar arguments and (S112) that

‘Tﬂ be L= Og (log (n) /Vnh3,n=tn=t + 4, + 52). There-
fore, (S100) with d,, replaced by &, + 6 still holds for the bias-corrected version. It follows from (S101), (S125)
and Lemmas S1 and S3 that the bias-corrected version of (S102) holds. The bias-corrected version of (S104) follows
from repeating the arguments in the proof of (S104), Lemma S2, (S115) and

2 7
h
*Zh ( hhb) n(xz:ms||1AX<-7x;h>||,w+<hb) ILax (o h)lly, = O3 (1),

uniformly in v € Iw. Then by repeating the arguments in the proof of [|Sjmp(2ih)l|; =
0} (\/log L Vlog (n) / (nh3) ) where K (-) is replaced by M (:;h, hy), and using (S115) and h/hy, — ¢ €
[0,00), we have H o (3 Ry he) Hlm =0} (\/log (n),n=1,/log (n) / (nh3)>. Similarly, we can simply modify the

proof of (S108) by replacing K (-) with M (-;b,b) and M (-; h, hy). Then,

1 « - ~
SAP (v, 25D, by, hy ) = Z v; {L{E]’bc (Wi, v; b, by) — UL (W;, 03 h, hb)}

ﬁz:l
1 & A; — A; —
= =S w T (L Fb b ) = N (S, b by ) s ) T(Xs =)
n h h ’
1 i 1 —3/2 / A]—U ’ AJ—U
= Y L . _N . T, 7. X,
+ﬁ;yl n_]-;h ( L 7bah/ h 7babb7hahb HEK,2 qI(W]an)ﬂ-LE( (2 z)

Then by a modification of the arguments used in the proof of (S108), where (S123) and the fact that the bias-

corrected versions of the function classes are uniformly VC-type with respect to constant envelopes of order
O ((en +¢€5) /h1?) or O ((en +€5) /h3/?) are used, we have

||‘S¢A,bC (71', RS hu hb)

][] = O ((En +ep) Vlog (n),n™ nh3 )

Then, by Pr [(ﬁ,/ﬁb> € [ﬁ,ﬁ] X [ﬁb,ﬁb]] >1-4,— 68,

Gabe (.@;E,Eb,h,hb) Hl = Og <(5n + ¢ ) Vlog (n

+5 +5b>
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Then the assertion follows from repeating the arguments in the proof of Lemma 9 and using Lemma S4. |

Proof of Theorem S1. It follows from standard arguments for kernel density estimators that m5 (v, z; b, by) —
fax (v,2) =0 (thb), uniformly in (v,b,bp) € I, X [ﬁ, E] X [@b,ﬁb]. The assertion follows from using this result in
place of (12), using Lemmas S1, S2, S3, S4 and Lemma S5 in place of Lemmas 3, 4, 5 and 9 and Theorem B.1 and
repeating the arguments in the proof of Theorem B.2. |

S5 Nonparametric bootstrap

We denote PV f == n=t 3" | f(W7) and G~ = /n (P —PY). PV and GY are defined similarly. Let
pro=ntY 0 1(X] =1), fZX (v,2;b) = ff;lex (v | x;b) and let fZX (v, x;b) be the nonparametric bootstrap
analogue of fax (v, z;b): fix (v, 2;b) == (nb) ™" Yo K((AF —v) /b)1 (X} =x). The following result is a non-
parametric bootstrap analogue of Lemma 3. We prove it by adapting the proofs of Lemmas 2 and 3 and replacing

the intermediate results with their bootstrap analogues.

Lemma S6. Suppose that the assumptions in the statement of Theorem C.1 hold. Then,

. . 1 log (n)  log (n)**
Ax (v, 2:0) — fiax (v,2;0) = — G (Wi, WF,v;b) + OF + )
fAX( ) fAX( ) n(2) (ZZJ) ( J ) D ( nh2 n3/4p,

where the remainder is uniform in (v,b) € I, x [ﬁ,ﬂ.

Proof of Lemma S6. By Talagrand’s inequality (Chernozhukov et al., 2016, Lemma 6.3 with F = ®, 0 = b =
Fp =1,t=log(n)), we have the deviation bound Pry» [HG,LW* o > Cy/log (n)] < n~! and therefore, by Lemma

L= Og ( log (n) /n) Then, by (S1), we have a nonparametric bootstrap analogue of (S1):
dax

8; Hﬁ;2$ - ﬁdzm

1, <¢dz (y)) B g, (¢dm (y)) N I (y) B ;.. (v) _
P Pis P Pia v

where €} = Of, (n_l), and by Lemma 8, we have ‘

q?;“lac — (Edg; . = Of, (wlog (n) /n) and also H(Efm — Oz

Og( log (n) / ) Then we can easily show a bootstrap analogue of (S5). Then, similarly, we decompose

13, (B0 )~z (S (v)) into the sum of I, Gy (1) ~Hazs (3 () amd Haes (63, )~ Hatze (902 0) ).
Next, we show that

d'z

iy (62 W) ~ e (00 @) = [ (b0 ) — Taee (602 () + O} <(1og n(n)>3/4>

M (330 ) = Moo (02 ) + 0% ((lg(")) M) C(s120)

S>

N

8
VS

<)

<8

15

S
N—

|

5>

N

8
/N

<)

<%

8
S
N—
Il

n

uniformly in y € Ig. Denote Aj., (y,y') = ITj., (y) — I}, (y'). Let 3, = supfeq+ Py f2. Then, T+ S O+
Py — IE"WHSIH =0y ( log (n) /n) By Talagrand’s inequality (Chernozhukov et al., 2016, Lemma 6.3 with F =
P, 0= Fp+ = 1,0 = g+ Vby/Virlog (n) /n, t = log (n)), Prjwn [HG,VLV* g+ > C (&m Vv /log (n) /n) V/log (n)} <
n~'. Similarly, we define 63, _ and have a deviation bound Pryyn [H(G,VIV qu >C (8;137 Vv /log (n) /n) /log (n)} <
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n~!. With probability greater than 1 — Cyn~!, Priwn |:H$ZT — Qdx

> C1/log (n) /n} > Con~1. Then the first
. ~ * 1/4\ =~ T 1/4
result in (S126) follows from Lemma 8, o+ = Oy ((log (n) /n) ), op- =0y ((log (n) /n) ) and

d'x

n n

HGTVLV*Hm* - C (am v logn(")> log (n)‘|

1
o Jloe®

Id/ft n

Prywn | sup
ye[d’m

o], > 0 (s v P2 ) v

R (32 W) 00 ) = Auze (9 ) 1000 @) | > € ( e v B gy 8 <n>) N (n)]

S Prlwln + PI“Wln

n

=0} (nil) .

p

+ Prjwp [Hﬁbzl — Pda

Similarly, the second result in (S126) follows from Lemma 8, o+ = O ((log (n) /n)1/4), op- =0 ((log (n) /n)1/4)

and
Prjyy Lgpﬁ Adze (5;?@ (y) s P (y)) — Adza (521 ) s ba (y)>( (0&13 v \/W \/logn(n)> \/logn(n)]
< Pruwy [[6Y ], > © (W . k’g?f”)) V| e ey > < )) / logn(n)]

~ log (n
+ Priwyp M%@ wf >0y =0, (n7")
Iy, n
Then, by using (S126), a bootstrap analogue of (S5) and tedious algebra, we have
- [ (log(m))**
¢dz( ) (bda: Z»Cd:r 'ay _7Z£d:v W17y)+0 T )
i=1
uniformly in y € Iy, and by Lemmas 2 and 8, a linear representation in the bootstrap world holds:
~ log (n)\*/*
P () — baz szx + )+ 0} ((gn”) , (s127)

uniformly in y € Iy,. By Taylor expansion, we get the bootstrap analogue of (S11), where Af denotes the mean
value. The bootstrap analogue of (S12) (i.e., A™ = Of, ( log (n) /n)7 where A := max << AAf - A 1(X} =x))

qASZI — Gdx = Og ( log (n) /n) Then since y/log (n) /n = o (h), for some constants Cy,C3 > 0,
Id’a:
with probability 1 — C3n~!, the bootstrap analogue of (S13) holds:

follows from ‘

1= Con™! < Prywy [2" < 1)
Ar —w

where 17 (v;b) == 1(]Af —v| <2b). Then the bootstrap analogue of (S14) holds with probability 1 — Cyn~!
Let 02 = supfejIP’,[{f2. Then we have 52 < h™! (HIE”UHj + HR[{ — IP’UHJ) =0, (h_l). By Talagrand’s inequality

LX) =) < K" 17 (v;0) L(X] = 2), V (i,0,0) € {1,...,n} x I X [h,ﬂ] :

(S128)
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(Chernozhukov et al., 2016, Lemma 6.3 with F =3, b= Fy = h™1, 0 = 55 V by/V5log (n) /n, t = log (n)), we have

. ~ log (n) -
U <l
" ‘j >C (ag v 2 ) log (n)] <n .

= Of} ( log (n) /h) Then, by Lemma 8,

Then, by these results, the bootstrap analogue of (S16) holds and then we have

o

Priwy

By Lemma 8, HGg 5

pPU”

n

| <[lBy -]+ 1B - BY Y, + [V, = 03 ).

Fix (0,2:8) = Fax (v,30) = sz (E5) (& - an) 1o =+ 0 (2,

Of (1). [

uniformly in (v,b) € I, x [k, h]. Then the assertion follows from this result, (S127) and ||PY" ,=0;

Lemma S7. Suppose that the assumptions in the statement of Theorem C.1 hold. Then,
1 n n
fAX(vxb) Fax (v,2:b) = —QZZ (U;,Uj,v;b) + { ZH U“vb}

1j
log (n) 1/4 log (n
#
+0; (( n3ho > ’ nh3 nh3

where the remainder is uniform in (v,b) € I, X [ﬁ,m.
Proof of Lemma S7. It is easy to check that

G (Wi W5, 03b) =G, ((9(D;, X[ €f), DF, 25, X)), (9 (D5, X5, €5) , D}, Z5, X)) i b) = Hy (U, U5 50)

i€ 77 J
Denote
Y ) 1
H, (u,v;b) = Ejwr [He (U*,u,v;b)] = E;HI (Uj, u,v;b)
]:
12] ) RS
H, (u,v;0) = Ewn [He (w, U 0;0)] = Ezl’H,x (u,Uj,v;b)
]:
1 n n
Tig, (1;b) = Epwp [Ha (UF, U3, 0;b)] 722% Uy, U, 03 D).
i=1j=1

Then, by Hoeffding decomposition,

Z (U7, v:) — NHI(Wb)}‘*‘{iZHzQ](Ui*an) i, (v;w}

1 , 1 2 -
+%(Z){’H (U7, U7 0ib) =y (U7, 030) = L (UF03) + o, (i)} (S129)
]

:M—'

—ZH (U7, U7, v0;b) = Tigy, {

") g
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Denote

T = (A e - v@—@mmwﬁiﬁ?@w@
; i=1
T; (vib) = Zﬂ“lmb ~ Tin, (030)
T} (v:b) = @Z{ (U7, U 03 b) = HY (U2 05b) — HE (UF,03b) + T, (v;b)}.
Then, by (S129),
—Z”H (UF,U;,0;b) = Tigy, (v Z?—l U, v;b Z”H (Ui, 0;b) + T (0;b) 4+ T (v;b) + T (v3b) .

n(2)

_ 2
Note that Ejy» [("HE] (U*,v;b) — Hl (U*, v; b)) ] can be represented by a V-statistic:

B % D> Ve U, Upywib). (S130)

i=1j=1k=1

It is easy to check that by using the V-statistic decomposition (Serfling (2009, 5.7.3)),

%Xn:zn:zn:vx (U;,U;, Ug, v;0) — — Z Ve (Ui, Uy, Up, 0;b) = O ((nh4)_1), (S131)

i=1 j=1 k=1 n(g) (2,7,k)

uniformly in (v,b) € I, x [ﬁ,m, and the kernel of the U-statistic n(_?s Z(i’j’k) Ve (U;, Uj, Uk, v;b) is degenerate
of order one (see, e.g., Definition 5.1 of CK). Since both of § = {H, (-,v;b) : (v,b) € I, x [h,h]} and HI1) :=
{ L}] (,v;0) : (v,b) € I, X [ﬁ, E]} are uniformly VC-type with respect to a constant envelope that is a multiple of
h? (see the proof of Lemma 4), by Chernozhukov et al. (2014a, Lemma B.2), U := {V ,u3b) ¢ (v,b) € I, x [ﬁ,ﬂ}
is uniformly VC-type with respect to a constant envelope Fy = O( ) By Hoeffding decomposition (see
Equation (18) in CK) of the U-process {Ug’) f:fe ‘1]} and using the maximal inequality given by Corol-
lary 5.6 of CK (F = %, 7 = 3, k = 2.3, p = 1, F = Fo), B[|[u¥] ] = 0@ *2h). Denote

i {2 (i) — 1) (i) (0,) € I x [1,7]  and

| 2
—swpPYf2 = sup amKﬂWKm%%WWMM}
fen (v,b)EIL x [R,R]

By (S130) and (S131), E [6%] = n~!/?E {HUS’)HW} =0 ((nh‘l)fl). By Markov’s inequality,

E[/0'\2] 1/4
Pr 89*><o R ) < /log(n)h-E[03]
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and, therefore, o = O (log (n)_l/4 (nh5)71/4, log (n)/(nh3)> By CK Lemma 5.4, the (data-dependent)
function class 5[1] = {ﬁiﬂ (-,v;0) : (v,b) € I x [h,ﬂ} is uniformly VC-type (conditionally on the data) with

respect to a constant envelope Fgm =Fg =0 (h_Q)7 ie, (A.2) with § = 5[ and Fyz = Fﬁ 4 is satisfied with
VC characteristics that are functions of (Ag, V) and do not depend on the data. Then, by Chernozhukov et al.
(2014a, Lemma B.2), R is also uniformly VC-type (conditionally on the data) with respect to the constant envelope
Fx = 2Fy = O (h™?) and its VC characteristics depend only on (Ag,Vy). Then, by Talagrand’s inequality

(Chernozhukov et al., 2016, Lemma 6.3 with F = R, b = F, 0 = o V by/Virlog (n) /n, t =log (n)), we have

~ log (n) -
’m>0<am\/ i ) log(n)l <nt

* — * * 1/4 —
By ||IT} Hlmx[ﬁﬁ] =n"12||GY||,, and Lemma 8, ||T; HImx[ﬁﬁ] =0} ((log (n)/ (n®h®))" 071, /log (n) / (nh3))
Denote H, () :==n~t> 7" {1( <e) — Fyx (e | x )} 72 (Z;, X;). By Talagrand’s inequality, we can easily show
that |||, . = 0;( 1og(n)/n). Then, Ho (U, v;b) = b 2K (A (€F) — v) /b) wy (UF) Hy (€7). 1t can

K3
be easily verified by using arguments in the proof of Lemma 4 that the (data-dependent) function class 5[2] =

{ﬁf] (-,03b) : (v,b) € I, x [h, E]} is uniformly VC-type (conditionally on the data) with respect to a constant
envelope ng] that is a multiple of A~ HH || , with VC characteristics that do not depend on the data. Then,

[21] =0, ( log (n)/(nh4)).

Paw |

eeT

by CK Corollary 5.6 (with F = §1, r = k = 17 p="1and F = Fey), By [HG,({* -
Then, by Markov’s inequality,

_ . . N log (n 1/4
> 1/4\/E|W1n [l Hﬁmw < h1/4\/E|W1n [16Y" 1] = 0; << nlﬁg)) .
pr =7 2 G s

(s (2, ||T2*||sz[ﬁ,ﬁ] =0} ((log (n)/ (n3h5))1/4, (log (n) / (nh3))1/4 7n—1).
By CK Corollary 5.6 (with F =, r =k =2,p=1and F = Fy), Ejy» {||T§||le[bﬁﬂ =0} ((nh2)_l)- Then,
by Markov’s inequality,

PI‘|W1n

.-
o

By Lemma 8 and ||T5

\/EW1" [HTS*HITX[ETL]}

(ﬂh)1/4

< (nh)/* \/wa 131 ] = 05 (009 7).

Prjyy HT?ZKHIIX[Q,E] >

Therefore, by Lemma 8, we have ||T§||Imx[h A= O} ((n3h5)_1/4 , (nh3)_1/4 ,n_l). [ |

Lemma S8. Suppose that the assumptions of Theorem C.1 hold. Then, (a)

oe (n 1/4 oz (1 1/4 oo (n
S"Pb(v|x;b)—Snpb(U|x§b)+Og<<1§f53)) + log(n)h7(1§}f3)> ’ log ( ))7

where

Snpb (v ] 23 b) = Z MU (U v b) ——ZM[” (U;,0;0) |,

j=1

uniformly in (v,b) € I x [h,h]. (b) Sppp (v | 2;0) — Sppp (v | 23h) = OF (e’:‘n log (n)), uniformly in (v,b) €
x [h, h].
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Proof of Lemma S8. By V-statistic decomposition Serfling (2009, 5.7.3) and the fact that $ has an O (hfz)

envelope,
n n

=D 9 SLNUNGNT) ,727{ (U, Uy, 058) = O ((nh?) ™)),

M= ™M) ;7

uniformly in (v,b) € I, x [k, h]. We decompose

Fax (v,2:) = Fax (v,058) = (Fax (v,230) = Fax w.2:0)) + (Fax (v,230) = Fax (v,3:0))
- (J?AX (v,230) — fax (Ud?;b)) .
Then, by Lemmas 3, 8 and S7,

n

fZX(v,x;b)—fo(ux;b):{iZHH]( * v;b) ——ZH UZ,U;b)}+{fZX(v,x;b)—fAX(v,x;b)}
=1
| /4 1/4 ]
or( () (5 ). o

uniformly in (v,b) € I, x [h,h]. Then, let 3523[1] = sup;cmPY f? and § = { [1]( 0;b)° : (v,b) € I X [ﬁ,ﬂ}.
By Chernozhukov et al. (2014a, Lemma B.2), $ is uniformly VC-type with respect to a constant envelope
Fg = O (h=*). Then, 8%[1] < Uf-,m + ||]P’,[{ —]P’UHH It was shown in the proof of Lemma 4 that a%[l] =
O(hil). Let 0% = Supfej,-JIP’UfQ. It is easy to check that by change of variables, 0% = O(h*4) and
therefore, by Talagrand’s inequality (Chernozhukov et al., 2016, Lemma 6.3 with F = §, b = Fs, 0 =

Vilog (n) /n, t = log (n HGUHﬁ =0, (wlog ) /h* +log (n) / (n 1/2h4)) and therefore, ||PY — IP’UHj% =
n=1/2 H(G,[{HS3 = 0, (x/log n) / (nh*) 4 log (n) (nh"‘)) and 02 n = O*( _1). By using Talagrand’s inequality
(Chernozhukov et al., 2016, Lemma 6.3 with 7 = ), b = Fou = O (h72), 0 = Ggu V by/Vgulog (n) /n
and t = log(n)) and Lemma 8, HG,[{ o = Og( log (n) /h) and therefore, n=! 2?217{;[51] (Uf,v;b) —

nty i (Us,v;b) is Og( log (n)/(nh))7 uniformly in (v,b) € I, x [h,h]. Similarly, by Talagrand’s in-

equality, || fix (2;7) — fax (2350 X[ =0} ( log (n) / (nh)) By these results and (S132),
[P i) = Fax (i) _ ot [ Jleg(m) (log(m) " [log (n) ($133)

ax Lx[ni] P nh '\ nh3 Vo)
By Lemma 8 and Hoeffding’s inequality, we have pi — p, = Og( log (n) /n) By p. —
Pr = O;( log (n) /n) and Lemma 8, we have pi — O} ( log (n /n) (3C,,C5,C5 >

0,Pr [Pr|Wln [|ﬁ; — pz| > C1/log (n) /n] > an’l} < C3n~1). By using

201 [log ()

2 n

log (n)

b
e #Pr [7 < 5]
x

] < Prjwp llﬁ;‘c —ps| > Ch

p
Prlwln l

log (n)]

<2-Priyp bﬁ; —pz| > Ch
where the second inequality holds when n is sufficiently large, we have p,/pt — 1 = Og ( log (n) /n) By this
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result, p, /P, — 1 = O} ( Tog (n) /n), Lemma 8, (S132), (S133) and

Soop (v 25b) = —v/nb (fgx (v,2:b) — Fax (U,m;b)) n <A1 - 1) Vb (fzx (v,2:b) — Fax (v,x;b))

Pz Pz Pz
rfAX(U x;b) <_1>

P P

we have the first assertion and also

0] n 1/4 O, n
|Snpb(.|x;.)||lmx[h’h]:Og( log(n)7(1§}£3)> 7 1353)) (S134)

Note that
Snpb (v]ax;b) — S’npb (v|x;h)

zn: EL (U7, vib, h) —fZSA (U;,v3b, h) +—Z 1AM (U7, 03, 1) —727{“1] (U;,v;b, h)

Jj=1 =

It is shown in the proof of Lemma 9 that 5%, = SUp fega PUf2 = o, (52). By Talagrand’s inequality (Cher-
nozhukov et al., 2016, Lemma 6.3 with F = &% b = Fgs, 0 = Ges V by/Veslog(n)/n, t = log(n)),
HG,I{* e = ) (En log (n)) Let UﬁA“ = supjenom Py 2 < O'%A[l] + ||PY —IP’UHﬁM, where by CK Lemma
5.4 and Chernozhukov et al. (2014a, Lemma B.2), 22 = {’Hﬁm (-, v;b,h)% : (v,b) € I, x [ﬁ,ﬂ} is uniformly VC-
type with respect to a constant envelope Fgsa = O (5%/h3) Let U%M = Sup]ceﬁM]P’Uf2 =0 (5fl/h2), where the

second equality follows from change of variables and (S35). By Talagrand’s inequality (Chernozhukov et al. (2016,
Lemma 6.3) with F = §°4, b = Fyes, 0 = g0 Vby/Vaeslog (n) /n, t = log (n)), |GY ] .. = O} (52 log (n) /h?).

Then we have ||PY — PUH;jM =03 (sfl log (n) / (nhQ)) It is shown in the proof of Lemma 5 that o, = O (&3,).

Therefore, 0 = O, ( n) and it follows from Talagrand’s inequality that ||(Gg P Op (z—:n log (n)) We
[

have the second assertion.

Proof of Theorem C.1. By using Pr [ﬁ € [h,ﬂ} > 1—0,, Lemma S8 and monotonicity of conditional expecta-

tions, we have

Pr | Prjyy “ npb( | z; h) npb( | ; h) e ((IOS}E?)>U4+ log (n) h) > Oy <105;E?)>1/4]
<Pr [PYW{L ‘ npb ( | @; h) npb( | @; h) L Cy ((IOS}E;L)YM + /log (n) h) > Cy (1035;1))1/4’ he [hﬂ]
+6, < Pr [Prjwp lHSnpb () = Sop (- 15) |, ] > O ((105}5?))1/4+ log (n) h 1 > Cz( g}f;”‘)>1/4 +6,

and therefore,

~ _ ~ log (n 1/4 log (n 1/4 log (n
Snpb(v|m;h)Snpb(vx;h)JrOg(( nh(3)> ++/lo < ) , nff3)+5n )

uniformly in v € I,. By similar arguments, Sppb (v | x,ﬁ) = Sopb (v ]| 23 ) + Og (En log (n),n " t,n~! + 6n),
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uniformly in v € I,. Therefore,

~ _ oo (n 1/4 og(n 1/4 og(n
oo (0] 37) = S (0| 1) = OF ((lj,fg)) + Vgl + e/, (G ) A m) ,
(S135)

uniformly in v € I,. By (S134) and similar arguments,

‘ nPb( | z; h>Hfmx[g,ﬁ] = Og ( log (1), <IO§}ES)>U4, 1035;1) +5n> '

Write
Zogs (0| ) — S0 l) Swo (v 2h) [ yvaTam |, Swe(v]eh) —Swo 0| ih)
np ) 10y - = . — = - .
VVlash)  /V(v]zh) \/V(”;h’hc) V(v|ah)
By these results, (B.9), Theorem B.1, (S135) and ‘ Sopb (- | 23 0) //V (- | 23 h) ‘ — HGn ||£m[1 we have

|

-
e
x

“pb( | @ h hc) I DTiE

1/4 1/4
:Og ((1035;1)) + Vlog (n) h + £,1/log (n) + Ky ,\/log (n), <10§}E?)) ,n{n+6n+5£> - (5136)

We apply Chernozhukov et al. (2016, Theorem 2.3) with F = zm[” =0, 0 =0gwn, b = Fgm and ¢ = co. When
n is sufficiently large, for any coupling error vy € (0,1), there exists a random variable Z* ) such that (1) Z;%t[”
8l + Y

is independent of the data; (2) Zr ) _ has the same distribution as |GY || g5 (3) 22 and ||GY |50y satisfies
4+

m[ll
Pr [

where R;ﬁ[i” (v) = log (n)*? (71/3 (nh3)1/6) +log (n)*/*) (’y (nh3)1/4>, and by Markov’s inequality,

the deviation bound:
GYU”

(1]

— Z;ﬁgé],"/’ > Clﬁ};:—n[i] (’y):| S CQ (’y + n_1> s

Pr {PTWV{‘ HHG,[{*

~Zi | > iy 0] > VBT < VETFAD.

(1] Y

By this result and (S136), when n is sufficiently large, Vv € (0,1),

x

Pr [Prwln HHanb ( | x;ﬁ,ﬁc) )

) > € (s )+ VIR + kL Vg (] + 0 o)) | >

1/4
<f+<log( )> >] < C3 (VA + K, + 00 +65).

Then, since Z% ;,; is independent of the data and Z% , =4 HGUH =n)> by the above deviation bound and
Qﬁi s Qﬁi Y m
Chernozhukov et al. (2016, Lemma 2.1), with probability greater than 1 — Cs (/7 + K, + 6, + 85),

sup
teR

Pr‘wn |:‘

o (VR o] =16 o <] <
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igﬂ}gPr ’HGUH@M - t‘ < (/i;n[il] (7) + /log (n) h + fi}fn\/log (n) + en/log (n))]
log (n) ) "
+ Cy <\/’>}/+ ( i3 > .

By (S139), (S140) and optimally choosing v = log (71)5/6 / (nk?®)""" (which balances \/7 and log (n)5/4/ (ynl/4h3/4)),
we have (C.4). By repeating the arguments used to show (B.16), we have

Pr {HZ ( | x;ﬁ,ﬁg)

1/6

< z?"*’a] C(1-a)
I,

< C1Ryp + 2R3, + C3R3 .
[
Proof of Theorem C.2. By similar arguments used in the proof of Lemma 4, the centered function class 9 =

{M, (-,v;h) : v € I} is uniformly VC-type with respect to a constant envelope Fay = O (h~%/2). By (B.7) and
(B.3), we have

Jo( 1)

By Lemma A.3 of CK, Ml = {ML}] (,v;h) v € Ix} is also uniformly VC-type with respect to a constant

.

’931 =0; <5m/log (n) + v, + W, \/ 105}5?) + 5n> ) (S137)

envelope Fypny = Fop. Let 05 = sup peanuPY f2 = sup,c; ¥ (v | x) + 0(1) and 0g; = sup;cgE [f (Un, UQ)Z]
By calculations in the proof of Lemma 4, 5,1, = O (1) and 03 = O (h=2). By CK Proposition 2.1 (with H = 9,
Gg = Ogqitl, 0y = oo, by = by = Fop, xn = 0 and ¢ = o00), when n is sufficiently large, for each coupling
error v € (0,1), one can construct a random variable Zoy .~ that satisfies the following conditions: Zon, , =4
supfem[iuGU (f) = HGUHsm[ll’ where {GU (f):fe Dﬁ[i]} is a centered separable Gaussian process that has the

same covariance structure as the Héjek process {Ggf :fe zm[i”} (E[GY (f)GY (9)] =Cov[f(U),g(U)],Vf,g¢c

im[il]), and the difference between supfemi[[}g)f =

‘Ug) H and Zsn_ . satisfies the deviation bound:
m

log (n)**>  log (n)
Lm - Zimi,'y’ > C (71/3 (nh3)1/6 ~yV/nh3

Pr|[u®

)] <Co(y+nt). (S138)

We denote V. = inf o Var [f (U)] = inf,er,V (v |x;h). We show in the proof of Theorem B.2 that since
V — inf,er, 7 (v|z) > 0 as h | 0, when h is sufficiently small, V. > inf,e;, ¥ (v]|x)/2 > 0. Similarly, let
V = supseopu Var [f (U)] = sup,e;, V(v ] 2;h). By (A9), we have V. — sup,c; ¥ (v]z) € (0,00). By the

Gaussian anti-concentration inequality (CK Lemma A.1),

sup Pr [[[|GY |y — t] < €] < Coe (E NG o] + \/ 1Vlog (vl/%)) Ve >0, (S139)
teR

where C, is a constant that depends on V'/? and V' Since V —infuer, (v]z) and V = sup,e; ¥ (v | z) as
h ] 0, we have C, = O (1). By Dudley’s metric entropy bound (Giné and Nickl, 2016, Theorem 2.3.7),

E [HGUHgm[l]] < (Eim[l] vnl/2 [ Foni ||IPU’2) Vlog (n), (5140)

when n is sufficiently large. Then, since Zon, 5 =4 HGUHm[lJ’ by Chernozhukov et al. (2016, Lemma 2.1), (S137)
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and (S138), when n is sufficiently large, Vv € (0, 1),

sup
teR

P {Hs (12:8)], < t} P [[|GY e < t]‘

log (n)*°  log(n)
< u —tl < V/ vVnh
_ig]gPr ‘HG Hamu t|—01< log (n) + vy, + ° + 1/3(nh3)1/6+’)’\/m
log (n)
1y (w e +5> (S141)

By (S139), (S140) and optimally choosing ~ that gives the fastest rate of convergence of the right hand side of
(S141), which should be v = log (n)7/8/ (nh?) 1/8, we have (C.6).

Since ||Sopo (- | 23 0)|; = |G || gpey» by

S0 (1), 6, = tog (n) 1/4+\/1 (7T + /o (), ( 12211 v flog(n)
e TR, "o flogguy TP nh3 og (n) enVlog(n), { == Ao o]
(S142)

Then we apply Chernozhukov et al. (2016, Theorem 2.3) with F = zm[;], B =0,0 =709, b= Fyym and ¢ = 0o

When n is sufficiently large, for any coupling error v € (0,1), there exists a random variable Z * such that (1)
i Y

and HG

(S135), we have

Z;Jt“] is independent of the data; (2) Z* ;;; has the same distribution as HGUHzm 0 (3) Z* " Hzmll

45 mi Y [ m[l]
satisfies the deviation bound:

. log (n)**  log (m)*"*
— Z > C 76 T 171
o] )y ~1/3 (nh3) / ~ (nh?) /

<Cy(y+nt)

flo2

and by Markov’s inequality,

Pr lPrwln

flo2

2/3 3/4
\WZL,#@( e -, e )] >W] < VEGTRT).

3 ()0 ()

By this result and (S142), when n is sufficiently large, Vv € (0,1),

PI"Wln U‘

Pr

~ N log n)?/3 log (n
Son (1958)], i > 4 7 e + e+ VRO

Y13 (nh3)'0 oy (nh
<o v+ Ojguan).

(o2

Then, since Z;n[i”,»y is independent of the data and Z;ﬁ[il]"y =4 HGU”zmm’ by the above deviation bound and

Chernozhukov et al. (2016, Lemma 2.1), with probability greater than 1 — Cj (ﬁ + y/log (n) / (nh3) + 5n),

oup P [ (1258, <] = Pr e e < t]\ <
spPr |67y 1] < 0 (LB TR T ot ) s (A e (E0)
télg e =1 71/3 (nh3)1/6 ~(n ( 1/4 g n g 2 Y e .

y (S139) and optimally choosing v = log (n)s/G/ (nh3)1/6 (which balances /7 and log (n)5/4/ (yn'/4h3/4)), we
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Table S1: Coverage rates for point-wise confidence intervals

Yo = —0.5,’)/1 =0.5 Yo = —0.4,’)/1 =0.6

v n Methods 0.90 0.95 0.99 0.90 0.95 0.99
1.6 2000 PA 0.890 0.933 0.981 0.878 0.924 0.973
PB 0.936 0975 0.996 0.943 0.979 0.999

4000 PA 0.901 0.951 0.980 0.900 0.946 0.978

PB 0.916 0.961 0.994 0.931 0.970 0.995

6000 PA 0.902 0.951 0.980 0.907 0.950 0.981

PB 0.927 0974 0.994 0.944 0.979 0.995

2.0 2000 PA 0.900 0.940 0.977 0.874 0.914 0.954
PB 0.935 0.977 0.997 0.939 0.982 0.997

4000 PA 0.897 0.945 0.984 0.895 0.945 0.975

PB 0.934 0.975 0.996 0.950 0.980 0.997

6000 PA 0.900 0.953 0.987 0.909 0.949 0.988

PB 0.928 0.967 0.997 0.946 0.972 0.999

2.4 2000 PA 0.874 0.915 0.950 0.832 0.880 0.922
PB 0.934 0.972 0.991 0.940 0.974 0.997

4000 PA 0.887 0.931 0.976 0.872 0.925 0.962

PB 0.944 0970 0.997 0.945 0.978 0.998

6000 PA 0.901 0.948 0.986 0.901 0.939 0.979

PB 0.938 0.969 0.999 0.945 0.977 0.997

have (C.7). By repeating the arguments used to show (B.16), we have |Pr { ’S ( | z,ﬁ) HI < s'l‘p_ba} —(1-a) <
Cllﬂm + CQK:;,TL + C3K‘§,n' . |

S6 Additional Monte Carlo simulation results

Table S1 presents the coverage rates of two types of pointwise confidence intervals for the density fa (v) evaluated
at 1.6, 2.0 and 2.4. The method “PA” corresponds to the plug-in approach using our new standard errors and
standard normal critical values (see (25)). The method “PB” corresponds to the bootstrap percentile confidence
interval. The simulation design and the choice of tuning parameters are all the same as Section 5. The number of
Monte Carlo replications is 1,000 and the nominal probability coverages rates are 0.90, 0.95 and 0.99. As Table
S1 shows, PA produces coverage rates that are very close to the nominal levels, especially when the sample size
is large. On the other hand, PB, though circumvents the calculation of standard errors, exhibits certain degree of

over-coverage.

We then present simulation results for non-studentized bias-corrected JMB and nonparametric bootstrap UCBs.
The non-studentized nonparametric bootstrap UCB is defined in Appendix C. The non-studentized JMB UCB is
described in Footnote 13. Tables S2 and S3 are the non-studentized version of Tables 1 and 2. As expected, the
non-studentized UCBs are on average wider than the studentized ones because the non-studentized UCBs keep the
same width across different values of v while the studentized versions adjust using the estimated variance at each

v. In particular, the studentized versions become narrower in the region of v with a smaller value of fa (v).
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Table S2: Simultaneous coverage rates for non-studentized UCBs

Yo = —045,’}/1 =0.5 Yo = —0.47 Y1 = 0.6
v € [0.5,3.5] v € [0.8,3.2] v € [0.5,3.5] v € [0.8,3.2]
n Methods 090 095 099 090 09 099 090 095 099 090 095 0.99

2000 Bias-corrected JMB 0945 0984 1.0 0970 0991 1.0 0980 0.997 1.0 0985 0.997 1.0
Bias-corrected NPB  0.922 0968 1.0 0960 0991 1.0 095 0990 1.0 0976 0996 1.0

4000 Bias-corrected JMB  0.889 0.954 0.998 0954 0983 1.0 0951 0974 1.0 0976 0993 1.0
Bias-corrected NPB  0.884 0.946 0.991 0.945 0.985 1.0 0933 0977 0.998 0.968 0992 1.0

6000 Bias-corrected JMB 0.859 0.917 0.999 0.947 0978 1.0 0919 0.967 1.0 0968 0.990 1.0
Bias-corrected NPB  0.859 0.924 0.986 0.958 0.982 1.0 0.889 0.944 0.995 0.966 0.987 0.999

Table S3: Average width of the 95% non-studentized UCBs relative to the interpolated pointwise Cls

Yo = —0.5,’}/1 =0.5 Yo = —0.4,’}/1 = 0.6
Methods v € [0.5,35] vel0.8,32] vel0.535 wvel0.8,3.2]

2000 Bias-corrected JMB 1.802 1.722 1.962 1.885
Bias-corrected NPB 1.716 1.636 1.790 1.700

4000 Bias-corrected JMB 1.729 1.640 1.807 1.723
Bias-corrected NPB 1.703 1.621 1.747 1.661

6000 Bias-corrected JMB 1.897 1.794 1.765 1.680
Bias-corrected NPB 1.878 1.781 1.731 1.646

References

Abadie, A. (2003). Semiparametric instrumental variable estimation of treatment response models. Journal of
Econometrics 113(2), 231-263.

Abadie, A., J. Angrist, and G. Imbens (2002). Instrumental variables estimates of the effect of subsidized training

on the quantiles of trainee earnings. Econometrica 70(1), 91-117.

Abrevaya, J. and H. Xu (2021). Estimation of treatment effects under endogenous heteroskedasticity. Journal of

FEconometrics.

Chernozhukov, V., D. Chetverikov, and K. Kato (2014a). Anti-concentration and honest, adaptive confidence bands.
Annals of Statistics 42(5), 1787-1818.

Chernozhukov, V., D. Chetverikov, and K. Kato (2014b). Gaussian approximation of suprema of empirical processes.
Annals of Statistics 42(4), 1564 1597.

Chernozhukov, V., D. Chetverikov, and K. Kato (2016). Empirical and multiplier bootstraps for suprema of
empirical processes of increasing complexity, and related gaussian couplings. Stochastic Processes and their
Applications 126 (12), 3632-3651.

Chernozhukov, V. and C. Hansen (2005). An IV model of quantile treatment effects. Econometrica 73(1), 245 261.

Chernozhukov, V., C. Hansen, and K. Wuthrich (2020). Instrumental variable quantile regression. arXiv preprint
arXiv:2009.00436 .

Chesher, A. (2003). Identification in nonseparable models. Econometrica 71(5), 1405-1441.

S64



Chesher, A. (2005). Nonparametric identification under discrete variation. Econometrica 73(5), 1525-1550.

D’Haultfeeuille, X. and P. Février (2015). Identification of nonseparable triangular models with discrete instruments.
Econometrica 83(3), 1199-1210.

Frolich, M. and B. Melly (2013). Unconditional quantile treatment effects under endogeneity. Journal of Business
& FEconomic Statistics 81(3), 346-357.

Giné, E. and R. Nickl (2016). Mathematical foundations of infinite-dimensional statistical models, Volume 40.
Cambridge University Press.

Imbens, G. and W. K. Newey (2009). Identification and estimation of triangular simultaneous equations models
without additivity. Econometrica 77(5), 1481-1512.

Imbens, G. W. and J. D. Angrist (1994). Identification and estimation of local average treatment effects. Econo-
metrica 62(2), 467-475.

Jun, S. J., J. Pinkse, and H. Xu (2011). Tighter bounds in triangular systems. Journal of Econometrics 161(2),
122-128.

Kosorok, M. R. (2007). Introduction to empirical processes and semiparametric inference. Springer Science &

Business Media.

Newey, W. K., J. L. Powell, and F. Vella (1999). Nonparametric estimation of triangular simultaneous equations
models. Econometrica 67(3), 565 603.

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal
of educational Psychology 66(5), 688.

Serfling, R. J. (2009). Approximation theorems of mathematical statistics. John Wiley & Sons.

Torgovitsky, A. (2015). Identification of nonseparable models using instruments with small support. Economet-
rica 83(3), 1185-1197.

Vytlacil, E. (2002). Independence, monotonicity, and latent index models: An equivalence result. FEconomet-
rica 70(1), 331-341.

Vytlacil, E. and N. Yildiz (2007). Dummy endogenous variables in weakly separable models. Econometrica 75(3),
T57-779.

565



	Literature review
	Proofs of Lemmas 2, 3, 4 and 5
	Proofs of Lemmas 6, 7, 8, 9 and Theorem B.1
	Bias correction
	Nonparametric bootstrap
	Additional Monte Carlo simulation results

