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LECTURE: QUANTILE REGRESSION

Motivation
A correctly specified linear regression model describes the conditional mean of the dependent variable Yi,

E(Yi|Xi) = X ′iβ. (1)

and, therefore, captures the effect of Xi on the conditional mean of Yi. The effect of Xi can be quite different
if one focuses on other parts of the conditional distribution of Yi (besides the mean). Consider the following
normal model with heteroskedastic errors:

Yi = X ′iβ + Ui,

Ui | Xi ∼ N(0, σ2(Xi)).

When the conditional distribution of Yi given Xi is continuous, for τ ∈ (0, 1) the τ -th conditional quantile
of the distribution of Yi given Xi is defined as qτ (Xi) that satisfies:

P (Yi ≤ qτ (Xi) | Xi) = τ,

or
F (qτ (Xi) | Xi) = τ,

where F (·|Xi) denotes the conditional CDF of Yi given Xi.
Let zτ denote the τ -th quantile of the standard normal distribution. Since

Yi −X ′iβ
σ(Xi)

| Xi ∼ N(0, 1),

we have

τ = P

(
Yi −X ′iβ
σ(Xi)

≤ zτ | Xi

)
= P (Yi ≤ X ′iβ + σ(Xi)zτ | Xi) ,

which implies that the τ -th conditional quantile of the distribution of Yi is given by

qτ (Xi) = X ′iβ + σ(Xi)zτ .

The marginal effect of Xi on the τ -th quantile of Yi is therefore given by:

∂qτ (Xi)

∂Xi
= β +

∂σ(Xi)

∂Xi
zτ .

Thus, if the errors are homoskedastic (σ(Xi) = σ a.s.) the effect of Xi is the same for all τ ∈ (0, 1) and
coincides with the effect on the conditional mean of Yi (which corresponds to τ = 0.5). However, in the
heteroskedastic model, the effect can be quite different for different τ . Moreover, since zτ < 0 for τ < 0.5
and zτ > 0 for τ > 0.5, the contribution of ∂σ(Xi)/∂Xi has opposite effects on upper and lower quantiles.

Hence, even in the simple normal heteroskedastic regression model, the effect of Xi is heterogeneous over
different parts of the distribution. The idea of the quantile regression model is to capture the heterogeneity
of the effects across quantiles without specifying parametrically the conditional distribution F (· | Xi)
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Check function and estimation of quantiles
Recall that the mean of the distribution of Yi (unconditional) can be defined as the minimizer of the criterion
function depending on the expected squared distance of Yi from y ∈ R:

EYi = arg min
y∈R

E (Yi − y)
2
.

This definition motivates least squares estimation methods. It turns out that quantiles can be defined in a
similar manner as minimizers of certain distance function.

For τ ∈ (0, 1), define the so-called check function

ρτ (u) = u · (τ − 1(u < 0)).

If the distribution of Yi is continuous, one can show that the τ -th quantile of the distribution of Yi, say qτ ,
minimizes the distance between Yi and y ∈ R, where the distance is defined using the check function:

qτ = arg min
y∈R

Eρτ (Yi − y). (2)

This can be shown by establishing that the first-order condition for the above problem is given by τ−F (qτ ) =
0, where F (·) is the CDF of Yi and qτ is the τ -th quantile of Yi. Hence, the estimator of qτ can be constructed
as

q̂τ,n = arg min
y∈R

n−1
n∑
i=1

ρτ (Yi − y).

Quantile regression
We assume that data {(Yi, X ′i)′ : i = 1, . . . , n} are iid. Suppose that the conditional distribution of Yi given
Xi is continuous, and let F (· | Xi) denote the conditional CDF of Yi:

F (y | Xi) = P (Yi < y | Xi).

Note that we leave the functional form of the CDF F (· | Xi) unspecified (unknown).
Similarly to the linear mean regression model in (1), the quantile regression model assumes that the τ -th

conditional quantile of Yi given Xi is a parametric function of Xi:

qτ (Xi) = X ′iβτ , (3)

where βτ ∈ B ⊂ Rk, i.e.
F (X ′iβτ | Xi) = τ.

Note that βτ depends on τ and, therefore, the effect of Xi is allowed to be heterogeneous across quantiles of
the conditional distribution of Yi.

Proposition 1. Suppose that the conditional distribution of Yi given Xi is continuous, (3) holds, and EXiX
′
i

is positive definite. Then,
βτ = arg min

b∈Rk
Eρτ (Yi −X ′ib).

Proof. Eρτ (Yi − X ′ib) = EE [ρτ (Yi −X ′ib) | Xi] ≥ EE [ρτ (Yi −X ′iβτ ) | Xi] = Eρτ (Yi − X ′iβτ ), where the
inequality holds by (2) and (3). Moreover, since EXiX

′
i is positive definite, the inequality is strict when

b 6= βτ .
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The check-function based estimator of βτ is an extremum estimator:

β̂τ,n = arg min
b∈B

Qn(b), (4)

Qn(b) = n−1
n∑
i=1

ρτ (Yi −X ′ib),

where we assume that B is compact.
By the WLLN and when E|Yi| <∞ and E‖Xi‖ <∞,

Qn(b) = n−1
n∑
i=1

ρτ (Yi −X ′ib)→p Eρτ (Yi −X ′ib) = Q(b)

for all b ∈ B. Moreover, βτ is the unique minimizer of Q(b). Hence, to establish consistency of β̂τ,n, we need
to show that convergence of Qn(b) to Q(b) holds uniformly over b ∈ B. The latter can be established using
the following property of the check function.

Proposition 2. |ρτ (u1)− ρτ (u2)| ≤ 2 · |u1 − u2| .

Proof. Write

|ρτ (u1)− ρτ (u2)| = |u1(τ − 1(u1 < 0))− u2(τ − 1(u2 < 0))|
≤ τ |u1 − u2|+ |∆|, where

∆ = u2 · 1(u2 < 0)− u1 · 1(u1 < 0).

We have four possible cases:

1. Suppose that u2 < 0 and u1 < 0:

∆ = u2 − u1 =⇒ |∆| ≤ |u2 − u1|.

2. Suppose that u2 > 0 and u1 > 0:

∆ = 0 =⇒ |∆| ≤ |u2 − u1|.

3. Suppose that u2 > 0 and u1 < 0:

0 < ∆ = −u1 ≤ u2 − u1 =⇒ |∆| ≤ |u2 − u1|.

4. Suppose that u2 < 0 and u1 > 0:

0 > ∆ = u2 > u2 − u1 =⇒ |∆| ≤ |u2 − u1|.

Hence,

|ρτ (u1)− ρτ (u2)| ≤ (1 + τ) · |u2 − u1|
≤ 2 · |u2 − u1|.

Proposition 2 shows that the check function is Lipschitz. The result can be used to show stochastic
equicontinuity of

Hn(b) = Qn(b)−Q(b) = n−1
n∑
i=1

(ρτ (Yi −X ′ib)− Eρτ (Yi −X ′ib)) , (5)

which in turn can be used to show uniform convergence of Qn(b) and consistency of β̂τ,n.
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Proposition 3. Suppose that E‖Xi‖ < ∞. Then, {Hn(b) : n ≥ 1} is stochastically equicontinuous: for
every ε > 0 there is δ > 0 such that

lim sup
n→∞

P

(
sup
b1∈Rk

sup
b2:‖b1−b2‖<δ

|Hn(b1)−Hn(b2)| > ε

)
< ε.

Proof. We have:

|Hn(b1)−Hn(b2)| ≤ n−1
n∑
i=1

|ρτ (Yi −X ′ib1)− ρτ (Yi −X ′ib2)|+ E |ρτ (Yi −X ′ib1)− ρτ (Yi −X ′ib2)|

≤ 2

{
n−1

n∑
i=1

|X ′i(b1 − b2)|+ E |X ′i(b1 − b2)|

}

≤ 2‖b1 − b2‖

{
n−1

n∑
i=1

‖Xi‖+ E‖Xi‖

}
,

where the result in the first line holds by the triangle inequality, the result in the second line holds by
Proposition 2, and the result in the last line holds by the Cauchy-Schwartz inequality. Thus,

P

(
sup
b1∈Rk

sup
b2:‖b1−b2‖<δ

|Hn(b1)−Hn(b2)| > ε

)
≤ P

(
2δ

{
n−1

n∑
i=1

‖Xi‖+ E‖Xi‖

}
> ε

)

≤ 4δE‖Xi‖
ε

,

where the result in the first line holds by Markov’s inequality. To complete the proof, choose

δ <
ε2

4E‖Xi‖
.

Asymptotic normality of quantile regression estimators
The first order condition for the optimization problem in (4) is given by

op

(
1

n1/2

)
=
∂Qn(β̂τ,n)

∂b

=
1

n

n∑
i=1

∂ρτ (Yi −X ′iβ̂τ,n)

∂b

=
1

n

n∑
i=1

(
τ − 1(Yi < X ′iβ̂τ,n)

)
Xi (6)

where the op-term in the first line is to allow for approximate optimization by numerical methods. The
equality in the third line holds because the conditional distribution of Yi is continuous: while the derivative
of ρτ (u) is undefined at u = 0, P (Yi = X ′iβ̂τ,n) = 0, and for u 6= 0,

∂ρτ (u)

∂u
= τ − 1(u < 0).

Since
E (τ − 1(Yi < X ′iβτ ) | Xi) = τ − F (X ′iβτ | Xi) = 0,
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we can interpret the term
τ − 1(Yi < X ′iβ̂τ,n)

as the residual for the quantile regression. Hence, the condition in (6) can be interpreted as the normal
equation for the quantile regression: the estimator β̂τ,n is chosen so that the residuals would be approximately
orthogonal to the regressors in the sample.

A standard approach for establishing asymptotic normality of extremum estimators would involve the
mean-value expansion of ∂Qn(β̂τ,n)/∂β around ∂Qn(βτ )/∂β. Unfortunately, this approach cannot be used
with quantile regression, because the second derivative of Qn(β̂τ,n) is zero with probability one: since
P (Yi = X ′iβ̂τ,n) = 0,

∂
(
τ − 1(Yi < X ′iβ̂τ,n)

)
∂b

= 0 a.s.

This is because the function ∂Qn(b)/∂b changes with b only in jumps, and thus suffers from non-differentiability.
Hence, an alternative approach is needed.

Below, we will describe the approach of Andrews (1994, Section 3.2). The approach can be used when
estimators are defined using non-differentiable functions and heavily relies on stochastic equicontinuity.

While the sample function
1

n

n∑
i=1

(τ − 1(Yi < X ′ib))Xi

is discontinuous (as a function of b), its population counterpart is continuous and differentiable:

m(b) = E [(τ − 1(Yi < X ′ib))Xi] = E [(τ − F (X ′ib | Xi))Xi] .

Hence, m(β̂τ,n) can be mean-value expanded around m(βτ ) = 0.
Define an empirical process

νn(b) =
1

n1/2

n∑
i=1

{(τ − 1(Yi < X ′ib))Xi −m(b)} , (7)

and note that Eνn(b) = 0 for every b ∈ B. The family of functions νn(·), {νn(·) : n ≥ 1}, is stochastically
equicontinuous if for all ε > 0 there is δ > 0 such that

lim sup
n→∞

P

(
sup
b1∈B

sup
b2:‖b1−b2‖<δ

‖νn(b1)− νn(b2)‖ > ε

)
< ε.

Note that νn(·) ∈ Rk, i.e. νn(·) is vector-valued, and ‖ · ‖ denotes the Euclidean norm.
Let f(· | Xi) be the PDF corresponding to F (· | Xi).

Proposition 4. Suppose that {νn(·) : n ≥ 1} is stochastically equicontinuous. Let

B(b) = E [f(X ′ib | Xi)XiX
′
i] ,

Ωτ = τ(1− τ)EXiX
′
i,

Suppose that f(· | ·) is bounded from above, f(· | Xi) is continuous a.s., E‖Xi‖2 < ∞, and EXiX
′
i and

Bτ = B(βτ ) are positive definite. Then,

n1/2(β̂τ,n − βτ )→d N
(
0, B−1

τ ΩτB
−1
τ

)
.
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Proof. Using the definition of νn(b), re-write the first-order condition in (6) as

op(1) = n1/2 ∂Qn(β̂τ,n)

∂b

=
1

n1/2

n∑
i=1

(
τ − 1(Yi < X ′iβ̂τ,n)

)
Xi

=
1

n1/2

n∑
i=1

{(
τ − 1(Yi < X ′iβ̂τ,n)

)
Xi −m(β̂τ,n)

}
+ n1/2m(β̂τ,n)

= νn(β̂τ,n) + n1/2m(β̂τ,n). (8)

Because β̂τ,n →p βτ and by stochastic equicontinuity of {νn(·) : n ≥ 1},

νn(β̂τ,n)− νn(βτ ) = op(1). (9)

To show (9), first note that, by consistency of β̂τ,n, for all δ > 0,

lim
n→∞

P
(
‖β̂τ,n − βτ‖ ≥ δ

)
= 0.

Next,

P
(
‖νn(β̂τ,n)− νn(βτ )‖ > ε

)
= P

(
‖νn(β̂τ,n)− νn(βτ )‖ > ε, ‖β̂τ,n − βτ‖ < δ

)
+ P

(
‖νn(β̂τ,n)− νn(βτ )‖ > ε, ‖β̂τ,n − βτ‖ ≥ δ

)
≤ P

(
‖νn(β̂τ,n)− νn(βτ )‖ > ε, ‖β̂τ,n − βτ‖ < δ

)
+ P

(
‖β̂τ,n − βτ‖ ≥ δ

)
= P

(
‖νn(β̂τ,n)− νn(βτ )‖ > ε, ‖β̂τ,n − βτ‖ < δ

)
+ o(1)

≤ P

(
sup
b1∈B

sup
b2:‖b1−b2‖<δ

‖νn(b1)− νn(b2)‖ > ε

)
+ o(1). (10)

In view of the stochastic equicontinuity of {νn(·) : n ≥ 1} and (10),

lim sup
n→∞

P
(
‖νn(β̂τ,n)− νn(βτ )‖ > ε

)
< ε for all ε > 0, (11)

which implies that1

lim
n→∞

P
(
‖νn(β̂τ,n)− νn(βτ )‖ > ε

)
= 0 for all ε > 0. (12)

Using the result in (9), we can re-write (8) as

op(1) = (νn(βτ ) + op(1)) + n1/2m(β̂τ,n)

= νn(βτ ) + n1/2m(βτ ) +
∂m (β∗n)

∂b′
n1/2

(
β̂τ,n − βτ

)
,

where the result in the last line holds by absorbing the op-term on the right-hand side with that on the
left-hand side, and by applying a mean-value expansion to m(β̂τ,n). Here, β∗n denotes the mean value that
satisfies

‖β∗n − βτ‖ ≤ ‖β̂τ,n − βτ‖,
1Let ∆n = ‖νn(β̂τ,n) − νn(βτ )‖. Suppose (12) is not true. Then there is ε′ > 0 and 0 < η < ε′ such that

lim supn→∞ P (‖∆n‖ > ε′) ≥ η. However, since η < ε′, η ≤ lim supn→∞ P (‖∆n‖ > ε′) ≤ lim supn→∞ P (‖∆n‖ > η), which
contradicts (11). Hence, lim supn→∞ P (‖∆n‖ > ε) = 0 for all ε > 0. Moreover, since probabilities are bounded by zero from
below, lim sup can be replaced by lim.
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which implies that
β∗n →p βτ .

Moreover,

∂m (β∗n)

∂b′
= −E [f(X ′iβ

∗
n | Xi)XiX

′
i]

= −B(β∗n)

→p −Bτ ,

where the result in the last line holds by continuity of f(· | Xi) and the dominated convergence theorem.
Note that the matrices B(b) are finite since f(· | Xi) is bounded and E‖Xi‖2 <∞.

Since m(βτ ) = 0, we have

op(1) = νn(βτ )− (Bτ + op(1))n1/2
(
β̂τ,n − βτ

)
,

or

n1/2
(
β̂τ,n − βτ

)
= (Bτ + op(1))

−1
(νn(βτ ) + op(1))

=
(
B−1
τ + op(1)

)
(νn(βτ ) + op(1)) , (13)

where the equality in the second line holds by Slutsky’s lemma since Bτ is positive definite. Next,

νn(βτ ) =
1

n1/2

n∑
i=1

(τ − 1(Yi < X ′iβτ ))Xi

→d N(0,Ωτ ), (14)

which holds by the CLT since Ωτ is finite and positive definite, and

E
[
(τ − 1(Yi < X ′iβτ ))2 | Xi

]
= τ2 − 2τF (X ′iβτ | Xi) + F (X ′iβτ | Xi)

= τ − τ2

= τ(1− τ),

and therefore
V ar ((τ − 1(Yi < X ′iβτ ))Xi) = Ωτ .

The result follows from (13) and (14).

Stochastic equicontinuity of the empirical process νn(·)
Unlike Hn(·) in equation (5), which is scaled by n−1, the empirical process νn(·) in equation (7) is scaled by
n−1/2. Hence, the asymptotic behavior of νn(·) is driven by the CLT instead of the LLN. As a result, estab-
lishing stochastic equicontinuity of {νn(·)} is more demanding than that for {Hn(·)}. While the complete
formal proof of the result is beyond the scope of this course, we will outline the main steps and ideas.

First, we will show that the distance between νn(b1) and νn(b2) can be bounded using the distance
‖b1 − b2‖.

Proposition 5. Suppose that f(· | ·) is bounded from above, and E‖Xi‖3 <∞. Then for small ‖b1−b2‖ < 1,

E‖νn(b1)− νn(b2)‖2 = O (‖b1 − b2‖) .
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Proof. First,

‖νn(b1)− νn(b2)‖2

=

∥∥∥∥∥ 1

n1/2

n∑
i=1

{1(Yi < X ′ib1)Xi − E [F (X ′ib1 | Xi)Xi]} −
1

n1/2

n∑
i=1

{1(Yi < X ′ib2)Xi − E [F (X ′ib2 | Xi)Xi]}

∥∥∥∥∥
2

=

k∑
j=1

|νn,j(b1)− νn,j(b2)|2 , (15)

where for j = 1, . . . , k,

νn,j(b) =
1

n1/2

n∑
i=1

{1(Yi < X ′ib)Xi,j − E [F (X ′ib | Xi)Xi,j ]} . (16)

Note that we defined νn,j(b) without the τ term as the latter does not depend on b. Next,

E |νn,j(b1)− νn,j(b2)|2 = V ar (νn,j(b1)− νn,j(b2))

= V ar (νn,j(b1)) + V ar (νn,j(b2))− 2Cov(νn,j(b1), νn,j(b2)). (17)

For the variance terms, we have

V ar (νn,j(b)) = E
[
1(Yi < X ′ib)X

2
i,j

]
− (E [F (X ′ib | Xi)Xi,j ])

2

= E
[
F (X ′ib | Xi)X

2
i,j

]
− (E [F (X ′ib | Xi)Xi,j ])

2
. (18)

Let u1 ∧ u2 denote the minimum between u1 and u2. For the covariance term, we have

Cov(νn,j(b1), νn,j(b2)) = E
[
F (X ′ib1 ∧X ′ib2 | Xi)X

2
i,j

]
− E [F (X ′ib1 | Xi)Xi,j ] · E [F (X ′ib2 | Xi)Xi,j ] ,

where

E
[
F (X ′ib1 ∧X ′ib2 | Xi)X

2
i,j

]
=

E
[
F (X ′ib1 | Xi)X

2
i,j · 1(X ′ib1 ≤ X ′ib2)

]
+ E

[
F (X ′ib2 | Xi)X

2
i,j · 1(X ′ib1 > X ′ib2)

]
. (19)

Moreover,

F (X ′ib1 | Xi) = F (X ′ib2 | Xi) + f(X ′ib1,2 | Xi) ·X ′i(b1 − b2)

= F (X ′ib2 | Xi) + ‖Xi‖O(‖b1 − b2‖), (20)

where the result in the last line holds with probability one because f(· | ·) is bounded from above (and by
the Cauchy-Schwartz inequality).

By (18) and (20),

V ar (νn,j(b1)) = E
[
F (X ′ib2 | Xi)X

2
i,j

]
+ E

[
‖Xi‖X2

i,j

]
·O(‖b1 − b2‖)

− {E [F (X ′ib2 | Xi)Xi,j ] + E [‖Xi‖Xi,j ] ·O(‖b1 − b2‖)}
2

= V ar (νn,j(b2)) +O(‖b1 − b2‖), (21)

where the result in the last line holds because ‖b1 − b2‖2 < ‖b1 − b2‖, and E
[
‖Xi‖X2

i,j

]
≤ E‖Xi‖3. By (19)

and (20),

E
[
F (X ′ib1 ∧X ′ib2 | Xi)X

2
i,j

]
= E

[
F (X ′ib2 | Xi)X

2
i,j

]
+ E

[
‖Xi‖X2

i,j · 1(X ′ib1 ≤ X ′ib2)
]
O(‖b1 − b2‖),

and therefore,
Cov(νn,j(b1), νn,j(b2)) = V ar (νn,j(b2)) +O(‖b1 − b2‖). (22)

The result follows by (15), (17), (21), and (22).
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Note that to have the result of Proposition 5, it is important that Eνn(·) = 0.
The result of Proposition 5 together with Markov’s inequality imply that ‖νn(b1) − νn(b2)‖ is small in

probability when ‖b1 − b2‖ is small. However, for stochastic equicontinuity instead of a fixed pair b1, b2,
we need to consider supb1,b2∈B:‖b1−b2‖<δ ‖νn(b1) − νn(b2)‖. Using so-called maximal inequalities, one can
strengthen the result from fixed b1, b2 to that with the supremum, provided that the size of the class of
functions under the supremum is not too large in the sense defined below.

Given iid data {Wi : i = 1, . . . , n}, let G be a class of real-valued measurable functions g of Wi. The
empirical process Gn evaluated at g is defined as

Gng =
1

n1/2

n∑
i=1

(g(Wi)− Eg(Wi)) , g ∈ G.

Given two functions l and u (of Wi),2 the bracket [l, u] is the set of all functions g such that l ≤ g ≤ u:

[l, u] = {g ∈ G : l ≤ g ≤ u}.

A collection of brackets {[l, u]α : α ∈ A} covers G if G ⊂ ∪α∈A[l, u]α. Note that the functions l and u do not
have to be in G. With the Lp-norm defined as

‖g‖p = (E|g|p)1/p
= (E|g(Wi)|p)1/p

,

we say that a bracket [l, u] is an ε-bracket in Lp if ‖u − l‖p < ε. The bracketing number N[](ε,G, Lp) is the
smallest number of ε-brackets [l, u] needed to cover G. The entropy with bracketing is logN[](ε,G, Lp). The
entropy measures the size of G.

The following result is a maximal inequality based on the entropy with bracketing (see van der Vaart,
1998, Corollary 19.34).

Proposition 6. Suppose that (i) ‖g‖2 < δ for all g ∈ G, and (ii) there is an envelope function G such that
|g| ≤ G for all g ∈ G. Then for some constant c > 0,3

E sup
g∈G
|Gng| ≤ c ·

{∫ δ

0

√
logN[](ε,G, L2)dε+ n1/2E

[
G · 1

(
G > δ

√
n

logN[](δ,G, L2)

)]}
. (23)

The result shows that a maximal inequality for the empirical process indexed by functions in G depends
on the size of G as measured by the integral of the entropy with bracketing. The following result is similar
to Theorem 19.5 in van der Vaart (1998).

Proposition 7. Suppose that ∫ 1

0

√
logN[](ε,G, L2)dε <∞. (24)

Then, {Gn : n ≥ 1} is stochastically equicontinuous: i.e. for every ε > 0 there is δ > 0 such that

lim sup
n→∞

P

(
sup
g1∈G

sup
g2∈G:‖g1−g2‖2<δ

|Gn (g1 − g2)| > ε

)
< ε.

Remark. The bracketing number N[](ε,G, L2) increases to infinity as ε ↓ 0, and therefore the integral in
(24) is determined by the behavior of the bracketing numbers near zero. The upper bound of the integral
is arbitrary, and one can use any constant. Moreover, N[](ε,G, L2) is a decreasing function of ε, and for all
large enough ε’s, N[](ε,G, L2) = 1. Hence, the entropy integral condition in (24) can be replaced with∫ ∞

0

√
logN[](ε,G, L2)dε <∞. (25)

2To simplify the notation, sometimes we suppress the dependence of functions on Wi.
3For general empirical processes, the supremum in (23) may not be measurable, which can be addressed by using outer

probabilities and expectations (see van der Vaart, 1998, Chapter 18.2).
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Proof of Proposition 7. Since the integral in (24) is finite, N[](ε,G, L2) < ∞ for all ε > 0. Therefore, for
every ε > 0 there is a finite collection of ε-brackets covering G.

To satisfy condition (i) of Proposition 6, consider Gδ = {g1−g2 : g1, g2 ∈ G, ‖g1−g2‖2 < δ}. If g1 ∈ [l1, u1]
and g2 ∈ [u2, l2], then

g1 − g2 ∈ [l1 − u2, u1 − l2].

Moreover, if [lj , uj ] are ε/2-brackets, then

‖(u1 − l2)− (l1 − u2)‖2 ≤ ‖u1 − l1‖2 + ‖u2 − l2‖2 < ε.

Hence,
N[](ε,Gδ, L2) ≤ N2

[](ε/2,G, L2),

where N2
[](ε/2,G, L2) bound is obtained by considering all possible pairs of li’s and uj ’s of the collection of

ε/2-brackets that covers G.
The envelope function G for Gδ can be constructed as follows. For ε large enough, N[](ε,Gδ, L2) = 1.

Let l and u be the corresponding functions. We can take G = |l| + |u|. Moreover, since ‖u − l‖22 =
‖u‖22 + ‖l‖22 − 2E [u · l] < ∞, ‖G‖22 < ∞. Thus, condition (ii) of of Proposition 6 is satisfied with a square-
integrable envelope function.

Let

a(δ) = δ

√
1

logN[](δ,G, L2)
,

and note that for all δ > 0,
0 < a(δ) <∞.

For the second term on the right-hand side in (23) and every fixed δ > 0,

n1/2E
[
G · 1

(
G > a(δ)n1/2

)]
≤ 1

a(δ)
E
[
G2 · 1

(
G > a(δ)n1/2

)]
→ 0 as n→∞.

The inequality in the first line holds because for the purpose of the expectation, n1/2a(δ) < G. The result in
the second line holds by the dominated convergence theorem since EG2 <∞ and limn→∞ 1(G > a(δ)n1/2) =
0.

For the first term on the right-hand side in (23),∫ δ

0

√
logN[](ε,G, L2)dε→ 0 as δ → 0,

which holds because
∫ δ

0

√
logN[](ε,G, L2)dε <∞.

In the case of quantile regression, the maximal inequality can be applied as follows. Note that by (15)
in the proof of Proposition 5, without loss of generality it suffices to show stochastic equicontinuity of
{νn,1(·) : n ≥ 1}, where the empirical process νn,1(b), b ∈ B ⊂ Rk, is given by

νn,1(b) =
1

n1/2

n∑
i=1

{1(Yi < X ′ib)Xi,1 − E [F (X ′ib | Xi)Xi,1]} .

Proposition 8. Suppose that f(· | ·) is bounded from above, and P (‖Xi‖ ≤M) = 1 for some M > 0. Then,
{νn,1(·) : n ≥ 1} is stochastically equicontinuous: for every ε > 0 there is δ > 0 such that

lim sup n→∞P

(
sup
b1∈B

sup
b2:‖b1−b2‖<δ

|νn,1(b1)− νn,1(b2)| > ε

)
< ε.
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Proof. Consider the class of functions

G = {gb(y, x) = 1(y < x′b)x1 : b ∈ B ⊂ Rk},

where y ∈ R, x ∈ Rk, and x1 denotes the first element of x. By the same arguments as in the proof of
Proposition 5,

‖gb1 − gb2‖22 = E
[
(1(Yi < X ′ib1)− 1(Yi < X ′ib2))

2
X2
i,1

]
= E

[
F (X ′ib1 | Xi)X

2
i,1

]
+ E

[
F (X ′ib2 | Xi)X

2
i,1

]
− 2E

[
F (X ′ib1 ∧X ′ib2 | Xi)X

2
i,1

]
≤ K · ‖b1 − b2‖ (26)

for some constant K > 0 that depends on the bound for the density f(· | ·) and E‖Xi‖3, or

‖gb1 − gb2‖2 ≤
√
K · ‖b1 − b2‖.

Hence, whenever ‖b1 − b2‖ < ε2/K, ‖gb1 − gb2‖2 < ε.
Brackets [l, u] for G can be constructed as follows. Let b1, . . . , bJ ∈ B be as described below. We define

lj(y, x) = 1

(
y < x′bj −

ε2

2K
· sign(x1)

)
x1, (27)

uj(y, x) = 1

(
y < x′bj +

ε2

2K
· sign(x1)

)
x1. (28)

We have lj ≤ uj , and similarly to (26),
‖lj − uj‖2 ≤ ε.

A function gb ∈ [lj , uj ] if
lj(y, x) ≤ gb(y, x) ≤ uj(y, x).

When x1 > 0, the condition holds if

x′bj −
ε2

2K
≤ x′b ≤ x′bj +

ε2

2K
,

or

|x′(b− bj)| ≤
ε2

2K
.

Since |x′(b− bj)| ≤ M‖b − bj‖, gb ∈ [lj , uj ] when ‖b − bj‖ ≤ ε2/(2KM). Hence, the number of brackets
needed to cover B is the same as the number of balls of radius ε2/(2KM) needed to cover the compact set
B ⊂ Rk. With properly chosen b1, . . . , bJ , this number (J) is of order(

2 supb∈B max1≤j≤k |bj |
ε2/(2KM)

)k
=

(4KM · supb∈B 2 supb∈B max1≤j≤k |bj |)k

ε2k

Hence, when constructing lj and uj in (27)-(28), b1, . . . , bJ can be chosen as the centers of the balls with
radius ε2/(2KM) that cover B. We have that there is a constant ∆ > 0 such that

N[](ε,G, L2) ≤ ∆

ε2k
.

Lastly, we verify the entropy integral condition in (25).∫ ∞
0

√
logN[](ε,G, L2)dε ≤

∫ ∞
0

√
log

∆

ε2k
dε

= ∆
1
2k

∫ ∞
0

√
log

1

ε2k
dε

= ∆
1
2k (2k)

1/2
∫ ∞

0

u1/2e−udu,
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where the equality in the second line holds by the change of variable argument: Define u = log ∆
ε2k

, so that
eu = ∆

ε2k
, ε2k = ∆e−u, ε = ∆1/(2k)e−u/(2k), and dε = −∆1/(2k)

2k e−u/(2k). Note that the bounds of integration
switch: ∫ ∞

0

√
log

∆

ε2k
dε = −∆

1
2k

2k

∫ 0

∞
u1/2e−u/2kdu

= ∆
1
2k

∫ ∞
0

u1/2e−u/2kd(u/2k)

= ∆
1
2k (2k)1/2

∫ ∞
0

u1/2e−udu.

∫ ∞
0

u1/2e−udu =

∫ 1

0

u1/2e−udu+

∫ ∞
1

u1/2e−udu

≤
∫ 1

0

e−udu+

∫ ∞
1

ue−udu

= 1− 1

e
+

∫ ∞
1

ue−udu

= 1 +
1

e
,

where the result in the last line is by applying integration by parts to the second integral:∫ ∞
1

ue−udu = −
∫ ∞

1

ue−ud(−u) = −
∫ ∞

1

ud(e−u) = −ue−u
∣∣∞
1

+

∫ ∞
1

e−udu =
2

e
.
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