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SELECTING REGRESSORS USING THE BAYESIAN
INFORMATION CRITERION (BIC)

Abstract. In the context of linear regression and OLS, we discuss information-

criteria-based approaches for selecting relevant regressors our of a list of potential

regressors. We discuss consistency and oracle properties, and post-selection inference.
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1. Selecting regressors

We will discuss the problem of selecting relevant regressors in the context of the

linear regression model. However, the procedures discussed here can be generalized and

similarly applied with nonlinear models such as logit, GMM, and etc. Consider a linear

regression model with k potential regressors :

Yi =
k∑

j=1

βjXi,j + Ui,(1.1)

EXi,jUi = 0, j = 1, . . . , k.

For now we assume that the number of potential regressors is small: k is fixed an does

not depend on n.

Let the set A denote the list of regressors with non-zero coefficients:

A = {j : βj 6= 0} .
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For example, A = {1, 3, 7} implies that only the regressors Xi,1, Xi,3, and Xi,7 have

non-zero coefficients, and that the remaining regressors have coefficients equal to zero.

We use A0 to denote the true set of relevant regressors : i.e. the true data generating

process (DGP) for Yi only includes the regressors in A0:

Yi =
∑
j∈A0

βjXi,j + Ui.

Our goal is to estimate A0 using the data {(Yi, X ′i)′, i = 1, . . . , n}. We use Ân to denote

an estimated set of relevant regressors produced by a selection procedure. We say that

the selection procedure is consistent if

(1.2) P
(
Ân = A0

)
→ 1

as n→∞.

Let β = (β1, . . . , βk)′, and by βA we denote the subvector of β that includes only the

coefficients in A:

βA = (βj : j ∈ A) .

We use |A| to denote the number of elements in A, and hence βA is a |A|-subvector of

the k-vector β.

Suppose a procedure produced a set of selected regressors Ân and vector of estimates

β̂n = (β̂n,1, . . . , β̂n,k)′. Note that it is reasonable to set β̂n,j = 0 for j /∈ Ân. We say that

the procedure is oracle if in addition to the consistency property in (1.2),

√
n(β̂A0 − βA0)→d N(0, V (A0)),

where V (A0) is the best asymptotic variance one can obtain when the true model A0 is

known. The oracle property means that not only the econometrician consistently selects

the true regressors, but also the coefficients on the relevant regressors are estimated as

precisely as when the set of the true relevant regressors in the DGP is known.
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2. BIC

Recall that if the econometrician tries to select the regressors by minimizing the

sample sum of squared residuals (SSR), or equivalently maximizing R2, the procedure

would result in overfitting: the SSR is monotone non-increasing in the number of in-

cluded regressors. The idea behind BIC is to penalize the SSR for the model complexity.

Let Xi = (Xi,1, . . . , Xi,k)′, and define Xi,A as the subvector of Xi that includes only

the regressors in A:

Xi,A = (Xi,j : j ∈ A).

Again, Xi,A is a |A|-subvector of the k-vector Xi. The true DGP can now be written

as

Yi =
∑
j∈A0

βjXi,j + Ui

= X ′i,A0
βA0 + Ui.

Let β̂n,A(A) denote the OLS estimator of βA that only uses the regressors in A:

β̂n,A(A) =

(
n∑

i=1

Xi,AX
′
i,A

)−1 n∑
i=1

Xi,AYi.

We can set

β̂n,Ac(A) = 0,

and view β̂n(A) = (β̂n,A(A)′, β̂n,Ac(A)′)′ as the estimator of β = (β′A, β
′
Ac)′ under the

model A. The corresponding SSR is given by

SSRn(A) =
n∑

i=1

(
Yi −X ′i,Aβ̂n,A(A)

)2
.

The complexity of the modelA can be measured by the number of included regressors,

i.e. the number of elements in A. BIC for the model A is defined as

BICn(A) = SSRn(A) + |A| log n,
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where the second term is a penalty term. Note that a model with more included regres-

sors receives a larger penalty. A BIC-based selection procedure selects the regressors

by minimizing BIC across all possible models:

ÂBIC
n = arg min

A
BICn(A).

We show below that BIC selects the relevant regressors consistently.

Proposition 2.1. Suppose that data are iid, EXiX
′
i and EU2

i XiX
′
i are finite and pos-

itive definite, and EU2
i <∞. Then P

(
ÂBIC

n = A0

)
→ 1 as n→∞.

Proof. It suffices to show that for all A 6= A0

(2.1) P (BICn(A) > BICn(A0))→ 1,

i.e. the true model A0 minimizes BIC with probability approaching one.

First, consider the average SSR for the true model:

n−1SSRn(A0) = n−1
n∑

i=1

(
Yi −X ′i,A0

β̂n,A0(A0)
)2

= n−1
n∑

i=1

(
Ui −X ′i,A0

(β̂n,A0(A0)− βA0)
)2

= n−1
n∑

i=1

U2
i + (β̂n,A0(A0)− βA0)

′

(
n−1

n∑
i=1

Xi,A0X
′
i,A0

)
(β̂n,A0(A0)− βA0)

− 2

(
n−1

n∑
i=1

Xi,A0Ui

)
(β̂n,A0(A0)− βA0)

= EU2
i + op(1),

where the op(1) term in the last line is by the LLN and consistency of the OLS estimator

under the true model:

n−1
n∑

i=1

U2
i = EU2

i + op(1),

β̂n,A0 = βA0 + op(1),
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n−1
n∑

i=1

Xi,A0X
′
i,A0

= EXi,A0X
′
i,A0

+ op(1),

n−1
n∑

i=1

Xi,A0Ui = op(1).

Suppose that a modelA that omits some relevant regressors:

(A ∩A0) 6= A0.

Since the OLS estimator is in general inconsistent when there are omitted relevant

regressors,

β̂n(A)− β →p δ 6= 0,

where β̂n,j(A) is the corresponding element of β̂n,A(A) for j ∈ A, and β̂n(A) = 0 for

j /∈ A. We have:

n−1SSRn(A) = n−1
n∑

i=1

(
Yi −X ′iβ̂n(A)

)2
= n−1

n∑
i=1

(
Ui −X ′i

(
β̂n(A)− β

))2
= n−1

n∑
i=1

U2
i + (β̂n(A)− β)′

(
n−1

n∑
i=1

XiX
′
i

)
(β̂n(A)− β)

− 2

(
n−1

n∑
i=1

XiUi

)
(β̂n(A)− β)

= EU2
i + δ′EXiX

′
iδ + op(1).

Note also that

|A| log n

n
= o(1).

Therefore, for such a model A,

P (BICn(A) > BICn(A0)) = P
(
n−1BICn(A) > n−1BICn(A0)

)
= P

(
n−1SSRn(A) + |A| log n

n
> n−1SSRn(A0) + |A0|

log n

n

)
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= P (δ′EXiX
′
iδ + op(1) + o(1) > 0)

→ 1,

where convergence in the last line holds because δ 6= 0 and EXiX
′
i is positive definite.

Next, consider a model A such that

A0 ⊂ A.

In this case, A contains all the relevant regressors as well as some irrelevant. The OLS

estimator β̂n,A(A) is consistent and asymptotically normal:

n1/2(β̂n,A(A)− βA)→d ΨA,

where

ΨA ∼ N (0, V (A)) ,

V (A) =
(
EXi,AX

′
i,A
)−1

EU2
i Xi,AX

′
i,A
(
EXi,AX

′
i,A
)−1

.

The result follows from

n−1/2
n∑

i=1

XiUi →d ΦA,

where

ΦA ∼ N
(
0, EU2

i Xi,AX
′
i,A
)
.

We have:

SSRn(A)−
n∑

i=1

U2
i =

n∑
i=1

(
Ui −X ′i,A(β̂n,A(A)− βA)

)2
−

n∑
i=1

U2
i

= n1/2(β̂n,A(A)− βA)′

(
n−1

n∑
i=1

Xi,AX
′
i,A

)
n1/2(β̂n,A(A)− βA)

− 2

(
n−1/2

n∑
i=1

Xi,AUi

)
n1/2(β̂n,A(A)− βA)

→d Ψ′A
(
EXi,AX

′
i,A
)

ΨA − 2Φ′AΨA
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= Op(1).

By the same arguments,

SSRn(A0)−
n∑

i=1

U2
i →d Ψ′A0

(
EXi,A0X

′
i,A0

)
ΨA0 − 2Φ′A0

ΨA0

= Op(1).

Lastly, when A0 ⊂ A,

P (BICn(A) > BICn(A0)) = P (SSRn(A)− SSRn(A0) > (|A0| − |A|) log n)

= P (Op(1) > (|A0| − |A|) log n)

→ 1,

where convergence in the last line holds since |A0| < |A|, and therefore

(|A0| − |A|) log n→ −∞.

�

3. Post BIC inference

Suppose the econometrician selects the true model using ÂBIC
n and conducts inference

using β̂n(ÂBIC
n ). For j ∈ ÂBIC

n , the distribution of the estimator of the j-the coefficient

is given by

P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u
)

= P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n = A0

)
+ P

(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n 6= A0

)
= P

(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n = A0

)
+ o(1)

= P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u | ÂBIC
n = A0

)
P
(
ÂBIC

n = A0

)
+ o(1)
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= P
(
n1/2(β̂n,j(A0)− βj) ≤ u

)
(1 + o(1)) + o(1)

= P
(
n1/2(β̂n,j(A0)− βj) ≤ u

)
+ o(1).

where the second equality holds by

P
(
n1/2(β̂n,j(ÂBIC

n )− βj) ≤ u, ÂBIC
n 6= A0

)
≤ P

(
ÂBIC

n 6= A0

)
= o(1).

Hence, the BIC-based selection and estimation procedure is an oracle procedure.

4. Akaike Information Criterion (AIC)

AIC is another popular criterion for model selection (and actually precedes BIC).

AIC for a model A is defined as

AICn(A) = SSRn(A) + 2|A|.

In comparison with BIC, AIC penalizes the model complexity less heavily and, therefore,

tends to select a bigger model with more regressors than BIC.

By the same arguments as in the proof of Proposition 2.1, for a model A that omits

some relevant regressors, i.e. (A ∩A0) 6= A0,

P (AICn(A) > AICn(A0))→ 1.

However, because AIC penalty is not sufficiently strong, if A0 ⊂ A,

P (AICn(A) > AICn(A0)) 9 1.

Hence, while AIC detects omitted regressors with probability approaching one, it is

more likely to overfit by also including some irrelevant regressors than BIC.

5. Limitations

One should note several limitations of our arguments. First, we assumed that k is

small (fixed) and some of our arguments do not apply when the number of potential
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regressors is comparable to the sample size. However, this technical issue can be resolved

with somewhat different arguments.

More importantly, our analysis ignores the situation where some βj, while non-zero,

are very close to zero. It is unreasonable to expect that the BIC (or any other procedure)

can detect such small coefficients with a probability approaching one. Thus, even

in the limit, regressors with very small coefficients are likely to be omitted from the

model, which can potentially create an omitted variable bias. This shortcoming can

be addressed using a double selection procedure, which will be discussed later in the

context of Lasso.

Lastly, the BIC procedure may be infeasible in practice if the number of potential

regressors is very large. There are 2k possible models A, and if k = 30 one has to

run and compare over 1 billion potential regressions. For k = 40, one has to run

over 1 trillion models. For example, suppose that the econometrician considers flexible

specifications that include quadratic terms as well as pairwise interaction terms of the

right-hand side variables. In that case, 10 potential right-hand side variables generate

65 potential regressors.
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