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LECTURE 13
SPURIOUS REGRESSION, TESTING FOR UNIT ROOT

Spurious regression

In this section, we consider the situation when is one unit root process, say Y;, is regressed against another
unit root process, say X;, while the two processes are unrelated. Assume that
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where w2 and w? are the long-run variances of u; and v; respectively, and w,, is the long-run covariance

between u; and vy.
Let S,, be the OLS regression coefficient:
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Here we consider the regression without an intercept, however, essentially the same results can be obtained
for the regression with an intercept.
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From the FCLT we have

where Wx (r) and Wy (r) are two independent standard Brownian motions. Notice that convergence is joint,
which is important for all subsequent results.
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The function Wx ,, (1) is cadlag, constant on the interval (t — 1) /n < r < t/n, and, therefore,
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where the last result is by the CMT. Next,

n

n
n73/2 ZXt — n*3/2 Z (Xt—l + ut)
t=1

t=1

n n
S SRR o
t=1 t=1

=n"23 "X, 140, (1)

t=1

1
—d / BX (T) dr.
0

Now, consider

n n
’I’L_2ZXt2 = 7’1,_2Z(Xt_1 —|—ut)2
t=1 t=1
n

= pn2 in_l +2n72 Xn:Xt—lut +n 2 Zutz
t=1

t=1 t=1

= n2 ZXE—l +2n72 Z Xioqur +0,(1).
t=1

t=1



First,

Next,

and

where 0’

and

2 2 2
2Xt,1ut = Xt — thl — ut,

n_lth_lut— _12 (X7 — X724 —ui) /2
t=1
= (anfl —nlzuf> /2
(WXn —nlzut> /2

—d (BX ( ) ) /2
= (quX ( ) - Uu) /27
= Eu?. Therefore,

n2 ZXt_lut =0,(1),
t=1

n 1
n2 ZXE —q / B% (r)dr.
t=1 0

Next, consider Y | X;Y;. First,

Next,

Now, n

nY Xy Yia=nT') (n_l/Qth) (n_l/QYtq)
t=1

~
Il
-

Y (X1 4 ue) (Yeer +v)
=1

3

n
X
t=1

n n n n
—2 —2 —2 -2
= n E Xi1Yi1+n E Xi_1ve +n E Yioqug +n 5 UVt
t=1 t=1 t=1 t=1

Ly W —p Oyp, where 04, = Eugvy, and, therefore,

n=2 Z Uty = 0p (1)
t=1



Further,
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The convergence in distribution results in (1) and (2) are joint, and it follows that
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The result holds even if {u;} and {v;} are independent. One could expect that 3, would converge in
probability to zero, however, it converges in distribution to a random variable £ and, therefore, is inconsistent.
The random variable £ can be interpreted as a regression coefficient from the "population" or "continuous
time" regression of the Brownian motion By against Bx.

Next, consider the usual ¢-statistic for Hy : § = 0:
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where s2 is the sample variance of the fitted residuals.

si = (n-1) 1i
t=1
zn:Y e ZXQ—QB me>

t=1

Eanf mf:m)

t=1 t=1

/—\

~Bux)

= (n—=-1)"

Il
/—\/\

and, therefore,
1 1
nts? —g / BZ (r)dr — f/ Bx (r) By (r)dr
0 0

1
- / (By (r) — €Bx ())* dr.



Lastly,
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We conclude that
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and the econometrician will reject Hy : § = 0 with the probability approaching 1. This is despite the fact
that the two variables X and Y can be independent.

Hence, as n — oo, for any K > 0

>K>—>1,

Testing for unit root

Suppose that the scalar process {X;} is generated satisfies the following assumptions:
o X; =pXi1+u Xo=0.
o uy=C(L)e.
e {g} isiid, Fe; =0, Ee? = 0.
o« 7,12 < 00, C(1) £0.
We are interested in testing
Hy:p=1.

against
Hy: ‘p‘ < 1.

Under the null, X; = I (1), while under the alternative, it is a stationary short memory process.
Consider the regression of X; against X;_1:
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From the previous section, we know that
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where W is a standard Brownian motion, and
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In the unit root case, the asymptotic distribution depends on functionals of a standard Brownian motion and
the nuisance parameters, A, and w?. The convergence rate of p,, is faster than the usual \/n. Next, consider
the ¢ statistic for Hy : p = 1.
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Again, the asymptotic distribution of the statistic depends on the unknown nuisance parameters A\, o, and
w,,. Phillips (1987) and Phillips and Perron (1988) suggested an adjustment, which leads to an asymptotic

distribution free of nuisance parameters. Let o O’ and \ be consistent estimators of o2 and A, where A can be
estimated using the Newey-West type estimator:
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Notice that a consistent estimator of the long-run variance w;, is
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Consider the following modification of the ¢ statistic.

Under Hp : p =1,
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Under the alternative, |p| < 1, and p,, — 1 converges in probability to a negative constant. Consequently,
under the stationary alternatives, T' and Zp diverge to —oo. One should reject the null of unit root when

I < Coyy

where ¢, is such that
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Under the null, the distribution is non-standard, however, it is parameter free, and the critical values
can be simulated as follows. First, one generates n independent N (0, 1) random variables uj ..., u;, , and
computes
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One repeats this for r = 1,..., R, where R is large. The simulated critical value ¢, g is the o quantile of
(Ziyo..o. 2y}

Whlle the distribution of Z7 is free of nuisance parameters, it depends on the model. For example, in
general one would like to allow for an intercept, X; = p+ X;_1+u. In this case, p,, depends on the demeaned
th
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Notice that
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where Wx is a demeaned standard Brownian motion:
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Hence, in this case,
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and the asymptotic distribution of Z7 under the null of unit root is given by
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