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LECTURE 12
UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT

(Davidson (2000), Chapter 14; Phillips� Lectures on Unit Roots, Cointegration and Nonstationarity;
White (1999), Chapter 7)

Unit root processes

De�nition 1 (Random walk) The process fXtg is a random walk if it satis�es

(a) Xt = Xt�1 + "t for all t = 1; 2; : : : ;

(b) X0 = 0;

(c) f"tg is iid such that E"t = 0; 0 < E"2t <1:

Random walk is not a stationary process:

Xt = Xt�1 + "t

= (Xt�2 + "t�1) + "t

= X0 +
tX

j=0

"t

=
tX

j=0

"t:

The process has mean zero, however,
V ar (Xt) = t�

2:

A random walk with drift is de�ned as

Xt = �+Xt�1 + "t

= �t+
tX

j=0

"t:

Random walk is a member of a more general class of nonstationary processes.

De�nition 2 (Unit root process) The process fXtg is a unit root process if it satis�es (1� L)Xt = Ut;
where fUtg is a mean zero covariance stationary process with short memory.

For example, consider the process � (L) (1� L)Xt = �(L) "t; where � (L) and �(L) are lag polynomials
of �nite order and have all the roots outside the unit circle. The �rst di¤erence of Xt;

�Xt = Xt �Xt�1
= (1� L)Xt

is an ARMA(p; q) process. The process fXtg is referred as containing a unit root since its autoregressive
polynomial � (L) (1� L) has a unit root. We say that fXtg is an autoregressive integrated moving average
process ARIMA (p; d; q) ;

� (L) (1� L)dXt = �(L) "t;

where d indicates the number of time one has to di¤erence fXtg in order to obtain a covariance stationary
process with short memory (in the above example, d = 1).
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De�nition 3 (Integrated or di¤erence stationary processes) The process fXtg is integrated of order d, de-
noted as Xt = I (d), if it satis�es (1� L)dXt = Ut; where fUtg is a mean zero covariance stationary process
with short memory.

An I (1) or unit root process with drift is de�ned as

(1� L)Xt = �+ Ut:

Integrated processes are referred as di¤erence stationary, since, for example, in the case of I (1) ; the �rst
di¤erence is a stationary process. This is compared to another class of nonstationary processes:

De�nition 4 (Trend stationary process) The process fXtg is trend stationary if it satis�es Xt = �+�t+Ut;
where fUtg is a mean zero covariance stationary process with short memory.

A trend stationary process evolves along the line of deterministic trend. Deviations from the trend are
only of a short-run nature. The shocks have only temporary e¤ect, and its mean, � + �t describes the
behavior of the process in the long-run. On the other hand, an integrated process accumulates its shocks
and, therefore, is not ergodic. The shocks have permanent e¤ect, and the process deviates from its expected
value for very long periods of time.
Suppose that fXtg is a random walk with the increments fUtg such that EU2t = 1: We have

n�1=2Xn = n
�1=2

nX
t=1

Ut

!d N (0; 1) :

Let [a] be the integer part of a: For 0 � r � 1 de�ne the following function (partial sum)

Wn (r) = n�1=2X[nr]

= n�1=2
[nr]X
t=1

Ut: (1)

For �xed r;

Wn (r) = n
�1=2

[nr]X
t=1

Ut

= n�1=2 [nr]
1=2

0@[nr]�1=2 [nr]X
t=1

Ut

1A
!d r

1=2N (0; 1)

= N (0; r) :

Further, for �xed 0 � r1 < r2 � 1;

Wn (r2)�Wn (r1)!d N (0; r2 � r1) ;

and, for �xed 0 � r1 < r2 < : : : < rk � 1;0BBB@
Wn (r1)
Wn (r2)

...
Wn (rk)

1CCCA!d N

0BB@0;
0BB@

r1 r1 : : : r1
r1 r2 : : : r2
: : : : : : : : : : : :
r1 r2 : : : rk

1CCA
1CCA : (2)
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De�nition 5 (Brownian motion) The continuous process fW (t) : t � 0g is a standard Brownian motion if

(a) W (0) = 0 with probability one,

(b) For any 0 � r1 < r2 < : : : < rk and k; W (r1) ;W (r2)�W (r1) ; : : : ;W (rk)�W (rk�1) are independent,

(c) For 0 � s < t; W (t)�W (s) � N (0; t� s) :

A Brownian motion is viewed as a random function, W (t; !) ; where ! 2 
 is an outcome of the random
experiment (a single outcome determines the whole sample path W (�; !)). For a �xed !; W (�; !) : [0;1)!
R is a continuous function.
The result in (2) can be alternatively stated as0BBB@

Wn (r1)
Wn (r2)

...
Wn (rk)

1CCCA!d

0BBB@
W (r1)
W (r2)
...

W (rk)

1CCCA (3)

for �xed 0 � r1 < r2 < : : : < rk � 1: However, a stronger result is available. We can treat Wn (r) as
a random function on the zero-one interval, and discuss convergence in distributions of such a function to
W (r) as n!1:

Weak convergence

The concept of weak convergence is an extension of convergence in distribution of random variables or vectors
(elements of Rk) to metric spaces.

De�nition 6 (Metric, metric space) Let S be a set. A metric is a mapping d : S � S ! R such that

(a) d (x; y) � 0 for all x; y 2 S,

(b) d (x; y) = 0 if and only if x = y;

(c) d (x; y) = d (y; x) for all x; y 2 S,

(d) d (x; y) � d (x; z) + d (y; z) for all x; y; z 2 S.

The pair (S; d) is called a metric space.

An example of a metric space is Rk with d (x; y) = kx� yk ; where k�k denotes the Euclidean norm.
Another example is the space of all continuous functions on the zero-one interval f : [0; 1]! R: This space
is denoted as C [0; 1] : For any f; g 2 C [0; 1] de�ne the uniform metric

du (f; g) = sup
0�r�1

jf (r)� g (r)j :

(C [0; 1] ; du) is a metric space. Sample paths of a Brownian motion are in C [0; 1] :
A metric gives the distance between the elements of S, which allows us to introduce the notion of an

open set. The set fx 2 S : d (x; y) < rg is called the open sphere with the center at y and radius r: For the
metric space (S; d) the Borel �-�eld, denoted BS ; is the smallest �-�eld containing all open subsets of S. The
following requirements are imposed on (S; d): completeness and separability. Completeness is required since
we want the limit of a convergent sequence of the elements of S to be an element of S as well. The second
requirement is separability. The metric space (S; d) is separable if it contain a countable dense subset; a
subset is dense if every point of S is arbitrary close to one of its elements. Separability ensures that the
probabilities can be assigned to the elements of BS . For example, the real line with the Euclidean metric is
a separable space, since the set of rational numbers is countable and dense. The metric space (C [0; 1] ; du)
is complete and separable.
For A 2 BS ; its boundary, denoted @A; is the set of all points not interior to A: Let � be a probability

measure on ((S; d) ;BS) : The set A is a continuity set of � if � (@A) = 0:
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De�nition 7 (Weak convergence) Let �n; � be probability measures on the complete and separable measur-
able metric space ((S; d) ;BS) : The sequence of probability measures �n is said to converge weakly to �;
denoted �n ) �; if for all continuity sets A 2 BS of �; �n (A)! � (A) :

Let Xn; X be the random elements on the complete and separable measurable metric space ((S; d) ;BS) ;
i.e.

X : (
;F)! ((S; d) ;BS) ;
Xn : (
;F)! ((S; d) ;BS) ;

and measurable. For A 2 BS de�ne

�n (A) = P f! 2 
 : Xn (!) 2 Ag ;
� (A) = P f! 2 
 : X (!) 2 Ag ;

where P is a probability measure on (
;F) : We say that Xn converges weakly to X; denoted as Xn ) X;
if �n =) �:
The notion of a continuity set is similar to that of a continuity point of a CDF. Let Fn; F be CDFs. We

say that Fn ! F if Fn (x) ! F (x) for all continuity points x of F: We require convergence of measures
only for the continuity points in order to avoid disappearance of the probability mass. For example, suppose
Xn = 1=n with probability one. This random variable has the CDF

Fn (x) =

�
0; x < 1=n;
1 x � 1=n:

The limit of Xn is X = 0 with probability one; and its distribution function is

F (x) =

�
0; x < 0;
1 x � 0:

However, Fn (x) does not converge to F (x) for all x 2 R: For x > 0, limn!1 Fn (x) = 1; and for x < 0;
limn!1 Fn (x) = 0: However, since for all n; 0 < 1=n; limn!1 Fn (0) = 0: Thus, the limit of Fn (x) is

eF (x) = � 0; x � 0;
1 x > 0;

which is not a CDF. As a result, the probability mass disappears. The reason is that x = 0 is not a continuity
point of F: Hence, we have to rede�ne the limit of Fn as F:
The continuous mapping theorem can be extended to the case of weak convergence. In this case, we have

to deal with the mappings that are functions of functions. Such a mapping is called a functional.

Theorem 1 (CMT) Suppose that h : ((S; d) ;BS) ! (R;B) is a mapping continuous with probability one.
Let Xn; X be the random elements on ((S; d) ;BS) : If Xn =) X; then h (Xn) =) h (X) :

For example, suppose that f 2 C [0; 1] : Let h (f) =
R 1
0
f (r) dr: The integral is a continuous functional.

Suppose that fn ! f in the uniform metric, i.e. du (fn; f)! 0: Then,

jh (fn)� h (f)j =
����Z 1

0

fn (r) dr �
Z 1

0

f (r) dr

����
�
Z 1

0

jfn (r)� f (r)j dr

� sup
0�r�1

jfn (r)� f (r)j

= du (fn; fr)

! 0:
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Functional CLT (FCLT)

Consider partial sums Wn (�) : It is a step function on zero-one interval. The function is Wn (r) constant for
t=n � r < (t+ 1) =n; since for such r�s, [rn] = t: When r hits (t+ 1) =n; the function jumps from n�1=2Xt
to n�1=2 (Xt + Ut+1) : Thus, this function is continuous on the right:

lim
r#r0

Wn (r) =Wn (r0) ;

and has left limit, i.e. limr"r0Wn (r) exists. Such functions are referred as cadlag.
Let D [0; 1] be the space of cadlag functions on the zero-one interval. The space of continuous functions,

C [0; 1] is a subspace ofD [0; 1] ; and therefore,W (�) 2 D [0; 1] : It turns out that (D [0; 1] ; du) is not separable.
A space is not separable if it contains noncountable discrete set; a set is discrete if its points are separated.
Consider, for example, the following set of functions on D [0; 1] : Let

f� (x) =

�
0; x < �;
1; x � �:

De�ne ff� : � 2 [0; 1]g : This set is noncountable. However, du (f�1 ; f�2) = supx jf�1 (x)� f�2 (x)j = 1 for
�1 6= �2: The distance between any two elements is always 1 regardless of how close �1 and �2 are (as long
as they di¤erent). Therefore, the set is discrete.
The appropriate metric to study weak convergence on D [0; 1] is the Billingsley�s metric, dB ; which is a

modi�cation of du (see, for example Davidson (1994, Chapter 28)). The space ((D [0; 1] ; dB) ;BD) is complete
and separable. The following result establishes convergence of re-scaled partial sums of iid random variables
to a Brownian motion.

Theorem 2 (Donsker�s FCLT, White (1999), Theorem 7.13) Let fUtg be a sequence of iid random variables
such that EUt = 0 and EU2t = 1: Let Wn be de�ned as in (1), and W be a standard Brownian motion. Then,
Wn =)W:

The FCLT says that if, for B 2 BD;

�n = P f! 2 
 :Wn (�; !) 2 Bg ; and (4)

� = P f! 2 
 :W (�; !) 2 Bg ;

then,
�n =) �:

Thus, for n large enough, we can approximate the distribution of the sample paths of a random walk by the
distribution of the sample paths of a Brownian motion.
The weak convergence of the FCLT is a stronger result than in (3). The result in (3) gives joint convergence

in distribution of a �nite number of random variables, or convergence of �nite dimensional distributions. On
the other hand, the FCLT provides convergence of an in�nite dimensional object. In fact, Wn =)W implies
that (Wn (r1) ;Wn (r2) ; : : : ;Wn (rk))!d (W (r1) ;W (r2) ; : : : ;W (rk)) :
Convergence of �nite dimensional distributions does not imply weak convergence unless the sequence of

measures f�ng is uniformly tight; a measure P on ((S; d) ;BS) is tight if for all " > 0 there exists a compact
set K 2 BS ; such that P (K) > 1 � ": One can show that the sequence of probability measures in (4) is
uniformly tight.
The result can be extended to the time-series case by the means of the Phillips-Solo device (Lecture 11).

Suppose that

� Ut = C(L)"t;

� f"tg is iid such that E"t = 0 and E"2t = �2 <1;

�
P1

j=0 j
1=2 jcj j <1;
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� C (1) 6= 0:

Let Wn be de�ned as in (1). Then,

Wn ) B; where

B (r) = �C(1)W (r) ;

and W is a standard Brownian motion. The Brownian motion B satis�es (a) and (b) of De�nition 5, and
(c) is replaced with

B (t)�B (s) � N
�
0; �2C(1)2 (t� s)

�
for t > s:

The result can be extended to the vector case as well.

De�nition 8 (Vector Brownian motion) The k-vector process
�
W (t) = (W1 (t) ; : : : ;Wk (t))

0
: t � 0

	
is a

vector standard Brownian motion if W1; : : : ;Wk are independent scalar standard Brownian motion processes.

Suppose that the k-vector process fUt : t = 1; 2; : : :g satis�es

� Ut = C(L)"t;

� f"tg is iid such that E"t = 0 and E"t"0t = � �nite,

�
P1

j=0 j
1=2 kCjk <1;

� C(1) 6= 0:

Again, let Wn (r) = n
�1=2P[nr]

t=1 Ut: Then,

Wn ) B; where

B (r) = C(1)�01=2W (r) ;

and W (r) is a k-vector Brownian motion. Notice that in this case,

B (t)�B (s) � N (0; (t� s)C(1)�C(1)0) for t > s:
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