MARCH 29, 2006

LECTURE 12
UNIT ROOT, WEAK CONVERGENCE, FUNCTIONAL CLT

(Davidson (2000), Chapter 14; Phillips’ Lectures on Unit Roots, Cointegration and Nonstationarity;
White (1999), Chapter 7)

Unit root processes
Definition 1 (Random walk) The process {X} is a random walk if it satisfies
(a) Xi=Xi1+e foralt=1,2,...,
(b) Xo=0,
(c) {e:} is iid such that Ee, =0, 0 < Ee? < oo.
Random walk is not a stationary process:

Xy = X1+
= (Xp—o+e1)+er

t
= XO + th
j=0

The process has mean zero, however,

Var (X;) = to?.
A random walk with drift is defined as

Xt = N+Xt—1+5t
t
= Mt+z€t
7=0

Random walk is a member of a more general class of nonstationary processes.

Definition 2 (Unit root process) The process {X:} is a unit root process if it satisfies (1 — L)X, = Uy,
where {U;} is a mean zero covariance stationary process with short memory.

For example, consider the process ® (L) (1 — L) X; = © (L) ¢4, where ® (L) and O (L) are lag polynomials
of finite order and have all the roots outside the unit circle. The first difference of X,

AX, Xy — Xy

(1-L)X,

is an ARM A(p, q) process. The process {X;} is referred as containing a unit root since its autoregressive
polynomial ® (L) (1 — L) has a unit root. We say that {X;} is an autoregressive integrated moving average
process ARIMA (p,d,q),

®(L)(1-L)" X, =0 (L)ey,

where d indicates the number of time one has to difference {X;} in order to obtain a covariance stationary
process with short memory (in the above example, d = 1).



Definition 3 (Integrated or difference stationary processes) The process {X:} is integrated of order d, de-
noted as X, = I (d), if it satisfies (1 — L)* X, = Uy, where {U;} is a mean zero covariance stationary process
with short memory.

An I (1) or unit root process with drift is defined as

Integrated processes are referred as difference stationary, since, for example, in the case of (1), the first
difference is a stationary process. This is compared to another class of nonstationary processes:

Definition 4 (Trend stationary process) The process { X} is trend stationary if it satisfies X; = p+ Bt +Uy,
where {U;} is a mean zero covariance stationary process with short memory.

A trend stationary process evolves along the line of deterministic trend. Deviations from the trend are
only of a short-run nature. The shocks have only temporary effect, and its mean, u + St describes the
behavior of the process in the long-run. On the other hand, an integrated process accumulates its shocks
and, therefore, is not ergodic. The shocks have permanent effect, and the process deviates from its expected
value for very long periods of time.

Suppose that {X;} is a random walk with the increments {U,} such that EU? = 1. We have

n71/2Xn — n71/2 Z Ut
t=1
—d N (O, 1) .
Let [a] be the integer part of a. For 0 < r < 1 define the following function (partial sum)

W, (r) = n71/2X[m]

[nr]

= n 2y UL (1)
t=1

For fixed 7,

[n7]

W, (r) = n=1/2 Z U,
t=1

[nr]
—n /2 [nr]1/2 [nr]*l/2 Z Ui

t=1
—q 72N (0,1)
=N (0,r).

Further, for fixed 0 < r; < ry <1,
Wy, (r2) — Wy (11) —a N (0,72 —11),

and, for fixed 0 <7y <79 < ... <71 <1,
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Definition 5 (Brownian motion) The continuous process {W (t) : t > 0} is a standard Brownian motion if
(a) W (0) =0 with probability one,

(b) Forany0<ri<ry<...<rgandk, W(r1),W (ro)—W(r1),...,W (rx) =W (rg—1) are independent,
(c) For0<s<t, W(t)—W(s)~ N (0,t—s).

A Brownian motion is viewed as a random function, W (¢, w) , where w € Q is an outcome of the random
experiment (a single outcome determines the whole sample path W (-,w)). For a fixed w, W (-, w) : [0,00) —
R is a continuous function.

The result in (2) can be alternatively stated as

Wi, (r1) W (r1)
Wn (7‘2) W (7“2)
: —d : (3)
W (k) W (ri)
for fixed 0 < r; < rg < ... < rp < 1. However, a stronger result is available. We can treat W, (r) as

a random function on the zero-one interval, and discuss convergence in distributions of such a function to
W (r) as n — oo.

Weak convergence

The concept of weak convergence is an extension of convergence in distribution of random variables or vectors
(elements of R¥) to metric spaces.

Definition 6 (Metric, metric space) Let S be a set. A metric is a mapping d : S X S — R such that
(a) d(z,y) >0 forallz,y €S,
(b) d(z,y) =0 if and only if x =y,
(c) d(z,y) =d(y,x) for allz,y € S,
(d) d(z,y) <d(z,z)+d(y,2) for all z,y,z € S.
The pair (S,d) is called a metric space.

An example of a metric space is R¥ with d(z,y) = ||z — ||, where ||| denotes the Euclidean norm.
Another example is the space of all continuous functions on the zero-one interval f : [0,1] — R. This space
is denoted as C'[0,1]. For any f,g € C'[0, 1] define the uniform metric

du(f,9) = S |f(r)—g(r)].

(C'[0,1],d,) is a metric space. Sample paths of a Brownian motion are in C'[0, 1].

A metric gives the distance between the elements of S, which allows us to introduce the notion of an
open set. The set {x € S : d(z,y) < r} is called the open sphere with the center at y and radius r. For the
metric space (S, d) the Borel o-field, denoted Bgs, is the smallest o-field containing all open subsets of S. The
following requirements are imposed on (S, d): completeness and separability. Completeness is required since
we want the limit of a convergent sequence of the elements of S to be an element of S as well. The second
requirement is separability. The metric space (S,d) is separable if it contain a countable dense subset; a
subset is dense if every point of S is arbitrary close to one of its elements. Separability ensures that the
probabilities can be assigned to the elements of Bs. For example, the real line with the Euclidean metric is
a separable space, since the set of rational numbers is countable and dense. The metric space (C'[0,1],d,,)
is complete and separable.

For A € Bg, its boundary, denoted 0A, is the set of all points not interior to A. Let p be a probability
measure on ((S,d),Bs) . The set A is a continuity set of p if u (9A) = 0.



Definition 7 (Weak convergence) Let p,,, i be probability measures on the complete and separable measur-
able metric space ((S,d),Bs). The sequence of probability measures p,, is said to converge weakly to p,
denoted p,, = p, if for all continuity sets A € Bs of p, p,, (A) — p(A).

Let X,,, X be the random elements on the complete and separable measurable metric space ((S,d), Bs),
i.e.

X (Q,F)_’((S,d)?BS)a

Xn (ij:)_)((87d)785)7
and measurable. For A € Bgs define
p,(4) = P{weQ:X,(w)e A},
uw(Ad) = P{lweQ:X (w)e A},

where P is a probability measure on (2, F). We say that X,, converges weakly to X, denoted as X,, = X,
if p,, = p.

The notion of a continuity set is similar to that of a continuity point of a CDF. Let F,,, F' be CDFs. We
say that F,, — F if F, (z) — F (z) for all continuity points x of F. We require convergence of measures
only for the continuity points in order to avoid disappearance of the probability mass. For example, suppose
X,, = 1/n with probability one. This random variable has the CDF

[0, z<1/n,
Fn(x)—{ 1 z>1/n.

The limit of X, is X = 0 with probability one, and its distribution function is

0, =<0,
F(x)_{ 1 x>0

However, F, () does not converge to F (z) for all x € R. For « > 0, lim, . F, () = 1, and for z < 0,
lim,, oo Fy, () = 0. However, since for all n, 0 < 1/n, lim, . Fy, (0) = 0. Thus, the limit of F, (z) is

~ 0, <0,
F(x){ 1 >0

which is not a CDF. As a result, the probability mass disappears. The reason is that = 0 is not a continuity
point of F. Hence, we have to redefine the limit of F,, as F.

The continuous mapping theorem can be extended to the case of weak convergence. In this case, we have
to deal with the mappings that are functions of functions. Such a mapping is called a functional.

Theorem 1 (CMT) Suppose that h : ((S,d),Bs) — (R,B) is a mapping continuous with probability one.
Let X,,, X be the random elements on ((S,d),Bs). If X,, = X, then h(X,) = h(X).

For example, suppose that f € C'[0,1]. Let h(f) = fol f (r)dr. The integral is a continuous functional.
Suppose that f,, — f in the uniform metric, i.e. d,, (fy, f) — 0. Then,

mewwﬂzuﬁuwW—A?me

s[;mmﬂ—fvﬂw
< sup |fn (r) = f(7)]

0<r<1

::du(fﬁaj})

— 0.



Functional CLT (FCLT)

Consider partial sums W, (). It is a step function on zero-one interval. The function is W, (r) constant for
t/n <r < (t+1) /n, since for such r’s, [rn] = t. When r hits (¢ + 1) /n, the function jumps from n~1/2X,
to n='/2 (X, + Uy1) . Thus, this function is continuous on the right:

lim W, (r) = W, (rq) ,

rlro

and has left limit, i.e. lim,j,, W,, (r) exists. Such functions are referred as cadlag.

Let D [0,1] be the space of cadlag functions on the zero-one interval. The space of continuous functions,
C'[0, 1] is a subspace of D [0, 1], and therefore, W (-) € D [0, 1] . It turns out that (D [0, 1], d,,) is not separable.
A space is not separable if it contains noncountable discrete set; a set is discrete if its points are separated.
Consider, for example, the following set of functions on D [0,1]. Let

0, =<8,

fa(l“):{ 1, z>6.

Define {fp : 0 € [0,1]}. This set is noncountable. However, d,, (fo,, fo,) = sup, |fo, (z) — fo, (z)] = 1 for
01 # 05. The distance between any two elements is always 1 regardless of how close 0, and - are (as long
as they different). Therefore, the set is discrete.

The appropriate metric to study weak convergence on D [0, 1] is the Billingsley’s metric, dp, which is a
modification of d,, (see, for example Davidson (1994, Chapter 28)). The space ((D [0,1],dg), Bp) is complete
and separable. The following result establishes convergence of re-scaled partial sums of iid random variables
to a Brownian motion.

Theorem 2 (Donsker’s FCLT, White (1999), Theorem 7.13) Let {U;} be a sequence of iid random variables
such that EU; = 0 and EU? = 1. Let W,, be defined as in (1), and W be a standard Brownian motion. Then,
Wy = W.

The FCLT says that if, for B € Bp,

, = P{weQ:W,(,w)e B}, and (4)
uw = P{weQ:W(,w)e B},
then,
[y =

Thus, for n large enough, we can approximate the distribution of the sample paths of a random walk by the
distribution of the sample paths of a Brownian motion.

The weak convergence of the FCLT is a stronger result than in (3). The result in (3) gives joint convergence
in distribution of a finite number of random variables, or convergence of finite dimensional distributions. On
the other hand, the FCLT provides convergence of an infinite dimensional object. In fact, W,, = W implies
that (W, (r1) , Wy (r2) , ..., Wy (k) —a W (r1) , W (r2),..., W (1)) .

Convergence of finite dimensional distributions does not imply weak convergence unless the sequence of
measures {y,,} is uniformly tight; a measure P on ((S,d), Bs) is tight if for all £ > 0 there exists a compact
set K € Bg, such that P(K) > 1 —e. One can show that the sequence of probability measures in (4) is
uniformly tight.

The result can be extended to the time-series case by the means of the Phillips-Solo device (Lecture 11).
Suppose that

o Ut = C(L)(it,
e {&} is iid such that Fe; = 0 and Es? = 0% < o0,

o 372002 lejl < oo,



e C(1)#£0.
Let W,, be defined as in (1). Then,

W, = B, where
B(r) = oCL)W (r),

and W is a standard Brownian motion. The Brownian motion B satisfies (a) and (b) of Definition 5, and
(c) is replaced with
B(t)— B(s) ~ N (0,0*C(1)*(t — 5)) fort > s.

The result can be extended to the vector case as well.

Definition 8 (Vector Brownian motion) The k-vector process {W (t) = (W1 (t),..., Wy ()" : t > 0} is a
vector standard Brownian motion if W1, ..., Wy are independent scalar standard Brownian motion processes.

Suppose that the k-vector process {U; : t = 1,2,...} satisfies
o Uy =C(L)ey,

e {g;} is iid such that Fe; = 0 and Fe;e; = ¥ finite,

o 27203 NG < o0,

e C(1)#£0.

Again, let W, (r) = n= /23", Then,

W, = B, where
B(r) = COY"*W(r),

and W (r) is a k-vector Brownian motion. Notice that in this case,

B(t)— B(s) ~N(0,(t—s)C(1)2C(1)") for t > s.



