APRIL 17, 2009

LECTURE 11
LINEAR PROCESSES IIIl: ASYMPTOTIC RESULTS

(Phillips and Solo (1992) and Phillips’ Lecture Notes on Stationary and Nonstationary Time Series)
In this lecture, we discuss the LLN and CLT for a linear process {X;} generated as

Xt = chgt*j (1)
7=0
= C(L) Et,

where
C (L) = Z Cij,
j=0

and {g;} is a sequence of iid random variables with zero mean and finite variance. The LLN and CLT for
{X;} rely only on the LLN and CLT for iid sequences and a certain decomposition of the lag polynomial
C(L).

The method also works for more general sequences with ¢;’s being independent but not identically dis-
tributed (inid) and martingale difference sequences (mds).

Definition 1 Let {F;} be an increasing sequence of o-fields. Then {(ut, Ft)} is a martingale if E (ut| Fi—1) =
us—1 with probability one. The sequence {(e¢, F1)} is said to be a martingale difference sequence if E (e¢|Fi—1) =
0 with probability one.

For {u;}, the o-field F; is often taken to be o (ut, ug—1, . ..) . Suppose that {(us, F¢)} is a martingale. Then
{(us — ut—1,Fs)} is an mds, since us —ur—1 = us — E (us|Fr—1) , and, therefore, E (ur — us—1|Ft—1) = 0. Note
either of the requirements for {e;}, iid, inid or mds, is stronger than just a WN.

Lemma 1 (SLLN for inid sequences, White (2001), Corollary 3.9) Let {e:} be a sequence of independent
random variables such that sup, E \5t|1+5 < oo for some § > 0. Then, n™ 2> 1 &g —n~ 'Y " | Fgy —q.. 0.

Lemma 2 (SLLN for mds, White (2001), Ezercise 3.77) Let {(e;, F1)} be an mds such that sup, E |&;|*T° <
oo for some § > 0. Then, n= ' >} | & —q.5. 0.

Lemma 3 (CLT for inid sequences, White (2001), Theorem 5.10) Let {e:} be a sequence of independent
random variables such that Eey = 0 for all t, sup, E |st\2+5 < oo for some § > 0, and for all n sufficiently

large n™ 237 | Ee? > 6" > 0. Then, n™ /231 &t/ (R 7130, Eef)l/Z —q N (0,1).

Lemma 4 (CLT for mds, White (2001), Corollary 5.26) Let { (g1, )} be a mds such that sup, E |e,|*™° < oo
for some § > 0. Suppose that for all n sufficiently large n=' > 7 | Eei > § > 0, and n~! Shiel—

n=tS" | Ee? —, 0. Then, n= /230 e/ (n71 Y0, Es,?)l/2 —4 N (0,1).

Lemma 5 (CLT for strictly stationary and ergodic mds) Let {(e¢, F¢)} be a strictly stationary and ergodic
mds such that Esf < 00. Then n~1/2 Z?Zl g —a N (0, Esf) .

Beveridge and Nelson (BN) decomposition

First, we discuss an algebraic decomposition of a lag polynomial into long-run and transitory elements. The
decomposition was introduced by Beveridge and Nelson (1981).

Lemma 6 Let C (L) =Y " c;L7. Then

(a) C(L)=C(1)—(1—L)C (L), where C (L) = Y22 & L7 with & = Y52 . ch.



(b) 1 35, 12 o] < o0, then T2, < oo,
(c) If Z;)ilj lej| < oo, then Z;io c;] < oo.
Proof. For part (a), write

oo oo o0
TJ = . .
E ;L7 = E c; E c;
=1

§=0 j=0

+ ch — Z Cj L
7j=1 j=2

+ ch — Z Cj L2
Jj=2 Jj=3

+..
A DR P2
j=h j=h+1
+..
Rearranging the terms,
Ser = Yo
j=0 j=0
—(1-L)Y ¢
j=1
~(1-L)Y ¢L
j=2
—(1-L) > ¢Lh
j=h+1



For part (b),

o0 o0 o0
=2 _
28 = 2 X
j=0 §=0 \h=j+1
2
o0 o0
< 2| X el
J=0 \h=j+1
2
o0 o0
=SS e
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o0
< (L) S S et
j=0 h=j+1
Next, consider E;‘;o ZZOZJ-H len| /2. The term |c;| appears in the sum only once, when j = 0. The term
|co| appears in the sum twice, when j = 0,1. Hence, |c;| appears when j = 0,1,...,h — 1, total h times.
Therefore,

ST el b2 = D el
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im0 h=j+1
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= > el
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and )
o0 oo
D G| 2 el
§=0 §=0

For part (c),
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|

Notice that the assumptions Z;’;l G2 lej| < oo and Z;’;lj lej| < oo are stronger than finiteness of the
long-run variance 377, |¢;| < oc.

According to the BN decomposition, if {X;} is a linear process, then

X, = CL)e
= C)e—(1-L)C(L)&
= C()er— (Er— 1), (2)



where ~
gt =C (L) E¢.

Furthermore, €; has finite variance provided that Z;io Gi/2 lcj| < oco. The first summand on the right-hand

side of (2), C (1) &, is the long-run component, and &; — ;_; is transient.
The similar decomposition exists in the vector case. The transient component has finite variance if
Y2 PG < oo
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The condition in part (c) of Theorem 6, becomes 372, j||C;|| < oo in the vector case.

WLLN

Suppose that
e X, =C(L)¢g.
o {&:} is a sequence of iid random variables with E |e;| < oo and Ee; = 0.
o O (L) satisfies 3272 | j |cj| < 0.

We will show that under these conditions

’I’L71 ZXt —p 0.
t=1

The key is the BN decomposition (2). Notice that >}, (5, —;—1) is a so called telescoping sum:

z”: (t—€i—1) = (E1—&0)+(E2—E1)+(Es—&2)+ ...+ (En—En-1)
=1

= gn - gOa
so that

nt ZXt =C(1)n ! Zst —n 1 (G, —%).
t=1 t=1

Due to 3272, jlej| < oo, |C (1) < co. Hence, by the WLLN for iid sequences,

C(1)yn! Zet —p 0.
t=1



Next,

1~ E ]
P 1 >0) < ——,
(n A )7 5
and
E|gt| = F ZEjEt,j
j=0
(oo}
< D Gl E e
§=0
— Eleol Y [5)
§=0
< 00,

provided that > 77, j [c;| < oo. Therefore,

nt (B —Zo) —p 0.

If we assume that Ee? < oo, then we can replace Z;’il Jlej| < oo with Z;’;ljlﬂ le;j| < oo, since

2
o

P(TL71 |gt| > (S) S W,

and FZ? < oo provided that 3252131 Jej| < o0 holds.
We can prove similar WLLNs with {e;} being inid or an mds by using the corresponding LLNs for inid or
mds. For example, the result holds if {¢;} is inid, sup, E |e;|"™ < oo for some § > 0, and Yo dlel < oo

If {(e¢, )} is an mds, the result holds with sup, E |&;|*™° < oo for some § > 0, and Z;‘;ljl/Q lej| < oo.

So far we assumed that FX; = 0. One can modify the first assumption so that X; = u+ C (L) &, where
4 is the mean of X;. In this case, under the same set of conditions, we have n =1 Z?Zl X —p p. For example,
AR (1) process with mean p is given by (1 — ¢L) (X; — p) = &;. If |¢| < 1, then the sample average of X,
converges in probability to p provided that the corresponding moment restrictions hold.

CLT

Suppose that
e X, =C(L)¢g.
o {&} is a sequence of iid random variables with E |;|* = 02 < 0o and Ee, = 0.
o C (L) satisfies 372 j/2 |¢;| < o0.
e C(1) #£0.

The BN decomposition allows us to write

n~1/?2 ZXt =C(1)n" Y2 Zst —n~Y2(E, — %)
t=1 t=1

=C(1)n~Y/? Zst + 0,(1)
t=1

—q4 C(1)N (0,0?)
:N@ﬁcmﬁ.



Here, convergence in distribution is by the CLT for iid random variables. The approach illustrates why in
the serially correlated case the asymptotic variance depends on the long-run variance of {X,;}. Again, the
approach can be extended to the case where {¢;} is inid of mds.

In the vector case, suppose that {e;} is a sequence of iid k-vectors with Fe; = 0, and Fese; = %, a finite
matrix. Let X; = C (L) e, and Y22 j1/2 [|Cj]| < o0, C' (1) # 0. Since n= /2371 | p —4 N (0,%), we have
that

n~1/2 zn:Xt —a N (0,C(1)ZC(1)).

t=1

Convergence of sample variances

Estimators of coefficients in the linear regression model involve second sample moments n=' > 7 X X/.
Here, we discuss convergence of sample second moments when {X;} is a linear process. We assume that
{X:} is a scalar linear process satisfying the same assumptions as in the previous section. Write

X; = (C(L)e)’
2
o0
§=0
oo oo
= Z CiClEt—jEt—1
§=01=0
oo oo
= DGl +2) ) cassEi
j=0 j=01>j
o0 o0 oo
= Zc?sffj + 2 Z chcj+h5t,jat,j,h (change of variable [ = j + h, so that h = 1,2,...)
§=0 h=15=0

= Bo(L)e} +2) By (L)ergin,
h=1

where for h =0,1,...,

By, (L)

i b L
j=0

o
= Z CjCj_HLLJ .
3=0

Thus,
Bo(L) = Y bo L' => L.
j=0 j=0

Bl (L) = Zbl,ij = ZCjCj+1Lj.
7=0 7=0

The BN decomposition of By, (L) is

By (L) =B (1) = (1 - L) By (L), (3)



where

By(L) = Y bu;L,
§=0

Eh,j = Z bhi

I=j+1
= Z CiCl+h-
I=j+1
The BN decomposition of By, (L) is valid provided that >°2, 3172 e;| < oo
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oo 2
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=1
and >°7° 11/2¢2 is finite provided that 372, 112 |¢;| is finite:

ZZI/QC% — Zl1/2 |Cl|2
=1 =1

oo
< suple;| > 1M o < oo,
J =1

where sup; |¢;| < oo because Y72, 1'/2|¢)| < 0o and therefore |¢;| — 0 as | — oo.
Thus, we have

th = B()(L)Zf% + QZB]—L (L) EtEt—h
h=1
= Bo(l)Etz +2ZB}L (1) EtEt—h
h=1
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= Zc? e +up — (1 — L)y,
3=0



where

Us €t (QZBh (1) Eth) )

h=1

oy By (L)e} +2Y By (L)ergin.
h=1

We have
nt ZXt2 = Zc? n! ZE? +nt Zut —n" (Tp — D) -
t=1 j=0 t=1 t=1
We will show next that .
n_l Zut —a.s. 0.
t=1
Let F; = 0 (g¢,€¢—1,...). We have that {(us, 1)} is an mds.

Lemma 7 (White (2001), Theorem 3.76) Let {(us, F+)} be an mds. If for somer > 1, 3200 B |u,|*" /114" <
o0, then n=t >0 up —q.5. 0.

We will verify that {u.} satisfies the condition of the above lemma. Set r = 1. The condition is satisfied
. 2 . SR
if sup; Bu; < oo, since )~ 7% < oo.

o 2
Eu} = 40°E (ZBh(l)et_h)
h=1

Next,
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and, by the same argument as on page 3 of Lecture 10, Z;’iljl/Q lcj| < oo implies that Z;’il jc? < 00 as
well.
As before, one can show that
n~ (T, — To) —p 0,

provided that Z;il 7Y% ej] < o



Lastly, by the WLLN for iid sequences,

n
-1 2 2
n E € —po.

t=1

Therefore,

n oo
-1 2 2 2
n ZXt —p 0 ch

t=1 §=0

= EX}.



