LECTURE 11 LINEAR PROCESSES III: ASYMPTOTIC RESULTS

(Phillips and Solo (1992) and Phillips' Lecture Notes on Stationary and Nonstationary Time Series) In this lecture, we discuss the LLN and CLT for a linear process $\{X_t\}$ generated as

$$
X_t = \sum_{j=0}^{\infty} c_j \varepsilon_{t-j}
$$

= $C(L) \varepsilon_t$, (1)

where

$$
C\left(L\right) = \sum_{j=0}^{\infty} c_j L^j,
$$

and $\{\varepsilon_t\}$ is a sequence of iid random variables with zero mean and finite variance. The LLN and CLT for ${X_t}$ rely only on the LLN and CLT for iid sequences and a certain decomposition of the lag polynomial $C(L)$.

The method also works for more general sequences with ε_t 's being independent but not identically distributed (inid) and martingale difference sequences (mds).

Definition 1 Let $\{\mathcal{F}_t\}$ be an increasing sequence of σ -fields. Then $\{(u_t, \mathcal{F}_t)\}$ is a martingale if $E(u_t|\mathcal{F}_{t-1}) =$ u_{t-1} with probability one. The sequence $\{(\varepsilon_t, \mathcal{F}_t)\}\)$ is said to be a martingale difference sequence if $E(\varepsilon_t|\mathcal{F}_{t-1})$ 0 with probability one.

For $\{u_t\}$, the σ -field \mathcal{F}_t is often taken to be $\sigma(u_t, u_{t-1}, \ldots)$. Suppose that $\{(u_t, \mathcal{F}_t)\}$ is a martingale. Then $\{(u_t - u_{t-1}, \mathcal{F}_t)\}\$ is an mds, since $u_t - u_{t-1} = u_t - E(u_t|\mathcal{F}_{t-1})$, and, therefore, $E(u_t - u_{t-1}|\mathcal{F}_{t-1}) = 0$. Note either of the requirements for $\{\varepsilon_t\}$, iid, inid or mds, is stronger than just a WN.

Lemma 1 (SLLN for inid sequences, White (2001), Corollary 3.9) Let $\{\varepsilon_t\}$ be a sequence of independent random variables such that $\sup_t E |\varepsilon_t|^{1+\delta} < \infty$ for some $\delta > 0$. Then, $n^{-1} \sum_{t=1}^n \varepsilon_t - n^{-1} \sum_{t=1}^n E \varepsilon_t \to_{a.s.} 0$.

Lemma 2 (SLLN for mds, White (2001), Exercise 3.77) Let $\{(\varepsilon_t, \mathcal{F}_t)\}\$ be an mds such that $\sup_t E |\varepsilon_t|^{2+\delta}$ < ∞ for some $\delta > 0$. Then, $n^{-1} \sum_{t=1}^{n} \varepsilon_t \rightarrow_{a.s.} 0$.

Lemma 3 (CLT for inid sequences, White (2001), Theorem 5.10) Let $\{\varepsilon_t\}$ be a sequence of independent random variables such that $E\varepsilon_t = 0$ for all t, $\sup_t E |\varepsilon_t|^{2+\delta} < \infty$ for some $\delta > 0$, and for all n sufficiently large $n^{-1} \sum_{t=1}^{n} E \varepsilon_t^2 > \delta' > 0$. Then, $n^{-1/2} \sum_{t=1}^{n} \varepsilon_t / (n^{-1} \sum_{t=1}^{n} E \varepsilon_t^2)^{1/2} \to_d N(0, 1)$.

Lemma 4 (CLT for mds, White (2001), Corollary 5.26) Let $\{(\varepsilon_t, \mathcal{F}_t)\}\$ be a mds such that $\sup_t E |\varepsilon_t|^{2+\delta} < \infty$ for some $\delta > 0$. Suppose that for all n sufficiently large $n^{-1} \sum_{t=1}^{n} E \varepsilon_t^2 > \delta' > 0$, and $n^{-1} \sum_{t=1}^{n} \varepsilon_t^2$ $n^{-1} \sum_{t=1}^{n} E \varepsilon_t^2 \to_p 0$. Then, $n^{-1/2} \sum_{t=1}^{n} \varepsilon_t / (n^{-1} \sum_{t=1}^{n} E \varepsilon_t^2)^{1/2} \to_d N(0, 1)$.

Lemma 5 (CLT for strictly stationary and ergodic mds) Let $\{(\varepsilon_t, \mathcal{F}_t)\}\$ be a strictly stationary and ergodic mds such that $E\varepsilon_t^2 < \infty$. Then $n^{-1/2} \sum_{t=1}^n \varepsilon_t \to_d N(0, E\varepsilon_t^2)$.

Beveridge and Nelson (BN) decomposition

First, we discuss an algebraic decomposition of a lag polynomial into long-run and transitory elements. The decomposition was introduced by Beveridge and Nelson (1981).

Lemma 6 Let $C(L) = \sum_{j=0}^{\infty} c_j L^j$. Then (a) $C(L) = C(1) - (1 - L) \widetilde{C}(L)$, where $\widetilde{C}(L) = \sum_{j=0}^{\infty} \widetilde{c}_j L^j$ with $\widetilde{c}_j = \sum_{h=j+1}^{\infty} c_h$. (b) If $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$, then $\sum_{j=0}^{\infty} \tilde{c}_j^2 < \infty$. (c) If $\sum_{j=1}^{\infty} j |c_j| < \infty$, then $\sum_{j=0}^{\infty} |\tilde{c}_j| < \infty$.

Proof. For part (a), write

$$
\sum_{j=0}^{\infty} c_j L^j = \sum_{j=0}^{\infty} c_j - \sum_{j=1}^{\infty} c_j
$$

+
$$
\left(\sum_{j=1}^{\infty} c_j - \sum_{j=2}^{\infty} c_j \right) L
$$

+
$$
\left(\sum_{j=2}^{\infty} c_j - \sum_{j=3}^{\infty} c_j \right) L^2
$$

+ ...
+
$$
\left(\sum_{j=h}^{\infty} c_j - \sum_{j=h+1}^{\infty} c_j \right) L^h
$$

+ ...

Rearranging the terms,

$$
\sum_{j=0}^{\infty} c_j L^j = \sum_{j=0}^{\infty} c_j
$$

\n
$$
-(1-L) \sum_{j=1}^{\infty} c_j
$$

\n
$$
-(1-L) \sum_{j=2}^{\infty} c_j L
$$

\n
$$
-(1-L) \sum_{j=h+1}^{\infty} c_j L^h
$$

\n
$$
-(1-L) \sum_{j=h+1}^{\infty} c_j L^h
$$

\n
$$
= \sum_{j=0}^{\infty} c_j - (1-L) \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} c_h \right) L^j
$$

\n
$$
= C (1) - (1-L) \widetilde{C} (L).
$$

For part (b),

$$
\sum_{j=0}^{\infty} \tilde{c}_{j}^{2} = \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} c_{h} \right)^{2}
$$
\n
$$
\leq \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} |c_{h}| \right)^{2}
$$
\n
$$
= \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} |c_{h}|^{1/2} h^{1/4} |c_{h}|^{1/2} h^{-1/4} \right)^{2}
$$
\n
$$
\leq \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} |c_{h}| h^{1/2} \right) \left(\sum_{h=j+1}^{\infty} |c_{h}| h^{-1/2} \right)
$$
\n
$$
\leq \left(\sum_{h=0}^{\infty} |c_{h}| h^{1/2} \right) \sum_{j=0}^{\infty} \sum_{h=j+1}^{\infty} |c_{h}| h^{-1/2}.
$$

Next, consider $\sum_{j=0}^{\infty} \sum_{h=j+1}^{\infty} |c_h| h^{-1/2}$. The term $|c_1|$ appears in the sum only once, when $j=0$. The term $|c_2|$ appears in the sum twice, when $j = 0, 1$. Hence, $|c_h|$ appears when $j = 0, 1, \ldots, h-1$, total h times. Therefore,

$$
\sum_{j=0}^{\infty} \sum_{h=j+1}^{\infty} |c_h| h^{-1/2} = \sum_{j=0}^{\infty} |c_j| j^{-1/2} j
$$

$$
= \sum_{j=0}^{\infty} |c_j| j^{1/2},
$$

and

$$
\sum_{j=0}^{\infty} \tilde{c}_j^2 \le \left(\sum_{j=0}^{\infty} |c_j| \, j^{1/2}\right)^2.
$$

For part (c),

$$
\sum_{j=0}^{\infty} |\widetilde{c}_j| = \sum_{j=0}^{\infty} \left| \sum_{h=j+1}^{\infty} c_h \right|
$$

$$
\leq \sum_{j=0}^{\infty} \sum_{h=j+1}^{\infty} |c_h|
$$

$$
= \sum_{j=0}^{\infty} |c_j| j.
$$

Notice that the assumptions $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$ and $\sum_{j=1}^{\infty} j |c_j| < \infty$ are stronger than finiteness of the long-run variance $\sum_{j=1}^{\infty} |c_j| < \infty$.

According to the BN decomposition, if $\{X_t\}$ is a linear process, then

$$
X_t = C(L)\varepsilon_t
$$

= $C(1)\varepsilon_t - (1-L)\widetilde{C}(L)\varepsilon_t$
= $C(1)\varepsilon_t - (\widetilde{\varepsilon}_t - \widetilde{\varepsilon}_{t-1}),$ (2)

where

$$
\widetilde{\varepsilon}_{t}=\widetilde{C}\left(L\right)\varepsilon_{t}.
$$

Furthermore, $\tilde{\epsilon}_t$ has finite variance provided that $\sum_{j=0}^{\infty} j^{1/2} |c_j| < \infty$. The first summand on the right-hand side of (2), $C(1) \varepsilon_t$, is the long-run component, and $\widetilde{\varepsilon}_t - \widetilde{\varepsilon}_{t-1}$ is transient.

 $\sum_{j=1}^{\infty} j^{1/2} ||C_j|| < \infty$: The similar decomposition exists in the vector case. The transient component has finite variance if

$$
\sum_{j=0}^{\infty} \left\| \widetilde{C}_{j} \right\|^{2} = \sum_{j=0}^{\infty} \left\| \sum_{h=j+1}^{\infty} C_{h} \right\|^{2}
$$

$$
\leq \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} ||C_{j}|| \right)^{2}
$$

$$
= \sum_{j=0}^{\infty} \left(\sum_{h=j+1}^{\infty} ||C_{h}||^{1/2} h^{1/4} ||C_{h}||^{1/2} h^{-1/4} \right)^{2}
$$

$$
\leq \left(\sum_{j=0}^{\infty} j^{1/2} ||C_{j}|| \right)^{2}.
$$

The condition in part (c) of Theorem 6, becomes $\sum_{j=1}^{\infty} j ||C_j|| < \infty$ in the vector case.

WLLN

Suppose that

- $X_t = C(L) \varepsilon_t$.
- $\bullet \ \{ \varepsilon_t \}$ is a sequence of iid random variables with $E \, |\varepsilon_t| < \infty$ and $E \varepsilon_t = 0.$
- $C(L)$ satisfies $\sum_{j=1}^{\infty} j |c_j| < \infty$.

We will show that under these conditions

$$
n^{-1} \sum_{t=1}^{n} X_t \to_p 0.
$$

The key is the BN decomposition (2). Notice that $\sum_{t=1}^{n} (\tilde{\epsilon}_t - \tilde{\epsilon}_{t-1})$ is a so called telescoping sum:

$$
\sum_{t=1}^{n} (\tilde{\varepsilon}_t - \tilde{\varepsilon}_{t-1}) = (\tilde{\varepsilon}_1 - \tilde{\varepsilon}_0) + (\tilde{\varepsilon}_2 - \tilde{\varepsilon}_1) + (\tilde{\varepsilon}_3 - \tilde{\varepsilon}_2) + \dots + (\tilde{\varepsilon}_n - \tilde{\varepsilon}_{n-1})
$$

= $\tilde{\varepsilon}_n - \tilde{\varepsilon}_0$,

so that

$$
n^{-1} \sum_{t=1}^{n} X_t = C(1) n^{-1} \sum_{t=1}^{n} \varepsilon_t - n^{-1} (\widetilde{\varepsilon}_n - \widetilde{\varepsilon}_0).
$$

Due to $\sum_{j=1}^{\infty} j |c_j| < \infty$, $|C(1)| < \infty$. Hence, by the WLLN for iid sequences,

$$
C(1) n^{-1} \sum_{t=1}^{n} \varepsilon_t \to_p 0.
$$

Next,

$$
P\left(n^{-1}|\widetilde{\varepsilon}_t| > \delta\right) \le \frac{E|\widetilde{\varepsilon}_t|}{n\delta},
$$

and

$$
E|\tilde{\varepsilon}_t| = E\left|\sum_{j=0}^{\infty} \tilde{c}_j \varepsilon_{t-j}\right|
$$

\n
$$
\leq \sum_{j=0}^{\infty} |\tilde{c}_j| E |\varepsilon_{t-j}|
$$

\n
$$
= E |\varepsilon_0| \sum_{j=0}^{\infty} |\tilde{c}_j|
$$

\n
$$
< \infty,
$$

provided that $\sum_{j=1}^{\infty} j |c_j| < \infty$. Therefore,

$$
n^{-1}\left(\widetilde{\varepsilon}_n-\widetilde{\varepsilon}_0\right)\to_p 0.
$$

If we assume that $E\varepsilon_t^2 < \infty$, then we can replace $\sum_{j=1}^{\infty} j |c_j| < \infty$ with $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$, since

$$
P\left(n^{-1}|\widetilde{\varepsilon}_t| > \delta\right) \le \frac{E\widetilde{\varepsilon}_t^2}{n^2\delta^2}
$$

;

and $E\tilde{\epsilon}_t^2 < \infty$ provided that $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$ holds.

We can prove similar WLLNs with $\{\varepsilon_t\}$ being inid or an mds by using the corresponding LLNs for inid or mds. For example, the result holds if $\{\varepsilon_t\}$ is inid, $\sup_t E |\varepsilon_t|^{1+\delta} < \infty$ for some $\delta > 0$, and $\sum_{j=1}^{\infty} j |c_j| < \infty$. If $\{(\varepsilon_t, \mathcal{F}_t)\}\)$ is an mds, the result holds with $\sup_t E |\varepsilon_t|^{2+\delta} < \infty$ for some $\delta > 0$, and $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$.

So far we assumed that $EX_t = 0$. One can modify the first assumption so that $X_t = \mu + C(L)\varepsilon_t$, where μ is the mean of X_t . In this case, under the same set of conditions, we have $n^{-1} \sum_{t=1}^n X_t \to_p \mu$. For example, AR(1) process with mean μ is given by $(1 - \phi L)(X_t - \mu) = \varepsilon_t$. If $|\phi| < 1$, then the sample average of X_t converges in probability to μ provided that the corresponding moment restrictions hold.

CLT

Suppose that

- $X_t = C(L) \varepsilon_t$.
- $\{\varepsilon_t\}$ is a sequence of iid random variables with $E |\varepsilon_t|^2 = \sigma^2 < \infty$ and $E \varepsilon_t = 0$.
- $C(L)$ satisfies $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$.
- $C(1) \neq 0.$

The BN decomposition allows us to write

$$
n^{-1/2} \sum_{t=1}^{n} X_t = C(1) n^{-1/2} \sum_{t=1}^{n} \varepsilon_t - n^{-1/2} (\widetilde{\varepsilon}_n - \widetilde{\varepsilon}_0)
$$

= $C(1) n^{-1/2} \sum_{t=1}^{n} \varepsilon_t + o_p(1)$

$$
\rightarrow_d C(1) N(0, \sigma^2)
$$

= $N(0, \sigma^2 C(1)^2).$

Here, convergence in distribution is by the CLT for iid random variables. The approach illustrates why in the serially correlated case the asymptotic variance depends on the long-run variance of $\{X_t\}$. Again, the approach can be extended to the case where $\{\varepsilon_t\}$ is inid of mds.

In the vector case, suppose that $\{\varepsilon_t\}$ is a sequence of iid k-vectors with $E\varepsilon_t = 0$, and $E\varepsilon_t \varepsilon_t' = \Sigma$, a finite matrix. Let $X_t = C(L) \varepsilon_t$, and $\sum_{j=0}^{\infty} j^{1/2} ||C_j|| < \infty$, $C(1) \neq 0$. Since $n^{-1/2} \sum_{t=1}^n \varepsilon_t \to_d N(0, \Sigma)$, we have that

$$
n^{-1/2} \sum_{t=1}^{n} X_t \to_d N(0, C(1) \Sigma C(1)')
$$

Convergence of sample variances

Estimators of coefficients in the linear regression model involve second sample moments $n^{-1} \sum_{t=1}^{n} X_t X_t'$. Here, we discuss convergence of sample second moments when $\{X_t\}$ is a linear process. We assume that ${X_t}$ is a scalar linear process satisfying the same assumptions as in the previous section. Write

$$
X_t^2 = (C(L)\varepsilon_t)^2
$$

\n
$$
= \left(\sum_{j=0}^{\infty} c_j \varepsilon_{t-j}\right)^2
$$

\n
$$
= \sum_{j=0}^{\infty} \sum_{l=0}^{\infty} c_j c_l \varepsilon_{t-j} \varepsilon_{t-l}
$$

\n
$$
= \sum_{j=0}^{\infty} c_j^2 \varepsilon_{t-j}^2 + 2 \sum_{j=0}^{\infty} \sum_{l>j} c_j c_l \varepsilon_{t-j} \varepsilon_{t-l}
$$

\n
$$
= \sum_{j=0}^{\infty} c_j^2 \varepsilon_{t-j}^2 + 2 \sum_{h=1}^{\infty} \sum_{j=0}^{\infty} c_j c_j \varepsilon_{j+h} \varepsilon_{t-j} \varepsilon_{t-j-h} \text{ (change of variable } l = j+h, \text{ so that } h = 1, 2, ...)
$$

\n
$$
= B_0(L)\varepsilon_t^2 + 2 \sum_{h=1}^{\infty} B_h(L) \varepsilon_t \varepsilon_{t-h},
$$

where for $h = 0, 1, \ldots$,

$$
B_h(L) = \sum_{j=0}^{\infty} b_{h,j} L^j
$$

$$
= \sum_{j=0}^{\infty} c_j c_{j+h} L^j
$$

Thus,

$$
B_0(L) = \sum_{j=0}^{\infty} b_{0,j} L^j = \sum_{j=0}^{\infty} c_j^2 L^j.
$$

\n
$$
B_1(L) = \sum_{j=0}^{\infty} b_{1,j} L^j = \sum_{j=0}^{\infty} c_j c_{j+1} L^j.
$$

The BN decomposition of $B_h(L)$ is

$$
B_{h}(L) = B_{h}(1) - (1 - L) B_{h}(L), \qquad (3)
$$

:

where

$$
\widetilde{B}_{h}(L) = \sum_{j=0}^{\infty} \widetilde{b}_{h,j} L^{j},
$$

$$
\widetilde{b}_{h,j} = \sum_{l=j+1}^{\infty} b_{h,l}
$$

$$
= \sum_{l=j+1}^{\infty} c_{l} c_{l+h}.
$$

The BN decomposition of $B_h(L)$ is valid provided that $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$:

$$
\sum_{j=0}^{\infty} \tilde{b}_{h,j}^{2} = \sum_{j=0}^{\infty} \left(\sum_{l=j+1}^{\infty} c_{l} c_{l+h} \right)^{2}
$$
\n
$$
= \sum_{j=0}^{\infty} \left(\sum_{l=j+1}^{\infty} l^{1/4} c_{l} c_{l+h} l^{-1/4} \right)^{2}
$$
\n
$$
\leq \sum_{j=0}^{\infty} \left(\sum_{l=j+1}^{\infty} l^{1/2} c_{l}^{2} \right) \left(\sum_{l=j+1}^{\infty} c_{l+h}^{2} l^{-1/2} \right)
$$
\n
$$
\leq \left(\sum_{l=1}^{\infty} l^{1/2} c_{l}^{2} \right) \left(\sum_{j=0}^{\infty} \sum_{l=j+1}^{\infty} c_{l+h}^{2} l^{-1/2} \right)
$$
\n
$$
= \left(\sum_{l=1}^{\infty} l^{1/2} c_{l}^{2} \right) \left(\sum_{l=0}^{\infty} c_{l+h}^{2} l^{1/2} \right)
$$
\n
$$
\leq \left(\sum_{l=1}^{\infty} l^{1/2} c_{l}^{2} \right)^{2},
$$

and $\sum_{l=1}^{\infty} l^{1/2} c_l^2$ is finite provided that $\sum_{l=1}^{\infty} l^{1/2} |c_l|$ is finite:

$$
\sum_{l=1}^{\infty} l^{1/2} c_l^2 = \sum_{l=1}^{\infty} l^{1/2} |c_l|^2
$$

$$
\leq \sup_j |c_j| \sum_{l=1}^{\infty} l^{1/2} |c_l| < \infty,
$$

where $\sup_j |c_j| < \infty$ because $\sum_{l=1}^{\infty} l^{1/2} |c_l| < \infty$ and therefore $|c_l| \to 0$ as $l \to \infty$. Thus, we have

$$
X_t^2 = B_0(L)\varepsilon_t^2 + 2\sum_{h=1}^{\infty} B_h(L)\varepsilon_t \varepsilon_{t-h}
$$

\n
$$
= B_0(1)\varepsilon_t^2 + 2\sum_{h=1}^{\infty} B_h(1)\varepsilon_t \varepsilon_{t-h}
$$

\n
$$
- (1 - L) \left(\widetilde{B}_0(L)\varepsilon_t^2 + 2\sum_{h=1}^{\infty} \widetilde{B}_h(L)\varepsilon_t \varepsilon_{t-h} \right)
$$

\n
$$
= \left(\sum_{j=0}^{\infty} c_j^2 \right) \varepsilon_t^2 + u_t - (1 - L)\widetilde{v}_t,
$$

where

$$
u_t = \varepsilon_t \left(2 \sum_{h=1}^{\infty} B_h(1) \varepsilon_{t-h} \right),
$$

$$
\widetilde{v}_t = \widetilde{B}_0(L) \varepsilon_t^2 + 2 \sum_{h=1}^{\infty} \widetilde{B}_h(L) \varepsilon_t \varepsilon_{t-h}.
$$

We have

$$
n^{-1} \sum_{t=1}^{n} X_t^2 = \left(\sum_{j=0}^{\infty} c_j^2\right) n^{-1} \sum_{t=1}^{n} \varepsilon_t^2 + n^{-1} \sum_{t=1}^{n} u_t - n^{-1} \left(\tilde{v}_n - \tilde{v}_0\right).
$$

We will show next that

$$
n^{-1} \sum_{t=1}^{n} u_t \to_{a.s.} 0.
$$

Let $\mathcal{F}_t = \sigma\left(\varepsilon_t, \varepsilon_{t-1}, \ldots\right)$. We have that $\{(u_t, \mathcal{F}_t)\}$ is an mds.

Lemma 7 (White (2001), Theorem 3.76) Let $\{(u_t, \mathcal{F}_t)\}\$ be an mds. If for some $r \geq 1$, $\sum_{t=1}^{\infty} E |u_t|^{2r}/t^{1+r}$ ∞ , then $n^{-1} \sum_{t=1}^{n} u_t \rightarrow_{a.s.} 0$.

We will verify that $\{u_t\}$ satisfies the condition of the above lemma. Set $r = 1$. The condition is satisfied if $\sup_t E u_t^2 < \infty$, since $\sum_{t=1}^{\infty} t^{-2} < \infty$.

$$
E u_t^2 = 4\sigma^2 E \left(\sum_{h=1}^{\infty} B_h (1) \varepsilon_{t-h} \right)^2
$$

$$
= 4\sigma^4 \left(\sum_{h=1}^{\infty} B_h (1)^2 \right).
$$

Next,

$$
\sum_{h=1}^{\infty} B_h (1)^2 = \sum_{h=1}^{\infty} \left(\sum_{j=0}^{\infty} c_j c_{j+h} \right)^2
$$

$$
\leq \sum_{h=1}^{\infty} \left(\sum_{j=0}^{\infty} c_j^2 \right) \sum_{j=0}^{\infty} c_{j+h}^2
$$

$$
= \left(\sum_{j=0}^{\infty} c_j^2 \right) \sum_{h=1}^{\infty} \sum_{j=0}^{\infty} c_{j+h}^2
$$

$$
= \left(\sum_{j=0}^{\infty} c_j^2 \right) \sum_{j=1}^{\infty} j c_j^2,
$$

and, by the same argument as on page 3 of Lecture 10, $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$ implies that $\sum_{j=1}^{\infty} j c_j^2 < \infty$ as well.

As before, one can show that

$$
n^{-1}(\widetilde{v}_n-\widetilde{v}_0)\to_p 0,
$$

provided that $\sum_{j=1}^{\infty} j^{1/2} |c_j| < \infty$.

Lastly, by the WLLN for iid sequences,

$$
n^{-1} \sum_{t=1}^{n} \varepsilon_t^2 \to_p \sigma^2.
$$

Therefore,

$$
n^{-1} \sum_{t=1}^{n} X_t^2 \to_p \sigma^2 \sum_{j=0}^{\infty} c_j^2
$$

$$
= EX_t^2.
$$