
APRIL 17, 2009

LECTURE 11
LINEAR PROCESSES III: ASYMPTOTIC RESULTS

(Phillips and Solo (1992) and Phillips�Lecture Notes on Stationary and Nonstationary Time Series)
In this lecture, we discuss the LLN and CLT for a linear process fXtg generated as

Xt =
1X
j=0

cj"t�j (1)

= C (L) "t;

where

C (L) =
1X
j=0

cjL
j ;

and f"tg is a sequence of iid random variables with zero mean and �nite variance. The LLN and CLT for
fXtg rely only on the LLN and CLT for iid sequences and a certain decomposition of the lag polynomial
C (L) :
The method also works for more general sequences with "t�s being independent but not identically dis-

tributed (inid) and martingale di¤erence sequences (mds).

De�nition 1 Let fFtg be an increasing sequence of �-�elds. Then f(ut;Ft)g is a martingale if E (utjFt�1) =
ut�1 with probability one. The sequence f("t;Ft)g is said to be a martingale di¤erence sequence if E ("tjFt�1) =
0 with probability one.

For futg, the �-�eld Ft is often taken to be � (ut; ut�1; : : :) : Suppose that f(ut;Ft)g is a martingale. Then
f(ut � ut�1;Ft)g is an mds, since ut�ut�1 = ut�E (utjFt�1) ; and, therefore, E (ut � ut�1jFt�1) = 0: Note
either of the requirements for f"tg, iid, inid or mds, is stronger than just a WN.

Lemma 1 (SLLN for inid sequences, White (2001), Corollary 3.9) Let f"tg be a sequence of independent
random variables such that suptE j"tj

1+�
<1 for some � > 0: Then, n�1

Pn
t=1 "t � n�1

Pn
t=1E"t !a:s: 0:

Lemma 2 (SLLN for mds, White (2001), Exercise 3.77) Let f("t;Ft)g be an mds such that suptE j"tj
2+�

<
1 for some � > 0: Then, n�1

Pn
t=1 "t !a:s: 0:

Lemma 3 (CLT for inid sequences, White (2001), Theorem 5.10) Let f"tg be a sequence of independent
random variables such that E"t = 0 for all t; suptE j"tj

2+�
< 1 for some � > 0; and for all n su¢ ciently

large n�1
Pn

t=1E"
2
t > �

0 > 0: Then, n�1=2
Pn

t=1 "t=
�
n�1

Pn
t=1E"

2
t

�1=2 !d N (0; 1) :

Lemma 4 (CLT for mds, White (2001), Corollary 5.26) Let f("t;Ft)g be a mds such that suptE j"tj
2+�

<1
for some � > 0: Suppose that for all n su¢ ciently large n�1

Pn
t=1E"

2
t > �0 > 0; and n�1

Pn
t=1 "

2
t �

n�1
Pn

t=1E"
2
t !p 0: Then, n�1=2

Pn
t=1 "t=

�
n�1

Pn
t=1E"

2
t

�1=2 !d N (0; 1) :

Lemma 5 (CLT for strictly stationary and ergodic mds) Let f("t;Ft)g be a strictly stationary and ergodic
mds such that E"2t <1: Then n�1=2

Pn
t=1 "t !d N

�
0; E"2t

�
:

Beveridge and Nelson (BN) decomposition

First, we discuss an algebraic decomposition of a lag polynomial into long-run and transitory elements. The
decomposition was introduced by Beveridge and Nelson (1981).

Lemma 6 Let C (L) =
P1

j=0 cjL
j : Then

(a) C (L) = C(1)� (1� L) eC (L) ; where eC (L) =P1
j=0 ecjLj with ecj =P1

h=j+1 ch:
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(b) If
P1

j=1 j
1=2 jcj j <1; then

P1
j=0 ec2j <1:

(c) If
P1

j=1 j jcj j <1; then
P1

j=0 jecj j <1:
Proof. For part (a), write

1X
j=0

cjL
j =

1X
j=0

cj �
1X
j=1

cj

+

0@ 1X
j=1

cj �
1X
j=2

cj

1AL
+

0@ 1X
j=2

cj �
1X
j=3

cj

1AL2
+ : : :

+

0@ 1X
j=h

cj �
1X

j=h+1

cj

1ALh
+ : : : :

Rearranging the terms,

1X
j=0

cjL
j =

1X
j=0

cj

� (1� L)
1X
j=1

cj

� (1� L)
1X
j=2

cjL

� : : :

� (1� L)
1X

j=h+1

cjL
h

� : : :

=
1X
j=0

cj � (1� L)
1X
j=0

0@ 1X
h=j+1

ch

1ALj
= C (1)� (1� L) eC (L) :
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For part (b),

1X
j=0

ec2j =
1X
j=0

0@ 1X
h=j+1

ch

1A2

�
1X
j=0

0@ 1X
h=j+1

jchj

1A2

=
1X
j=0

0@ 1X
h=j+1

jchj1=2 h1=4 jchj1=2 h�1=4
1A2

�
1X
j=0

0@ 1X
h=j+1

jchjh1=2
1A0@ 1X

h=j+1

jchjh�1=2
1A

�
 1X
h=0

jchjh1=2
! 1X
j=0

1X
h=j+1

jchjh�1=2:

Next, consider
P1

j=0

P1
h=j+1 jchjh�1=2: The term jc1j appears in the sum only once, when j = 0. The term

jc2j appears in the sum twice, when j = 0; 1: Hence, jchj appears when j = 0; 1; : : : ; h � 1; total h times.
Therefore,

1X
j=0

1X
h=j+1

jchjh�1=2 =
1X
j=0

jcj j j�1=2j

=
1X
j=0

jcj j j1=2;

and
1X
j=0

ec2j �
0@ 1X
j=0

jcj j j1=2
1A2

:

For part (c),

1X
j=0

jecj j =
1X
j=0

������
1X

h=j+1

ch

������
�

1X
j=0

1X
h=j+1

jchj

=
1X
j=0

jcj j j:

Notice that the assumptions
P1

j=1 j
1=2 jcj j <1 and

P1
j=1 j jcj j <1 are stronger than �niteness of the

long-run variance
P1

j=1 jcj j <1.
According to the BN decomposition, if fXtg is a linear process, then

Xt = C (L) "t

= C (1) "t � (1� L) eC (L) "t
= C (1) "t � (e"t � e"t�1) ; (2)
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where e"t = eC (L) "t:
Furthermore, e"t has �nite variance provided that P1

j=0 j
1=2 jcj j <1. The �rst summand on the right-hand

side of (2), C (1) "t; is the long-run component, and e"t � e"t�1 is transient.
The similar decomposition exists in the vector case. The transient component has �nite variance ifP1
j=1 j

1=2 kCjk <1:

1X
j=0




 eCj


2 =
1X
j=0








1X

h=j+1

Ch








2

�
1X
j=0

0@ 1X
h=j+1

kCjk

1A2

=
1X
j=0

0@ 1X
h=j+1

kChk1=2 h1=4 kChk1=2 h�1=4
1A2

�

0@ 1X
j=0

j1=2 kCjk

1A2

:

The condition in part (c) of Theorem 6, becomes
P1

j=1 j kCjk <1 in the vector case.

WLLN

Suppose that

� Xt = C (L) "t:

� f"tg is a sequence of iid random variables with E j"tj <1 and E"t = 0.

� C (L) satis�es
P1

j=1 j jcj j <1:

We will show that under these conditions

n�1
nX
t=1

Xt !p 0:

The key is the BN decomposition (2). Notice that
Pn

t=1 (e"t � e"t�1) is a so called telescoping sum:
nX
t=1

(e"t � e"t�1) = (~"1 � ~"0) + (~"2 � ~"1) + (~"3 � ~"2) + : : :+ (~"n � ~"n�1)

= e"n � e"0;
so that

n�1
nX
t=1

Xt = C (1)n
�1

nX
t=1

"t � n�1 (e"n � e"0) :
Due to

P1
j=1 j jcj j <1, jC (1)j <1: Hence, by the WLLN for iid sequences,

C (1)n�1
nX
t=1

"t !p 0:
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Next,

P
�
n�1 je"tj > �� � E je"tj

n�
;

and

E je"tj = E

������
1X
j=0

ecj"t�j
������

�
1X
j=0

jecj jE j"t�j j
= E j"0j

1X
j=0

jecj j
< 1;

provided that
P1

j=1 j jcj j <1: Therefore,

n�1 (e"n � e"0)!p 0:

If we assume that E"2t <1; then we can replace
P1

j=1 j jcj j <1 with
P1

j=1 j
1=2 jcj j <1; since

P
�
n�1 je"tj > �� � Ee"2t

n2�2
;

and Ee"2t <1 provided that
P1

j=1 j
1=2 jcj j <1 holds.

We can prove similar WLLNs with f"tg being inid or an mds by using the corresponding LLNs for inid or
mds. For example, the result holds if f"tg is inid, suptE j"tj

1+�
<1 for some � > 0; and

P1
j=1 j jcj j <1:

If f("t;Ft)g is an mds, the result holds with suptE j"tj
2+�

<1 for some � > 0; and
P1

j=1 j
1=2 jcj j <1:

So far we assumed that EXt = 0: One can modify the �rst assumption so that Xt = �+C (L) "t; where
� is the mean of Xt: In this case, under the same set of conditions, we have n�1

Pn
t=1Xt !p �: For example,

AR (1) process with mean � is given by (1� �L) (Xt � �) = "t: If j�j < 1; then the sample average of Xt
converges in probability to � provided that the corresponding moment restrictions hold.

CLT

Suppose that

� Xt = C (L) "t:

� f"tg is a sequence of iid random variables with E j"tj2 = �2 <1 and E"t = 0.

� C (L) satis�es
P1

j=1 j
1=2 jcj j <1:

� C(1) 6= 0:

The BN decomposition allows us to write

n�1=2
nX
t=1

Xt = C (1)n
�1=2

nX
t=1

"t � n�1=2 (e"n � e"0)
= C (1)n�1=2

nX
t=1

"t + op(1)

!d C (1)N
�
0; �2

�
= N

�
0; �2C (1)

2
�
:
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Here, convergence in distribution is by the CLT for iid random variables. The approach illustrates why in
the serially correlated case the asymptotic variance depends on the long-run variance of fXtg : Again, the
approach can be extended to the case where f"tg is inid of mds.
In the vector case, suppose that f"tg is a sequence of iid k-vectors with E"t = 0; and E"t"0t = �; a �nite

matrix. Let Xt = C (L) "t; and
P1

j=0 j
1=2 kCjk < 1; C (1) 6= 0: Since n�1=2

Pn
t=1 "t !d N (0;�) ; we have

that

n�1=2
nX
t=1

Xt !d N
�
0; C (1)�C (1)

0�
:

Convergence of sample variances

Estimators of coe¢ cients in the linear regression model involve second sample moments n�1
Pn

t=1XtX
0
t.

Here, we discuss convergence of sample second moments when fXtg is a linear process. We assume that
fXtg is a scalar linear process satisfying the same assumptions as in the previous section. Write

X2
t = (C (L) "t)

2

=

0@ 1X
j=0

cj"t�j

1A2

=
1X
j=0

1X
l=0

cjcl"t�j"t�l

=
1X
j=0

c2j"
2
t�j + 2

1X
j=0

X
l>j

cjcl"t�j"t�l

=
1X
j=0

c2j"
2
t�j + 2

1X
h=1

1X
j=0

cjcj+h"t�j"t�j�h (change of variable l = j + h, so that h = 1; 2; : : : )

= B0(L)"
2
t + 2

1X
h=1

Bh (L) "t"t�h;

where for h = 0; 1; : : :,

Bh (L) =
1X
j=0

bh;jL
j

=
1X
j=0

cjcj+hL
j :

Thus,

B0 (L) =
1X
j=0

b0;jL
j =

1X
j=0

c2jL
j :

B1 (L) =
1X
j=0

b1;jL
j =

1X
j=0

cjcj+1L
j :

: : :

The BN decomposition of Bh (L) is

Bh (L) = Bh (1)� (1� L) eBh (L) ; (3)

6



where

eBh (L) =
1X
j=0

ebh;jLj ;
ebh;j =

1X
l=j+1

bh;l

=
1X

l=j+1

clcl+h:

The BN decomposition of Bh (L) is valid provided that
P1

j=1 j
1=2 jcj j <1:

1X
j=0

eb2h;j =
1X
j=0

0@ 1X
l=j+1

clcl+h

1A2

=
1X
j=0

0@ 1X
l=j+1

l1=4clcl+hl
�1=4

1A2

�
1X
j=0

0@ 1X
l=j+1

l1=2c2l

1A0@ 1X
l=j+1

c2l+hl
�1=2

1A
�

 1X
l=1

l1=2c2l

!0@ 1X
j=0

1X
l=j+1

c2l+hl
�1=2

1A
=

 1X
l=1

l1=2c2l

! 1X
l=0

c2l+hl
1=2

!

�
 1X
l=1

l1=2c2l

!2
;

and
P1

l=1 l
1=2c2l is �nite provided that

P1
l=1 l

1=2 jclj is �nite:
1X
l=1

l1=2c2l =

1X
l=1

l1=2 jclj2

� sup
j
jcj j

1X
l=1

l1=2 jclj <1;

where supj jcj j <1 because
P1

l=1 l
1=2 jclj <1 and therefore jclj ! 0 as l!1.

Thus, we have

X2
t = B0(L)"

2
t + 2

1X
h=1

Bh (L) "t"t�h

= B0(1)"
2
t + 2

1X
h=1

Bh (1) "t"t�h

� (1� L)
 eB0 (L) "2t + 2 1X

h=1

eBh (L) "t"t�h!

=

0@ 1X
j=0

c2j

1A "2t + ut � (1� L)evt;
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where

ut = "t

 
2
1X
h=1

Bh (1) "t�h

!
;

evt = eB0 (L) "2t + 2 1X
h=1

eBh (L) "t"t�h:
We have

n�1
nX
t=1

X2
t =

0@ 1X
j=0

c2j

1An�1 nX
t=1

"2t + n
�1

nX
t=1

ut � n�1 (evn � ev0) :
We will show next that

n�1
nX
t=1

ut !a:s: 0:

Let Ft = � ("t; "t�1; : : :) : We have that f(ut;Ft)g is an mds.

Lemma 7 (White (2001), Theorem 3.76) Let f(ut;Ft)g be an mds. If for some r � 1,
P1

t=1E jutj
2r
=t1+r <

1; then n�1
Pn

t=1 ut !a:s: 0:

We will verify that futg satis�es the condition of the above lemma. Set r = 1: The condition is satis�ed
if suptEu

2
t <1; since

P1
t=1 t

�2 <1:

Eu2t = 4�2E

 1X
h=1

Bh (1) "t�h

!2

= 4�4

 1X
h=1

Bh (1)
2

!
:

Next,

1X
h=1

Bh (1)
2
=

1X
h=1

0@ 1X
j=0

cjcj+h

1A2

�
1X
h=1

0@ 1X
j=0

c2j

1A 1X
j=0

c2j+h

=

0@ 1X
j=0

c2j

1A 1X
h=1

1X
j=0

c2j+h

=

0@ 1X
j=0

c2j

1A 1X
j=1

jc2j ;

and, by the same argument as on page 3 of Lecture 10,
P1

j=1 j
1=2 jcj j < 1 implies that

P1
j=1 jc

2
j < 1 as

well.
As before, one can show that

n�1 (evn � ev0)!p 0;

provided that
P1

j=1 j
1=2 jcj j <1.
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Lastly, by the WLLN for iid sequences,

n�1
nX
t=1

"2t !p �
2:

Therefore,

n�1
nX
t=1

X2
t !p �

2
1X
j=0

c2j

= EX2
t :
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