MAY 2, 2011

LECTURE 10
LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA

In this lecture, we continue to discuss covariance stationary processes.

Spectral density

(Gourieroux and Monfort (1990), Ch. 5; Hamilton (1994), Ch. 6)
A convenient way to represent the sequence of autocovariances {v(j):j =0,1,...} of a covariance sta-
tionary process is by the means of the spectral density or spectrum. The spectral density is defined as

follows.
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where i = v/—1. Notice that, since v (j) = v (—7), it follows that the spectral density is real valued.
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Next, e = cos (A\j) +isin (\j), e”*M = cos (\j) — isin (\j), and, therefore,
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Since cos (Aj) = cos(—Aj), the spectral density is symmetric around zero. Furthermore, since cos is a
periodic function with the period 27, the range of values of the spectral density is determined by the values
of f(A) for 0 <A <.

The autocovariance function and spectral density are equivalent, as it follows from the result below.

Theorem 1 Suppose that > ;7 |y(h)| < co. Then y(j) = [T f (X)eMdA.
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where summation and integration can be interchanged because Y ;- |y(h)| < co. Next,

/ eI\ = 27 if j = h.
For j # h,
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However, since cos and sin are periodic with the period 27,

cos(m(j—h)) = cos(=m(j—h)+2m(j—h))
= cos(—7m(j—h)).

Therefore,
/ eI AN = 0 if j # h.
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The result of Theorem 1 implies in particular that
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Thus, the area under the spectral density function of X; between —7 and 7 gives the variance of X;.

The argument A of f()) is called the frequency. Notice that if {X;} is covariance stationary with
absolutely summable autocovariances, the long-run variance is determined by the spectral density at the
zero frequency.
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Next, we discuss how linear (MA) transformations of a covariance stationary process affect the spectral
density and long-run variance.

Theorem 2 Let {X;:} be a covariance stationary process with the autocovariance function yx such that
dre oo lix ()] < oo. Define Yy = 377°  ¢; Xy—j, where 3272 ¢ < oo. Then {Y;} is covariance stationary

o2
and its spectral density is given by fy (A\) = E;io cje= | fx (N), where fx is the spectral density of {X;} .



Proof.
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Hence, Cov (Y;,Y;—p) is independent of ¢. Furthermore, by the same argument as on pages 1-2 of Lecture 9,
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Therefore, {Y;} is covariance stationary.
Next,
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The last equality follows because
che_“‘j = ch (cos (Aj) —isin (Aj))
J J
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Its complex conjugate is

ch cos (A\j) +ich sin (\j) = ch (cos (Aj) +isin (Aj))
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and hence
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In the above theorem, the spectral density at the zero frequency and, as a result, the long-run variance is
finite if Z;‘io lej| < co. However, absolute summability, Z;')io lej| < o0, is a stronger assumption than square
LS
3=05
¢; — 0 as j — oo. Therefore, the sequence {c;} is uniformly bounded. Next, Z;io c? < sup; |¢j Z;io ;| <
00

summability, > < 00, as we show next. Suppose Z;io lej| < oo. First, Z;io lej| < oo implies that

Suppose that {X;} is covariance stationary and purely indeterministic. Then it has the MA(oco) repre-
sentation

X = Zaﬁt—m (1)
=0
where {¢;} is a WN, and 777 a3 < oo. Let Var (¢;) = 0°. Since the spectrum of a WN process is flat:
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Theorem 2 implies that
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and the long-run variance of {X;} is
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If we take (1) as the generating mechanism, the condition 2?0:0 a? < oo ensures that {X,} is covariance

stationary. However, the sufficient condition for the long-run variance to be finite is Z?io la;| < oo. If
the last condition fails, we can have that >372 _ |vx (j)| = co. Such a process is called long memory. If
Z;OZO a? < 00 holds for a long memory process, then its autocovariance function converges to zero, however,
at the rate that is too slow for the long-run variance to be finite.

Let {Y;} be as defined in Theorem 2. Then its spectral density and long-run variance are given by
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Lag operator

(Gourieroux and Monfort (1990), Ch. 5; Hamilton (1994), Ch. 2)
The lag operator L transforms the process {X;} into itself such that

LX; = Xiu,
I?’X, = LLX,=LX, 1 =X o,
"X, = X,

The lag polynomial C' (L) = Z] o ¢; L7 transforms {X;} into another process {Y;} such that
v, = C)X,

= ) ¢LX,
3=0
= Z Cth,j.
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Let A(L) = Y72y a;L7 and B(L) = 3272, b;L7. Then
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We have that
A(L)+ B(L) = B(L)+ A(L),
A(L)B(L) = B(L)A(L).

Under certain conditions, a lag polynomial can be inverted. The inverse of a lag polynomial C (L) is
another lag polynomial, say B (L) such that

C(L)B(L) =1, (2)
SO we can write
c(L) ' =B(L).

Inversion of lag polynomials is important for the following reason. Consider the following autoregressive
process of order 1 (AR(1)):
Xt = CXt_l =+ Et. (3)

This process is generated recursively given some exogenous white noise process {e;}, a starting value Xg (a
random variable with the variance equal to Var (X;) to be determined later), and the coefficient ¢:

X1 = cXo+en,
Xo = cXji+eg,



and etc. Thus, the process {X:} is an endogenous solution to the difference equation (3). This difference
equation can be also written as X; — cX;_1 = &; or

C(L) Xt = &,
C(L) = 1-cL.

If C' (L) can be inverted, then the solution can be written as X, = C (L) '&;. Thus, it is important to
determine under what conditions a polynomial in lag operator can be inverted and how to compute the
coefficients of its inverse.
Consider first a polynomial of order 1. Without loss of generality, we can set the coefficient associated
with L% as ¢g = 1:!
C(L)=1-cL.

Suppose that |¢| < 1. Then, we can define the inverse of 1 — ¢L as follows.
(1—cL) ' =14cL+L%+.... (4)
This definition satisfies (2) since

(1—cL)Y L7 =1
j=0
The definition (4) is not the only solution that satisfies (2). Adding to it the term V¢!, where V is some
random variable, satisfies it as well, since

(1—cL)Vd = Vet —VeLc
= Vel —Vec™!
0.

However, if we take (1 —c¢L)™' = Yoo L7 + Ve, then (1 — L) e = e erj + Veley and is not a
covariance stationary process. Therefore, we restrict V = 0.
Next, consider a lag polynomial of order 2:

C(L) =1- ClL - CQLQ.

We can factor the polynomial as

1—ciL—col? =(1—X\L)(1—X\0L) (5)
where
1 = AL+ g,
Cy = 7)\1)\2.

Another way to find A\; and A; is as follows. Let z; and zo be the solutions (possibly complex) to
1 —c1z—cpz? = 0. (6)
We can write (6) as
1—cr1z—coz? = (21— 2) (22 — 2),
and by comparing this with (5), we obtain

~1 ~1
Al =2z and g = 2z,

IThis is due to the Wold decomposition result. Alternatively, this can be viewed as a normalization: multiplying all
coefficients by some constant ¢y # 0 affects only the variance of the process.



The polynomial in (5) can be inverted provided that |A;| < 1 and |A2] < 1. These conditions are equivalent
to the condition that all the roots of the polynomial in (6) are outside the unit circle:

|z| > 1.
If this condition is satisfied then
(1 —ClL—62L2)71 = (1—)\1L)_1 (1 —)\QL)_l
- (S ) (S
=0 =0

Alternatively, write
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The result can be extended to a lag polynomial of order p,

C(Ly=1-aLl—...—¢,LP,
since we can factor it as »
l—aL—... -’ =0 -)L),
j=1
where A;’s satisfy
P
(I—c1z—...— ") = H(l—)\jz).
j=1
The polynomial can be inverted provided that the roots of 1 —c12 — ... — ¢,2P are outside the unite circle.
P
l-—aL—...—ql) ' =]Ja-x07". (7)
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Let {e;} be a WN with Var (¢;) = 0. An M A(q) process, say {X;} is generated as

Xt = &+ 9157571 +...+ qutfq
@ (L) Et,

where
OL)=14+60L+...4+6,L9

By Theorem 2, M A (g) has the spectral density
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and the long-run variance
wx = 27TfX (0)
= o)
= 2(146,+...+6,)°.

Notice that for certain values of ;’s, the long-run variance can be zero. For 0 < j < ¢, the effect of a shock

in period ¢t on X after j periods is
0. — 0Xiyj

J 3&} ’
and the shocks have no effect after more than ¢ periods.

Definition 1 (Autoregression) A process {X:} is said to be autoregressive of order p (or autoregression),
denoted as AR (p), if it is generated according to

Xt = (let—l —+ ¢2Xt_2 + ...+ (prt—p + Et,
where {e} is a WN.

Let
Q(L)=1—$L—...—¢,L".

Then, AR(p) can be written as
(0] (L) Xt = &¢.

Provided that all the roots of ® (z) lie outside the unit circle, ® (L) can be inverted, and the process has the
following M A (c0) representation (Wold decomposition).

X, = o(L) '
= \I/(L)Et

> viEg, (8)
§=0

for some ¥ (L).
Suppose that p = 1. Then,
(1—=¢1L) Xy = &4,

and, according to (4),

X, = (1—-¢4L) g
= ZQZS{Lj €t
j=0

- e
=0
Hence, in the case of the AR (1) process, the coefficients of ¥ (L) in (8) are given by
v = ¢

To check the square-summability condition of Theorem 2,

d v = D e
§=0 j=0




provided that
o] < 1.

Then, Theorem 2 implies that AR (1) is covariance stationary, and its spectral density and long-run variance
of the AR (1) process are
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The long-run variance of a stationary AR (1) process is finite as well. Hence, in this case we actually have
that the coefficients in M A (c0) for a stationary AR (1) process are absolutely summable:

S = ‘]: .
>l = Loler = gy <o

This is because 1; = (;5{ — 0 as j — oo at the exponential rate.
In the case of AR (p), p > 1, due to (7), Z;io ¥?7 < oo provided that all the roots of ® (z) lie outside
the unit circle. Then AR (p) is covariance stationary with the spectral density and long-run variance

o? 1
fX (/\) - %W7
wx = @(1)2.

Definition 2 (ARMA) A process {X;} is ARMA (p,q), if it is generated according to
O(L)X, =0 (L)ey,
where {e:} is a WN.
When the roots of ® (z) lie outside the unit circle, ARM A (p, q) has an M A (c0) representation
X, =®(L) 'O (L)e,.

Its spectral density and long-run variance are
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When the roots of O (z) lie outside the unit circle, ARM A (p, q) has an AR (00) representation
O(L) '® (L)X, =&

Thus, in practice, any covariance stationary ARM A (p,q) or M A (co) process can be approximated by
AR (my,) model, with m,, increasing with n, however, at the slower rate.
An ARMA process with the nonzero mean p can be written as

O (L) (X¢ —p) =O (L) e



Vector case

Suppose that the vector process {X;} is covariance stationary and EX; = 0 for all ¢. Let
r'() = EXtXt’fj.

Notice that, in order for {X;} to be covariance stationary, I" (j) does not need to be symmetric for j # 0,
however,

I'(j)=T(-j) .

Consider a sequence of k-matrices {C;}, and define

7=0

The variance of Y; is given by
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Let ||A|| = v/ (A/A). We have
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where the last inequality is by the same argument as on pages 1-2 of Lecture 9. Hence, EY;Y, is finite
provided that

> lICy ] < oo, 9)
§=0
and -
AT ()] < oo (10)
h=—o00

Definition 3 A k-vector process {e;} is a vector WN if Ee; = 0 and Eeie}, = X, a positive definite matriz,
for all t, and Eeie’, = 0 fort # s.

If {X;} is purely indeterministic mean zero covariance stationary process such that (10) holds, similarly
to the scalar case, it has the M A (c0) representation

o0
Xt: E CjEtfj,
Jj=0
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where {e;} is a vector WN and C’s satisfy (9), and
Co = I;.

Again, as in the scalar case, ¢;’s are the linear one step ahead prediction errors.
The spectral density of a vector process is defined similarly to the scalar case:

FO) = 5 YT
= s ro+X rme gy ey |,

Again, the long-run variance-covariance matrix is given by
Q=2nf(0).

In order for the long-run variance to be finite,

o0
DG < .
§j=0

For the vector WN process {e;}, the spectral density is flat:
1

fe ()

Let {X:} be a covariance stationary process with the spectral density fx. Define
o0
§=0

Then, the spectral density of {Y;} is given by

frN) =D Cie™™ | fx (V) [ D e
j=0 j=0

Let {C;} be a sequence of k-matrices. The lag polynomial C' (L) in the vector case is defined as
C(L)=1I,+CiL+CoLl*+ ...,
where we set Cy = I according to the Wold decomposition. We say
B(L)=C (L)
if
B(L)C (L) = I.
The polynomial C (L) is invertible provided that the roots of
det (C (2)) =0
lie outside the unit circle. For example, if C (L) is of order p,

det (I +Ciz+...+Cp2?) =0

has to satisfy that all the roots are greater than one in absolute value.
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