
MAY 2, 2011

LECTURE 10

LINEAR PROCESSES II: SPECTRAL DENSITY, LAG OPERATOR, ARMA

In this lecture, we continue to discuss covariance stationary processes.

Spectral density
(Gourieroux and Monfort (1990), Ch. 5; Hamilton (1994), Ch. 6)

A convenient way to represent the sequence of autocovariances {γ(j) : j = 0, 1, . . .} of a covariance sta-
tionary process is by the means of the spectral density or spectrum. The spectral density is defined as
follows.

f (λ) =
1

2π

∞∑
j=−∞

γ(j)e−iλj ,

where i =
√
−1. Notice that, since γ (j) = γ (−j) , it follows that the spectral density is real valued.

f (λ) =
1

2π

γ (0) +

−1∑
j=−∞

γ(j)e−iλj +

∞∑
j=1

γ(j)e−iλj


=

1

2π

γ (0) +

∞∑
j=1

γ(−j)eiλj +

∞∑
j=1

γ(j)e−iλj


=

1

2π

γ(0) +

∞∑
j=1

γ(j)
(
eiλj + e−iλj

) .

Next, eiλj = cos (λj) + i sin (λj) , e−iλj = cos (λj)− i sin (λj) , and, therefore,

eiλj + e−iλj = 2 cos (λj) .

Hence,

f (λ) =
1

2π

γ(0) + 2

∞∑
j=1

γ(j) cos (λj)


=

1

2π

∞∑
j=−∞

γ(j) cos (λj) .

Since cos (λj) = cos (−λj) , the spectral density is symmetric around zero. Furthermore, since cos is a
periodic function with the period 2π, the range of values of the spectral density is determined by the values
of f (λ) for 0 ≤ λ ≤ π.

The autocovariance function and spectral density are equivalent, as it follows from the result below.

Theorem 1 Suppose that
∑∞
h=−∞ |γ(h)| <∞. Then γ(j) =

´ π
−π f (λ) eiλjdλ.

Proof.
ˆ π

−π
f (λ) eiλjdλ =

ˆ π

−π

(
1

2π

∞∑
h=−∞

γ(h)e−iλh

)
eiλjdλ

=
1

2π

∞∑
h=−∞

γ(h)

ˆ π

−π
eiλ(j−h)dλ,
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where summation and integration can be interchanged because
∑∞
h=−∞ |γ(h)| <∞. Next,

ˆ π

−π
eiλ(j−h)dλ = 2π if j = h.

For j 6= h,

ˆ π

−π
eiλ(j−h)dλ =

ˆ π

−π
(cos (λ (j − h)) + i sin (λ (j − h))) dλ

=
sin (λ (j − h))

j − h

∣∣∣∣π
−π
− i cos (λ (j − h))

j − h

∣∣∣∣π
−π

=
sin (π (j − h))− sin (−π (j − h))

j − h

−icos (π (j − h))− cos (−π (j − h))

j − h
.

However, since cos and sin are periodic with the period 2π,

cos (π (j − h)) = cos (−π (j − h) + 2π (j − h))

= cos (−π (j − h)) .

Therefore, ˆ π

−π
eiλ(j−h)dλ = 0 if j 6= h.

The result of Theorem 1 implies in particular that

γ (0) =

ˆ π

−π
f (λ) dλ.

Thus, the area under the spectral density function of Xt between −π and π gives the variance of Xt.
The argument λ of f (λ) is called the frequency. Notice that if {Xt} is covariance stationary with

absolutely summable autocovariances, the long-run variance is determined by the spectral density at the
zero frequency.

ωX = lim
n→∞

V ar

(
n−1/2

n∑
t=1

Xt

)

=

∞∑
h=−∞

γ (h)

= 2πf (0) .

Next, we discuss how linear (MA) transformations of a covariance stationary process affect the spectral
density and long-run variance.

Theorem 2 Let {Xt} be a covariance stationary process with the autocovariance function γX such that∑∞
j=−∞ |γX (j)| < ∞. Define Yt =

∑∞
j=0 cjXt−j , where

∑∞
j=0 c

2
j < ∞. Then {Yt} is covariance stationary

and its spectral density is given by fY (λ) =
∣∣∣∑∞j=0 cje

−iλj
∣∣∣2 fX (λ) , where fX is the spectral density of {Xt} .
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Proof.

Cov (Yt, Yt−h) = Cov

 ∞∑
j=0

cjXt−j ,

∞∑
j=0

cjXt−h−j


=

∞∑
j=0

∞∑
k=0

cjckCov (Xt−j , Xt−h−k)

=

∞∑
j=0

∞∑
k=0

cjckγX (h+ k − j) .

Hence, Cov (Yt, Yt−h) is independent of t. Furthermore, by the same argument as on pages 1-2 of Lecture 9,

∞∑
j=0

∞∑
k=0

cjckγX (h+ k − j) ≤ 2

 ∞∑
j=0

c2j

 ∞∑
h=0

|γX (h)|

< ∞.

Therefore, {Yt} is covariance stationary.
Next,

fY (λ) =
1

2π

∞∑
h=−∞

Cov (Yt, Yt−h) e−iλh

=
1

2π

∞∑
h=−∞

∞∑
j=0

∞∑
k=0

cjckγX (h+ k − j) e−iλh

=

∞∑
j=0

cje
−iλj

∞∑
k=0

cke
iλk 1

2π

∞∑
h=−∞

γX (h+ k − j) e−iλ(h+k−j)

=

 ∞∑
j=0

cje
−iλj

 ∞∑
j=0

cje
iλj

 fX (λ)

=

∣∣∣∣∣∣
∞∑
j=0

cje
−iλj

∣∣∣∣∣∣
2

fX (λ) .

The last equality follows because∑
j

cje
−iλj =

∑
j

cj (cos (λj)− i sin (λj))

=
∑
j

cj cos (λj)− i
∑
j

cj sin (λj) .

Its complex conjugate is∑
j

cj cos (λj) + i
∑
j

cj sin (λj) =
∑
j

cj (cos (λj) + i sin (λj))

=
∑
j

cje
iλj ,
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and hence ∣∣∣∣∣∣
∞∑
j=0

cje
−iλj

∣∣∣∣∣∣
2

=

 ∞∑
j=0

cj cos (λj)

2

+

 ∞∑
j=0

cj sin (λj)

2

=

 ∞∑
j=0

cje
−iλj

 ∞∑
j=0

cje
iλj

 .

In the above theorem, the spectral density at the zero frequency and, as a result, the long-run variance is
finite if

∑∞
j=0 |cj | <∞. However, absolute summability,

∑∞
j=0 |cj | <∞, is a stronger assumption than square

summability,
∑∞
j=0 c

2
j < ∞, as we show next. Suppose

∑∞
j=0 |cj | < ∞. First,

∑∞
j=0 |cj | < ∞ implies that

cj → 0 as j →∞. Therefore, the sequence {cj} is uniformly bounded. Next,
∑∞
j=0 c

2
j ≤ supj |cj |

∑∞
j=0 |cj | <

∞.
Suppose that {Xt} is covariance stationary and purely indeterministic. Then it has the MA(∞) repre-

sentation

Xt =

∞∑
j=0

ajεt−j , (1)

where {εt} is a WN, and
∑∞
j=0 a

2
j <∞. Let V ar (εt) = σ2. Since the spectrum of a WN process is flat:

f (λ) =
σ2

2π
for all λ,

Theorem 2 implies that

fX (λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

aje
−iλj

∣∣∣∣∣∣
2

,

and the long-run variance of {Xt} is

ωX = 2πfX (0)

= σ2

 ∞∑
j=0

aj

2

.

If we take (1) as the generating mechanism, the condition
∑∞
j=0 a

2
j <∞ ensures that {Xt} is covariance

stationary. However, the sufficient condition for the long-run variance to be finite is
∑∞
j=0 |aj | < ∞. If

the last condition fails, we can have that
∑∞
j=−∞ |γX (j)| = ∞. Such a process is called long memory. If∑∞

j=0 a
2
j <∞ holds for a long memory process, then its autocovariance function converges to zero, however,

at the rate that is too slow for the long-run variance to be finite.
Let {Yt} be as defined in Theorem 2. Then its spectral density and long-run variance are given by

fY (λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

aje
−iλj

∣∣∣∣∣∣
2 ∣∣∣∣∣∣
∞∑
j=0

cje
−iλj

∣∣∣∣∣∣
2

,

ωY = σ2

 ∞∑
j=0

aj

2 ∞∑
j=0

cj

2

.
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Lag operator
(Gourieroux and Monfort (1990), Ch. 5; Hamilton (1994), Ch. 2)

The lag operator L transforms the process {Xt} into itself such that

LXt = Xt−1,

L2Xt = LLXt = LXt−1 = Xt−2,

. . .

LhXt = Xt−h.

The lag polynomial C (L) =
∑∞
j=0 cjL

j transforms {Xt} into another process {Yt} such that

Yt = C (L)Xt

=

∞∑
j=0

cjL
jXt

=

∞∑
j=0

cjXt−j .

Let A (L) =
∑∞
j=0 ajL

j and B (L) =
∑∞
j=0 bjL

j . Then

A(L) +B(L) =

∞∑
j=0

(aj + bj)L
j ,

and

A(L)B(L) =

 ∞∑
j=0

ajL
j

 ∞∑
j=0

bjL
j


=

∞∑
j=0

∞∑
h=0

ajbhL
j+h

= a0b0 + (a0b1 + b0a1)L+ (a1b1 + a0b2 + a2b0)L2 + . . . .

We have that

A(L) +B(L) = B(L) +A(L),

A(L)B(L) = B(L)A(L).

Under certain conditions, a lag polynomial can be inverted. The inverse of a lag polynomial C (L) is
another lag polynomial, say B (L) such that

C (L)B (L) = 1, (2)

so we can write
C (L)

−1
= B (L) .

Inversion of lag polynomials is important for the following reason. Consider the following autoregressive
process of order 1 (AR(1)):

Xt = cXt−1 + εt. (3)

This process is generated recursively given some exogenous white noise process {εt}, a starting value X0 (a
random variable with the variance equal to V ar (Xt) to be determined later), and the coefficient c:

X1 = cX0 + ε1,

X2 = cX1 + ε2,
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and etc. Thus, the process {Xt} is an endogenous solution to the difference equation (3). This difference
equation can be also written as Xt − cXt−1 = εt or

C (L)Xt = εt,

C (L) = 1− cL.

If C (L) can be inverted, then the solution can be written as Xt = C (L)
−1
εt. Thus, it is important to

determine under what conditions a polynomial in lag operator can be inverted and how to compute the
coefficients of its inverse.

Consider first a polynomial of order 1. Without loss of generality, we can set the coefficient associated
with L0 as c0 = 1:1

C (L) = 1− cL.

Suppose that |c| < 1. Then, we can define the inverse of 1− cL as follows.

(1− cL)
−1

= 1 + cL+ c2L2 + . . . . (4)

This definition satisfies (2) since

(1− cL)

∞∑
j=0

cjLj = 1.

The definition (4) is not the only solution that satisfies (2). Adding to it the term V ct, where V is some
random variable, satisfies it as well, since

(1− cL)V ct = V ct − V cLct

= V ct − V cct−1

= 0.

However, if we take (1− cL)
−1

=
∑∞
j=0 c

jLj + V ct, then (1− cL)
−1
εt =

∑∞
j=0 c

jεt−j + V ctεt and is not a
covariance stationary process. Therefore, we restrict V = 0.

Next, consider a lag polynomial of order 2:

C (L) = 1− c1L− c2L2.

We can factor the polynomial as

1− c1L− c2L2 = (1− λ1L) (1− λ2L) (5)

where

c1 = λ1 + λ2,

c2 = −λ1λ2.

Another way to find λ1 and λ2 is as follows. Let z1 and z2 be the solutions (possibly complex) to

1− c1z − c2z2 = 0. (6)

We can write (6) as
1− c1z − c2z2 = (z1 − z) (z2 − z) ,

and by comparing this with (5), we obtain

λ1 = z−11 and λ2 = z−12 .

1This is due to the Wold decomposition result. Alternatively, this can be viewed as a normalization: multiplying all
coefficients by some constant c0 6= 0 affects only the variance of the process.
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The polynomial in (5) can be inverted provided that |λ1| < 1 and |λ2| < 1. These conditions are equivalent
to the condition that all the roots of the polynomial in (6) are outside the unit circle:

|z| > 1.

If this condition is satisfied then(
1− c1L− c2L2

)−1
= (1− λ1L)

−1
(1− λ2L)

−1

=

 ∞∑
j=0

λj1L
j

 ∞∑
j=0

λj2L
j

 .

Alternatively, write
1

1− λ1L
1

1− λ2L
=

1

λ1 − λ2

(
λ1

1− λ1L
− λ2

1− λ2L

)
.

Then,

(
1− c1L− c2L2

)−1
=

1

λ1 − λ2

∞∑
j=0

(
λ1λ

j
1L

j − λ2λj2Lj
)

=
1

λ1 − λ2

∞∑
j=0

(
λj+1
1 − λj+1

2

)
Lj .

The result can be extended to a lag polynomial of order p,

C (L) = 1− c1L− . . .− cpLp,

since we can factor it as

1− c1L− . . .− cpLp =

p∏
j=1

(1− λjL) ,

where λj ’s satisfy

(1− c1z − . . .− cpzp) =

p∏
j=1

(1− λjz) .

The polynomial can be inverted provided that the roots of 1− c1z − . . .− cpzp are outside the unite circle.

(1− c1L− . . .− cpLp)−1 =

p∏
j=1

(1− λjL)
−1
. (7)

ARMA
Let {εt} be a WN with V ar (εt) = σ2. An MA (q) process, say {Xt} is generated as

Xt = εt + θ1εt−1 + . . .+ θqεt−q

= Θ (L) εt,

where
Θ (L) = 1 + θ1L+ . . .+ θqL

q.

By Theorem 2, MA (q) has the spectral density

fX (λ) =
σ2

2π

∣∣Θ (e−iλ)∣∣2
=

σ2

2π

∣∣1 + θ1e
−iλ + . . .+ θqe

−iλq∣∣2 ,
7



and the long-run variance

ωX = 2πfX (0)

= σ2 |Θ (1)|2

= σ2 (1 + θ1 + . . .+ θq)
2
.

Notice that for certain values of θj ’s, the long-run variance can be zero. For 0 ≤ j ≤ q, the effect of a shock
in period t on X after j periods is

θj =
∂Xt+j

∂εt
,

and the shocks have no effect after more than q periods.

Definition 1 (Autoregression) A process {Xt} is said to be autoregressive of order p (or autoregression),
denoted as AR (p), if it is generated according to

Xt = φ1Xt−1 + φ2Xt−2 + . . .+ φpXt−p + εt,

where {εt} is a WN.

Let
Φ (L) = 1− φ1L− . . .− φpLp.

Then, AR(p) can be written as
Φ (L)Xt = εt.

Provided that all the roots of Φ (z) lie outside the unit circle, Φ (L) can be inverted, and the process has the
following MA (∞) representation (Wold decomposition).

Xt = Φ (L)
−1
εt

= Ψ (L) εt

=

∞∑
j=0

ψjεt−j , (8)

for some Ψ (L) .
Suppose that p = 1. Then,

(1− φ1L)Xt = εt,

and, according to (4),

Xt = (1− φ1L)
−1
εt

=

 ∞∑
j=0

φj1L
j

 εt

=

∞∑
j=0

φj1εt−j .

Hence, in the case of the AR (1) process, the coefficients of Ψ (L) in (8) are given by

ψj = φj1.

To check the square-summability condition of Theorem 2,
∞∑
j=0

ψ2
j =

∞∑
j=0

φ2j1

=
1

1− φ21
< ∞,
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provided that
|φ1| < 1.

Then, Theorem 2 implies that AR (1) is covariance stationary, and its spectral density and long-run variance
of the AR (1) process are

fX (λ) =
σ2

2π

∣∣∣∣∣∣
∞∑
j=0

φj1e
−iλj

∣∣∣∣∣∣
2

=
σ2

2π

1

|1− φ1e−iλ|2
,

ωX = 2πfX (0) =
σ2

(1− φ1)
2 .

The long-run variance of a stationary AR (1) process is finite as well. Hence, in this case we actually have
that the coefficients in MA (∞) for a stationary AR (1) process are absolutely summable:

∞∑
j=0

|ψj | =
∞∑
j=0

|φ1|j =
1

1− |φ1|
<∞.

This is because ψj = φj1 → 0 as j →∞ at the exponential rate.
In the case of AR (p) , p > 1, due to (7),

∑∞
j=0 ψ

2
j < ∞ provided that all the roots of Φ (z) lie outside

the unit circle. Then AR (p) is covariance stationary with the spectral density and long-run variance

fX (λ) =
σ2

2π

1

|Φ (e−iλ)|2
,

ωX =
σ2

Φ (1)
2 .

Definition 2 (ARMA) A process {Xt} is ARMA (p, q), if it is generated according to

Φ (L)Xt = Θ (L) εt,

where {εt} is a WN.

When the roots of Φ (z) lie outside the unit circle, ARMA (p, q) has an MA (∞) representation

Xt = Φ (L)
−1

Θ (L) εt.

Its spectral density and long-run variance are

fX (λ) =
σ2

2π

∣∣Θ (e−iλ)∣∣2
|Φ (e−iλ)|2

,

ωX = σ2 |Θ (1)|2

|Φ (1)|2
.

When the roots of Θ (z) lie outside the unit circle, ARMA (p, q) has an AR (∞) representation

Θ (L)
−1

Φ (L)Xt = εt.

Thus, in practice, any covariance stationary ARMA (p, q) or MA (∞) process can be approximated by
AR (mn) model, with mn increasing with n, however, at the slower rate.

An ARMA process with the nonzero mean µ can be written as

Φ (L) (Xt − µ) = Θ (L) εt.
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Vector case
Suppose that the vector process {Xt} is covariance stationary and EXt = 0 for all t. Let

Γ (j) = EXtX
′
t−j .

Notice that, in order for {Xt} to be covariance stationary, Γ (j) does not need to be symmetric for j 6= 0,
however,

Γ (j) = Γ (−j)′ .
Consider a sequence of k-matrices {Cj} , and define

Yt =

∞∑
j=0

CjXt−j .

The variance of Yt is given by

EYtY
′
t = E

( ∞∑
i=0

CiXt−i

) ∞∑
j=0

CjXt−j

′

=

∞∑
i=0

∞∑
j=0

CiΓ (j − i)C ′j

=

∞∑
j=0

CjΓ (0)C ′j +

∞∑
h=1

∞∑
j=0

(
CjΓ (h)C ′j+h + Cj+hΓ (h)

′
C ′j
)
.

Let ‖A‖ =
√
tr (A′A). We have

‖EYtY ′t ‖ ≤
∞∑
i=0

∞∑
j=0

∥∥CiΓ (j − i)C ′j
∥∥

≤
∞∑
i=0

∞∑
j=0

‖Ci‖ ‖Cj‖ ‖Γ (j − i)‖

≤ 2

∞∑
h=0

‖Γ (h)‖

 ∞∑
j=0

‖Cj‖2
2

,

where the last inequality is by the same argument as on pages 1-2 of Lecture 9. Hence, EYtY ′t is finite
provided that

∞∑
j=0

‖Cj‖2 <∞, (9)

and
∞∑

h=−∞

‖Γ (h)‖ <∞. (10)

Definition 3 A k-vector process {εt} is a vector WN if Eεt = 0 and Eεtε′t = Σ, a positive definite matrix,
for all t, and Eεtε′s = 0 for t 6= s.

If {Xt} is purely indeterministic mean zero covariance stationary process such that (10) holds, similarly
to the scalar case, it has the MA (∞) representation

Xt =

∞∑
j=0

Cjεt−j ,
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where {εt} is a vector WN and Cj ’s satisfy (9), and

C0 = Ik.

Again, as in the scalar case, εt’s are the linear one step ahead prediction errors.
The spectral density of a vector process is defined similarly to the scalar case:

f (λ) =
1

2π

∞∑
j=−∞

Γ (j) e−iλj

=
1

2π

Γ (0) +

∞∑
j=1

(
Γ (j) e−iλj + Γ (j)

′
eiλj

) ,

Again, the long-run variance-covariance matrix is given by

Ω = 2πf (0) .

In order for the long-run variance to be finite,
∞∑
j=0

‖Cj‖ <∞.

For the vector WN process {εt} , the spectral density is flat:

fε (λ) =
1

2π
Σ.

Let {Xt} be a covariance stationary process with the spectral density fX . Define

Yt =

∞∑
j=0

CjXt−j .

Then, the spectral density of {Yt} is given by

fY (λ) =

 ∞∑
j=0

Cje
−iλj

 fX (λ)

 ∞∑
j=0

C ′je
iλj

 .

Let {Cj} be a sequence of k-matrices. The lag polynomial C (L) in the vector case is defined as

C (L) = Ik + C1L+ C2L
2 + . . . ,

where we set C0 = Ik according to the Wold decomposition. We say

B (L) = C (L)
−1

if
B (L)C (L) = Ik.

The polynomial C (L) is invertible provided that the roots of

det (C (z)) = 0

lie outside the unit circle. For example, if C (L) is of order p,

det (I + C1z + . . .+ Cpz
p) = 0

has to satisfy that all the roots are greater than one in absolute value.
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