LECTURE 9 LINEAR PROCESSES I: WOLD DECOMPOSITION

In this lecture, we focus on covariance stationary processes.

Definition 1 (White noise) A process $\{\varepsilon_t\}$ is called a white noise (WN) if $E\varepsilon_t = 0$, $E\varepsilon_t^2 = \sigma^2 < \infty$ and $E \varepsilon_t \varepsilon_{t-j} = 0$ for all t and $j \neq 0$.

Definition 2 (Moving average) A process $\{u_t\}$ is called the moving average process of order q (MA(q)) if

$$
u_t = c_0 \varepsilon_t + c_1 \varepsilon_{t-1} + \ldots + c_q \varepsilon_{t-q}, \tag{1}
$$

and $\{\varepsilon_t\}$ is a WN.

A process such as in (1) is called linear. The Wold decomposition says that any mean zero covariance stationary process with absolutely summable autocovariances can be represented in the $MA(\infty)$ form.

For a covariance stationary process, we assume that second moments are finite. Let L_2 denote the space of random variables with finite second moments. For $X, Y \in L_2$ define the inner-product

$$
\langle X, Y \rangle = EXY.
$$

When equipped with such a definition of the inner-product, L_2 is a Hilbert space. Consider the mean zero covariance stationary process $\{X_t\}$, such that

$$
\sum_{j=0}^{\infty} |\gamma(j)| < \infty,\tag{2}
$$

where

$$
\gamma(j) = EX_t X_{t-j}.
$$

Define \mathcal{M}_t to be the smallest closed subspace of L_2 that contains all elements of the form

$$
\sum_{j=0}^{\infty} c_j X_{t-j}
$$
 such that
$$
\sum_{j=0}^{\infty} c_j^2 < \infty.
$$

The requirement $\sum_{j=0}^{\infty} c_j^2 < \infty$ is to ensure that the elements of \mathcal{M}_t are in L_2 . Indeed, in this case, the variance of any element of \mathcal{M}_t can be bounded using $\sum_{j=0}^{\infty} c_j^2$ and $\sum_{j=0}^{\infty} |\gamma(j)|$:

$$
Var\left(\sum_{j=0}^{\infty} c_j X_{t-j}\right) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} c_i c_j \gamma(i-j)
$$

\n
$$
\leq 2 \sum_{h=0}^{\infty} \sum_{j=0}^{\infty} c_j c_{j+h} \gamma(h)
$$

\n
$$
= 2 \sum_{h=0}^{\infty} \gamma(h) \sum_{j=0}^{\infty} c_j c_{j+h}
$$

\n
$$
\leq 2 \sum_{h=0}^{\infty} |\gamma(h)| \left(\sum_{j=0}^{\infty} c_j^2\right)^{1/2} \left(\sum_{j=0}^{\infty} c_{j+h}^2\right)^{1/2}
$$

\n
$$
\leq 2 \left(\sum_{j=0}^{\infty} c_j^2\right) \sum_{h=0}^{\infty} |\gamma(h)|
$$

\n
$$
< \infty,
$$

provided that (2) holds. Note further that \mathcal{M}_t is an increasing sequence:

$$
\ldots \subset \mathcal{M}_t \subset \mathcal{M}_{t+1} \subset \ldots
$$

Let $P_{\mathcal{M}_t}$ be the orthogonal projection onto \mathcal{M}_t . We can write

$$
X_t = \hat{X}_t + \varepsilon_t,\tag{3}
$$

where

$$
\begin{array}{rcl}\n\hat{X}_t & = & P_{\mathcal{M}_{t-1}} X_t, \\
\varepsilon_t & = & \left(1 - P_{\mathcal{M}_{t-1}}\right) X_t.\n\end{array}
$$

From the results for Hilbert spaces, we know that \hat{X}_t solves the least squares problem. Therefore, \hat{X}_t can be interpreted as the best one step ahead linear predictor of X_t (in the mean squared error sense), and ε_t is the prediction error. Note that $\widehat{X}_t \in \mathcal{M}_{t-1}$, and $\varepsilon_t \in \mathcal{M}_t$, since

$$
\varepsilon_t = X_t - \overline{X}_t.
$$

Further more, by the orthogonal projection result

$$
\varepsilon_t \in \mathcal{M}_{t-1}^{\perp},
$$

where

$$
\mathcal{M}_t^{\perp} = \{ Y \in L_2 : \langle Y, X \rangle = 0 \text{ for all } X \in \mathcal{M}_t \}.
$$

Since \mathcal{M}_t is an increasing sequence, it includes the members of \mathcal{M}_{t-h} and we have that $\varepsilon_t \in \mathcal{M}_{t-h}^{\perp}$ for all $h \geq 1$. Therefore

$$
E\varepsilon_t\varepsilon_{t-h}=0
$$
 for all $h \ge 1$.

Furthermore,

$$
E\varepsilon_t^2 = \sigma^2 < \infty
$$

and constant for all t since $\{X_t\}$ is covariance stationary.

DeÖne

$$
\mathcal{E}_t = \left\{ \sum_{j=0}^{\infty} c_j \varepsilon_{t-j} : \sum_{j=0}^{\infty} c_j^2 < \infty \right\},\,
$$

where \mathcal{E}_t is actually a closed and linear subspace of L_2 . Let $P_{\mathcal{E}_t}$ be an orthogonal projection onto \mathcal{E}_t . We have

$$
X_t = P_{\mathcal{E}_t} X_t + V_t,\tag{4}
$$

where, since \mathcal{E}_t is closed and linear,

$$
P_{\mathcal{E}_t} X_t = \sum_{j=0}^{\infty} \widehat{c}_j \varepsilon_{t-j} \tag{5}
$$

for some sequence $\{\widehat{c}_j\}$, and

$$
V_t = (1 - P_{\mathcal{E}_t}) X_t.
$$

Note that $V_t \in \mathcal{M}_t$, and because of (3),

$$
\mathcal{M}_{t}=\mathcal{M}_{t-1}\oplus\mathcal{S}\left(\varepsilon_{t}\right),
$$

where $\mathcal{S}(\varepsilon_t)$ is the linear subspace spanned by ε_t , and \oplus denotes the direct sum:

$$
\mathcal{S}_1 \oplus \mathcal{S}_2 = \{x_1 + x_2 : x_1 \in \mathcal{S}_1, x_2 \in \mathcal{S}_2\}.
$$

Since $P_{\mathcal{E}_t}$ is the orthogonal projection, $EV_t \varepsilon_t = 0$ by (4) and (5), and therefore $V_t \notin \mathcal{S}(\varepsilon_t)$. Therefore, it must be true that $V_t \in \mathcal{M}_{t-1}$. By the same argument, since

$$
\mathcal{M}_{t-1} = \mathcal{M}_{t-2} \oplus \mathcal{S}(\varepsilon_{t-1}), \text{ and}
$$

$$
EV_t \varepsilon_{t-1} = 0,
$$

we deduce that $V_t \in \mathcal{M}_{t-1}, \mathcal{M}_{t-2}, \dots$ Let,

$$
\mathcal{M}_{-\infty} = \bigcap_{t=-\infty}^{\infty} \mathcal{M}_t.
$$

We conclude that

$$
V_t \in \mathcal{M}_{-\infty} \text{ for all } t.
$$

Thus, V_t is an element of any linear sub-space \mathcal{M}_s , $s \in \mathbb{Z}$, where $\mathbb Z$ is the set of integers. The entire process $\{V_t\}$ can be predicted with certainty from an arbitrary distant past of $\{X_t\}$. Such a process is called deterministic.

We derived the Wold representation for a covariance stationary process $\{X_t\}$:

$$
X_t = \sum_{j=0}^{\infty} c_j \varepsilon_{t-j} + V_t,
$$

where $\{\varepsilon_t\}$ is a WN, and V_t is deterministic. When $V_t = 0$ for all t, the process $\{X_t\}$ is said to be linearly indeterministic. If $\{X_t\}$ is indeterministic and mean zero, it has the MA(∞) representation

$$
X_t = \sum_{j=0}^{\infty} c_j \varepsilon_{t-j}.
$$

One can show that

$$
c_j = EX_t \varepsilon_{t-j}/\sigma^2, \text{ and } (6)
$$

$$
c_0 = 1. \tag{7}
$$

Remarks:

- 1. The representation is unique with probability one, which follows from uniqueness of the Hilbert space projection.
- 2. The WN elements in the Wold decomposition are the one step ahead linear prediction errors.
- 3. Sometimes ε_t 's are interpreted as the fundamental shocks of the economy. Then the impulse responses, c_j 's, represent the effect of a shock after j periods. Suppose that the fundamental shocks are given by the unexpected shocks to the agents' information set. Let $\mathcal{F}_t = \sigma(X_t, X_{t-1}, \ldots)$. \mathcal{F}_t represents the information of the agents in the economy at time t. Note that \hat{X}_t is restricted to be a linear predictor, and, therefore, is not necessary equal to $E(X_t|\mathcal{F}_t)$. Hence, the true fundamental shocks may differ from the shocks that enter the Wold representation (see, for example Hansen and Sargent (1991), Chapter 4).