
APRIL 5, 2016

LECTURE 8

LINEAR REGRESSION WITH WEAKLY DEPENDENT DATA

Consider the usual regression model Yt = X ′tβ+Ut, where β ∈ Rk is unknown vector of parameters and the
data consists of weakly dependent observations. The LS estimator of β is β̂n = (

∑n
t=1XtX

′
t)
−1∑n

t=1XtYt.
In this lecture, we discuss consistency, asymptotic normality and estimation of the asymptotic variance of
β̂n.

Consistency
We make the following assumptions.

(a) {(X ′t, Ut)} is a mixing sequence with φ of size −r/ (2r − 1), r ≥ 1, or α of size −r/ (r − 1) , r > 1.

(b) EXtUt = 0 for all t.

(c) suptE |Xtj |2r+δ < ∆ <∞ for some δ > 0, and all j = 1, . . . , k.

(d) suptE |Ut|
2r+δ

< ∆ <∞ for some δ > 0.

(e) Mn = n−1
∑n
t=1EXtX

′
t is uniformly positive definite for large n.

In order to show consistency of β̂n, write, as usual,

β̂n = β +

(
n−1

n∑
t=1

XtX
′
t

)−1
n−1

n∑
t=1

XtUt.

Due to assumption (a) and Theorem 6 in Lecture 7, for i, j = 1, . . . , k we have that {XtiXtj} and {XtiUt}
are mixing with φ of size −r/ (2r − 1), r ≥ 1, or α of size −r/ (r − 1) , r > 1. Next, set ε = δ/2. By the
Cauchy-Schwartz inequality, for all t,

E |XtiXtj |r+ε ≤
√
E |Xti|2r+δ E |Xtj |2r+δ.

Therefore, suptE |XtiXtj |r+ε < ∆ < ∞ for some ε > 0. Similarly, we can bound suptE |XtiUt|r+ε . Hence,
by the SLLN,

n−1
n∑
t=1

XtX
′
t −Mn →a.s. 0, (1)

n−1
n∑
t=1

XtUt →a.s. 0.

Next, as it was discussed in the proof of Corollary 2, Lecture 7, due to Assumption (e) M−1n = O(1). Thus,

β̂n − β =

((
n−1

n∑
t=1

XtX
′
t −Mn

)
+Mn

)−1
n−1

n∑
t=1

XtUt

=

(
M−1n

(
n−1

n∑
t=1

XtX
′
t −Mn

)
+ I

)−1
M−1n n−1

n∑
t=1

XtUt (2)

= (O(1)oa.s(1) + I)
−1
O(1)oa.s.(1).

It follows that β̂n is a consistent estimator of β.
Equivalently, one can use the following extension of the Slutsky’s theorem (Propositions 2.16 and 2.30 in

White (1999)).
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Lemma 1 Let g : Rk → Rl be continuous on a compact set C ⊂ Rk. Suppose that {bn} is a sequence of
random k-vectors, and {cn} is a sequence of k-vectors such that bn−cn →a.s. 0 (bn−cn →p 0), and, for all n
sufficiently large, cn is interior point to C uniformly in n. Then g (bn)−g (cn)→a.s. 0 (g (bn)−g (cn)→p 0).

This result does not require that {cn} is a convergent sequence. The sequence {bn} does not necessary
converge either, but, for large n, it follows the behavior of {cn} . Since due to assumption (e), for n large
enough M−1n exists, we have(

n−1
n∑
t=1

XtX
′
t

)−1
n−1

n∑
t=1

XtUt =

(
n−1

n∑
t=1

XtX
′
t

)−1
n−1

n∑
t=1

XtUt −M−1n 0

→a.s. 0.

Remark. Assumption (b) above implies that the linear projection of Yt against Xt is the same for all t’s:

0 = EXtUt = EXt (Yt −X ′tβ)

= EXtYt − EXtX
′
tβ,

or
β = (EXtX

′
t)
−1
EXtYt for all t.

Now, suppose we replace Assumption (b) with the following weaker condition:

lim
n→∞

n−1
n∑
i=1

EXtUt = 0. (3)

This condition can be interpreted as X and U being uncorrelated only on average in the long-run (as opposed
to exact period-by-period uncorrelatedness of Assumption (b)). We can still show that β̂n →p β, however,
the meaning of β changes. Suppose that the limits of n−1

∑n
t=1EXtX

′
t and n−1

∑n
t=1EXtYt exist:

0 = lim
n→∞

n−1
n∑
i=1

EXtUt = lim
n→∞

n−1
n∑
i=1

EXt (Yt −X ′tβ)

= lim
n→∞

n−1
n∑
i=1

EXtYt − lim
n→∞

n−1
n∑
i=1

EXtX
′
tβ,

or

β =

(
lim
n→∞

n−1
n∑
i=1

EXtX
′
t

)−1
lim
n→∞

n−1
n∑
i=1

EXtYt.

Thus, in this case β can be interpreted as the average long-run projection of Yt against Xt. To show
consistency under (3), first let

Bn =

(
M−1n

(
n−1

n∑
t=1

XtX
′
t −Mn

)
+ I

)−1
M−1n

= Oa.s. (1) .

From (2) we have,

β̂n − β = Bnn
−1

n∑
t=1

XtUt

= Bnn
−1

n∑
t=1

(XtUt − EXtUt) +Bnn
−1

n∑
t=1

EXtUt

= Oa.s. (1) oa.s. (1) +Oa.s. (1) o (1) ,

where oa.s. (1) in the first term is due to the SLLN and o (1) in the second term is due to (3).
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Asymptotic normality
For the asymptotic normality, we replace Assumption (a), (c) and (d) with

(a*) {(X ′t, Ut)} is a mixing sequence with φ of size −r/ (r − 1), r ≥ 2, or α of size −2r/ (r − 2) , r > 2.

(c*) suptEX
2r
tj < ∆ <∞ for all j = 1, . . . , k.

(d*) suptEU
2r
t < ∆ <∞.

Note that (c*) and (d*) are stronger than (c) and (d) because in (a*) we require that r ≥ 2 or r > 2.
Assumption (a*) is stronger than what is required for the CLT, since we would need to insure that Ωn is
bounded (see equation (4) below). In addition, we make the following assumption.

(f) Ωn = V ar
(
n−1/2

∑n
t=1XtUt

)
is uniformly positive definite.

We will assume that condition (b), EXtUt = 0 for all t, holds. Define

Vn = M−1n ΩnM
−1
n

=

(
n−1

n∑
t=1

EXtX
′
t

)−1
V ar

(
n−1/2

n∑
t=1

XtUt

)(
n−1

n∑
t=1

EXtX
′
t

)−1
.

Next, we will show that under the above assumptions,

V −1/2n n1/2
(
β̂n − β

)
→d N (0, Ik) ,

where
V −1/2n = Ω−1/2n Mn,

the matrix square root of MnΩ−1n Mn. (This is Exercise 5.21 and Theorem 4.25 in White (1999). However,
the moment conditions are stated differently, and the assumption on the mixing coefficients is stronger. The
stronger mixing assumption is to ensure that Ωn = O(1).)

First, consider

V −1/2n n1/2
(
β̂n − β

)
− V −1/2n M−1n n−1/2

n∑
t=1

XtUt

= V −1/2n

(n−1 n∑
t=1

XtX
′
t

)−1
−M−1n

n−1/2
n∑
t=1

XtUt

= V −1/2n

(n−1 n∑
t=1

XtX
′
t

)−1
−M−1n

Ω1/2
n Ω−1/2n n−1/2

n∑
t=1

XtUt. (4)

Because of Assumptions (a*) and (d*), (1) holds, and due to Assumption (e) and Lemma 1 we have(n−1 n∑
t=1

XtX
′
t

)−1
−M−1n

 = oa.s.(1). (5)

Next, by Assumptions (c*) and (d*) we have that

sup
t
E |XtjUt|r ≤

√
sup
t
EX2r

tj sup
t
EU2r

t

< ∆.
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Therefore, Assumptions (b), (f) and the vector CLT for weakly dependent processes (Corollary 2 in Lecture
7) imply that

Ω−1/2n n−1/2
n∑
t=1

XtUt →d N (0, Ik) .

Hence,

Ω−1/2n n−1/2
n∑
t=1

XtUt = Op(1). (6)

(Let Xn be a sequence of scalars such that Xn →d X. This implies that for all large n and δ > 0,
|P (|Xn| > ∆δ)− P (|X| > ∆δ)| < δ provided that ∆δ and −∆δ are continuity points of the distribution
of X. This in turn implies that P (|Xn| > ∆δ) < P (|X| > ∆δ) + δ. However, P (|X| > ∆δ) < δ if we choose
∆δ large enough. Therefore, P (|Xn| > ∆δ) < 2δ for all large n. This establishes that if Xn →d X then
Xn = Op(1). This is Lemma 4.5 in White (1999).)

Given Assumption (a*), Lemma 3 on page 9 of Lecture 7 implies that

Ωn = O(1). (7)

Assumptions (c*) and (f) together imply that

V −1/2n = O(1). (8)

The result in (8) holds because V −1/2n = Ω
−1/2
n Mn, Ω−1n = O (1) because Ωn is uniformly positive definite

by Assumption (f); Mn = O (1) because for its element i, j we have∣∣∣[Mn]ij

∣∣∣ =

∣∣∣∣∣n−1
n∑
t=1

EXtiXtj

∣∣∣∣∣
≤ n−1

n∑
t=1

|EXtiXtj |

≤ n−1
n∑
t=1

(
EX2

ti

) 1
2
(
EX2

tj

) 1
2

≤ n−1
n∑
t=1

(
E |Xti|2r

) 1
2r
(
E |Xtj |2r

) 1
2r

≤
(

sup
t
E |Xti|2r

) 1
2r
(

sup
t
E |Xtj |2r

) 1
2r

< ∆
1
r <∞,

where the inequality in the third line is by Cauchy-Schwartz, and the inequality in the fourth line is by the
norm inequality since r ≥ 2 (see Davidson (1994) page 138).

Now, it follows from (4) and (5)-(8) that

V −1/2n n1/2
(
β̂n − β

)
− V −1/2n M−1n n−1/2

n∑
t=1

XtUt →p 0.

Consequently, the asymptotic distribution of

V −1/2n n1/2
(
β̂n − β

)
is the same as that of

V −1/2n M−1n n−1/2
n∑
t=1

XtUt.
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Lastly,

V −1/2n M−1n n−1/2
n∑
t=1

XtUt

= Ω−1/2n n−1/2
n∑
t=1

XtUt

→d N (0, Ik) .

Remark. We can also show asymptotic normality when the condition EXtUt = 0 does not hold for every
period t. In that case, we replace the average uncorrelatedness in (3) with a somewhat stronger condition:

n−1/2
n∑
t=1

EXtUt = o (1) .

Now, write:

V −1/2n n1/2

(
β̂n − β −M−1n n−1

n∑
t=1

EXtUt

)

= V −1/2n

(
n−1

n∑
t=1

XtX
′
t

)−1
n−1/2

n∑
t=1

XtUt − V −1/2n M−1n n−1/2
n∑
t=1

EXtUt

= V −1/2n

(
n−1

n∑
t=1

XtX
′
t

)−1
n−1/2

n∑
t=1

(XtUt − EXtUt)

+V −1/2n

(n−1 n∑
t=1

XtX
′
t

)−1
−M−1n

n−1/2
n∑
t=1

EXtUt

= V −1/2n

(
n−1

n∑
t=1

XtX
′
t

)−1
n−1/2

n∑
t=1

(XtUt − EXtUt)

+V −1/2n

(n−1 n∑
t=1

XtX
′
t

)−1
−

(
n−1

n∑
t=1

EXtX
′
t

)−1n−1/2
n∑
t=1

EXtUt.

The second term in the above expression is asymptotically negligible. For the first term, by the same
argument as in (4), one can show that

V −1/2n

(n−1 n∑
t=1

XtX
′
t

)−1
−M−1n

n−1/2
n∑
t=1

(XtUt − EXtUt) = op(1).

Since

V −1/2n M−1n n−1/2
n∑
t=1

(XtUt − EXtUt)→d N (0, Ik) ,

we therefore obtain that

V −1/2n n1/2

(
β̂n − β −M−1n n−1

n∑
t=1

EXtUt

)
→d N(0, Ik).

However,

V −1/2n n1/2

(
β̂n − β −M−1n n−1

n∑
t=1

EXtUt

)
= V −1/2n n1/2(β̂n − β)− Ω−1/2n n−1/2

n∑
t=1

EXtUt
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= V −1/2n n1/2(β̂n − β) + o(1).

We now conclude that V −1/2n n1/2(β̂n − β)→d N(0, Ik).
Note that to avoid asymptotic bias, it is insufficient to assume that the errors and regressors are uncorrelated
on average (n−1

∑n
t=1EXtUt = o(1)) as in that case one can still have non-negligible asymptotic bias. For

example, if Ω
−1/2
n n−1/2

∑n
t=1EXtUt → δ 6= 0 for some δ ∈ Rk, then V −1/2n n1/2(β̂n − β)→ N(δ, Ik).

Estimation of asymptotic variance matrix
Consistent estimation of Vn is required for hypothesis testing. Due to (1), we have a natural estimator for
Mn, n

−1∑
tXtX

′
t. Suppose that there exists Ω̂n such that

Ωn − Ω̂n →p 0,

and, therefore, for n sufficiently large, Ω̂n is positive definite. We say that such Ω̂n is a consistent estimator of
Ωn. Note that Ωn allows for general form of heteroskedasticity and autocorrelation for {XtUt} . A consistent
estimator of Ωn is referred as heteroskedasticity and autocorrelation consistent (HAC). Define

V̂n =

(
n−1

∑
t

XtX
′
t

)−1
Ω̂n

(
n−1

∑
t

XtX
′
t

)−1
.

It follows from Lemma 1 that
Vn − V̂n →p 0.

Further, set

V̂ −1/2n = Ω̂−1/2n

(
n−1

∑
t

XtX
′
t

)
.

Then,

V̂ −1/2n n1/2
(
β̂n − β

)
− V −1/2n n1/2

(
β̂n − β

)
=

(
V̂ −1/2n − V −1/2n

)
V 1/2
n

(
V −1/2n n1/2

(
β̂n − β

))
= op(1)O(1)Op(1)

= op(1),

where Vn = O(1), since both Ωn and M−1n are O(1) as it was discussed above. Therefore,

V̂ −1/2n n1/2
(
β̂n − β

)
→d N (0, Ik) .

As usual, inference about β can be based on a Wald statistic. Under H0 : β = β0,

Wn = n
(
β̂n − β0

)′
V̂ −1n

(
β̂n − β0

)
→d χ

2
k.

Next, we consider estimation of Ωn:

Ωn = Ωn(0) +

n−1∑
j=1

(Ωn(j) + Ωn(j)′) , where

Ωn(j) = n−1
n∑

t=j+1

E (XtUt) (Xt−jUt−j)
′
.
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A consistent estimator was suggested, for example, by Newey and West (1987).
We will proceed in two steps. First, we will suggest a consistent but infeasible estimator that uses the true

disturbances Ut. In the second step, we will argue that the estimator is still consistent when Ut is replaced
by Ût = Yt −X ′tβ̂n. For j = 0, 1, . . . , let

Ω̃n(j) = n−1
n∑

t=j+1

(XtUt) (Xt−jUt−j)
′
.

The mixing and moments conditions that we made imply that for all (fixed) j’s:

Ωn(j)− Ω̃n(j)→p 0.

Therefore, one may consider the following estimator of Ωn:

Ω̃n(0) +

n−1∑
j=1

(
Ω̃n(j) + Ω̃n(j)′

)
.

However, it turns out that such an estimator is not consistent. The reason for that is that the number of
estimated autocovariances Ω̃n(j) grows too fast with n. A solution is to allow the number of autocovariances
to grow with n, but at a slower rate. Let

Ω̃n = Ω̃n(0) +

mn∑
j=1

w (j,mn)
(

Ω̃n(j) + Ω̃n(j)′
)
.

In the above expression, w (j,mn) represents the weight assigned to autocovariance term j. The weight
ensure that the resulting estimator is positive semi-definite. If w (j,mn) = 1, the resulting matrix does not
have to be positive semi-definite. An example of weights that yield positive semi-definite Ω̃n is

w (j,m) = 1− j

m+ 1

for 1≤ j ≤ m, and zero otherwise. Such weights are called the Bartlett weights or kernel. The number of
autocovariance elements mn is called the bandwidth or lag truncation parameter, since the autocovariances
with j > mn receive zero weights.

Assume the following assumptions.

(c**) suptE |Xtj |4r+δ < ∆ <∞ for some δ > 0 and all j = 1, . . . , k.

(d**) suptE |Ut|
4r+δ

< ∆ <∞.

(g) |w (j,mn)| ≤ C <∞ for all j.

(h) limmn→∞ w (j,mn) = 1 for each j.

(i) mn →∞, and mn/n
1/4 → 0.

Assumption (g) says that the weight are uniformly bounded in j. Assumption (h) implies that asymptotically
all autocovariances receive the unit weight. Assumption (i) says that the number of autocovariances used
increases with the sample size, however, at the rate slower than n. The rate of growth n1/4 is not optimal.
Andrews (1991) establishes consistency formn = o(n). Thus, it is sufficient that the lag truncation parameter
grows at the rate just slower than n. However, he shows that the optimal rates for various weighting schemes
are typically slower than n1/2. For example, for the Bartlett kernel it is n1/3, which is faster than n1/4

assumed here.

Lemma 2 Under Assumptions (a*), (b), (c**), (d**), (g)-(i), Ω̃n − Ωn →p 0.
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Proof. Note that Ω̃n − Ωn →p 0 if and only if c′Ω̃nc− c′Ωnc→p 0 for all c ∈ Rk. Let

ht = c′XtUt.

Then {ht} is mixing of the same size as in (a*), Eht = 0. Further,

c′Ωnc = n−1
n∑
t=1

Eh2t + 2

n−1∑
j=1

n−1
n∑

t=j+1

Ehtht−j ,

c′Ω̃nc = n−1
n∑
t=1

h2t + 2

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

htht−j ,

and, therefore,
c′Ω̃nc− c′Ωnc = Rn,0 + 2Rn,1 + 2Rn,2 − 2Rn,3,

where

Rn,0 = n−1
n∑
t=1

(
h2t − Eh2t

)
,

Rn,1 =

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

(htht−j − Ehtht−j) ,

Rn,2 =

mn∑
j=1

(w (j,mn)− 1)n−1
n∑

t=j+1

Ehtht−j ,

Rn,3 =

n−1∑
j=mn+1

n−1
n∑

t=j+1

Ehtht−j .

We need to show that each one of the four terms converge to zero in the appropriate sense.
First, since r ≥ 2,

sup
t
E
∣∣h2t ∣∣r+δ/4 ≤

√
sup
t
E |Ut|4r+δ sup

t
E |c′Xt|4r+δ

≤

√√√√√sup
t
E |Ut|4r+δ

 k∑
j=1

|cj |
(

sup
t
E |Xtj |4r+δ

)1/(4r+δ)
4r+δ

(9)

≤ ∆

 k∑
j=1

|cj |

2r+δ/2

<∞.

Therefore,

Rn,0 = n−1
n∑
t=1

(
h2t − Eh2t

)
→a.s. 0,

as it follows from the SLLN for weakly dependent processes (Theorem 7 in Lecture 7).
By the same argument as in the proof of Lemma 3 in Lecture 7, Assumption (a*) implies that there

exists some constants K and ε > 0, such that

n−1
n∑

t=j+1

E |htht−j | ≤ Kj−1−ε for some ε > 0. (10)
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Hence,

|Rn,3| ≤ K
n−1∑

j=mn+1

j−1−ε

→ 0,

since mn → ∞. To show that, one can approximate the sum by an integral as follows. Consider a series
{aj : j ≥ m} such that aj ≥ 0 for all j’s and aj+1 < aj . Recall that, if we can find a continuous function
f (x) such that f (j) = aj , then

∞∑
j=m+1

aj ≤
ˆ ∞
m

f (x) dx ≤
∞∑
j=m

aj ,

where
∑∞
j=m aj =

∑∞
j=m+1 aj−1 (j − (j − 1)) is the upper Riemann sum, and

∑∞
j=m+1 aj =

∑∞
j=m+1 aj(j−

(j − 1)) is the lower Riemann sum. Hence,

n−1∑
j=mn+1

1

j1+ε
<

ˆ ∞
mm

dx

x1+ε

=
1

εmε
n

→ 0.

Next, from (10) we have

|Rn,2| ≤ K
mn∑
j=1

|w (j,mn)− 1| j−1−ε.

Since |w (j,mn)− 1| ≤ C + 1 for all j, and limn→∞
∑mn

j=1 j
−1−ε is finite, by the dominated convergence

theorem we can bring the limit inside the sum, so that due to Assumption (h),

lim
n→∞

|Rn,2| ≤ K

∞∑
j=1

lim
n→∞

|w (j,mn)− 1| j−1−ε

= 0.

It remains to show that Rn,1 →p 0. Let

Zj,t = htht−j − Ehtht−j . (11)

Using the fact that |w (j,mn)| ≤ C, we obtain

P (|Rn,1| > ε)

= P

∣∣∣∣∣∣
mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

Zj,t

∣∣∣∣∣∣ > ε


≤ P

mn∑
j=1

|w (j,mn)|n−1
∣∣∣∣∣∣

n∑
t=j+1

Zj,t

∣∣∣∣∣∣ > ε


≤ P

mn∑
j=1

n−1

∣∣∣∣∣∣
n∑

t=j+1

Zj,t

∣∣∣∣∣∣ > ε

C


≤ P

(
n−1

∣∣∣∣∣
n∑
t=2

Z1,t

∣∣∣∣∣ > ε

Cmn
or n−1

∣∣∣∣∣
n∑
t=3

Z2,t

∣∣∣∣∣ > ε

Cmn
or . . . or n−1

∣∣∣∣∣
n∑

t=mn+1

Zmn,t

∣∣∣∣∣ > ε

Cmn

)

9



≤
mn∑
j=1

P

n−1
∣∣∣∣∣∣

n∑
t=j+1

Zj,t

∣∣∣∣∣∣ > ε

Cmn


≤ m2

nC
2

n2ε2

mn∑
j=1

E

∣∣∣∣∣∣
n∑

t=j+1

Zj,t

∣∣∣∣∣∣
2

, (12)

where the last inequality is by Chebyshev’s. Next, we will show that there exists a constant ∆∗ such that

E

∣∣∣∣∣∣
n∑

t=j+1

Zj,t

∣∣∣∣∣∣
2

≤ ∆∗n (j + 2) . (13)

We will show that the result holds in the case of uniform mixing. For the strong mixing case, the proof is
identical. Write

E

∣∣∣∣∣∣
n∑

t=j+1

Zj,t

∣∣∣∣∣∣
2

=

n∑
t=j+1

EZ2
j,t + 2

n−j−1∑
l=1

n∑
t=j+1+l

EZj,tZj,t−l

≤
n∑

t=j+1

EZ2
j,t + 2

n−j−1∑
l=1

n∑
t=j+1+l

|EZj,tZj,t−l|

=

n∑
t=j+1

EZ2
j,t + 2

j∑
l=1

n∑
t=j+1+l

|EZj,tZj,t−l|+ 2

n−j−1∑
l=j+1

n∑
t=j+1+l

|EZj,tZj,t−l| . (14)

For the first term in (14), suptEZ
2
j,t is finite if suptEh

4
t is finite. Applying the Cauchy-Schwartz and

Minkowski’s inequalities, as in (9), we obtain

sup
t
Eh4t ≤

√
sup
t
EU8

t sup
t
E |c′Xt|8

≤

√√√√√sup
t
EU8

t

 k∑
j=1

|cj |
(

sup
t
E |Xtj |8

)1/8
8

≤ ∆′ <∞,

for some constant ∆′. The last inequality holds due to assumptions (c**) and (d**), and since r ≥ 2. Next,
by Cauchy-Schwartz, |EZj,tZj,t−l| ≤ suptEZ

2
j,t. Hence, for the first two terms in (14), we obtain that

n∑
t=j+1

EZ2
j,t + 2

j∑
l=1

n∑
t=j+1+l

|EZj,tZj,t−l|

≤ (n− j) sup
t
EZ2

j,t + 2

j∑
l=1

(n− j − l) sup
t
EZ2

j,t

≤ (n− j) sup
t
EZ2

j,t + 2 (n− 3/2j − 1/2) j sup
t
EZ2

j,t

≤ 2 (n− j) (j + 1) sup
t
EZ2

j,t

≤ 2n (j + 1) sup
t
EZ2

j,t (15)

For the third term in (14), a different strategy has to be used. If we choose again to use Cauchy-Schwartz
and replace EZ2

j,t with suptEZ
2
j,t, we will obtain

∑n−j−1
l=j+1

∑n
t=j+1+l |EZj,tZj,t−l| ≤ suptEZ

2
j,t

∑n−j−1
l=j+1 (n−

10



j − l) which behaves as n2 for large n and all j’s fixed we. If we substitute it back into (12), n2 will cancel
out in the numerator and denominator, and the bound on P (|Rn,1| > ε) will be uninformative since the
numerator in (12) grows with mn.

We will use therefore a different approach based on the mixing inequalities (Lemma 2 on page 11 of
Lecture 7) for the third term in (14). Let φZj

and φh be the uniform mixing coefficients of Zj,t and ht
respectively. The mixing inequalities can be used because l > j in this case, and as in proof of Theorem 8
on page 8 of Lecture 7,

φZj (l) ≤ φh (l − j) .
(The mixing inequalities cannot be used for the second term in (14) because for it l ≤ j.) By Lemma 2 in
Lecture 7,

|EZj,tZj,t−l| ≤ 2φZj
(l)1−1/r

(
EZ2

j,t−l
)1/2

(E |Zj,t|r)
1/r

≤ 2φh(l − j)1−1/r
(

sup
t
EZ2

j,t

)1/2(
sup
t
E |Zj,t|r

)1/r

.

As we argued above, suptEZ
2
j,t <∞. By the definition of Zj,t and Minkowski’s inequality,

(E |Zj,t|r)
1/r

= (E |htht−j − Ehtht−j |r)
1/r

≤ (E |htht−j |r)
1/r

+ (|Ehtht−j |r)
1/r

,

and since r ≥ 2, suptE |Zj,t|
r is finite if suptE |htht−j |

r
<∞ which can be shown by the same argument as

in (9). Thus, we have
n−j−1∑
l=j+1

n∑
t=j+1+l

|EZj,tZj,t−l|

≤ 2

(
sup
t
EZ2

j,t

)1/2(
sup
t
E |Zj,t|r

)1/r

(n− j − l)
n−j−1∑
l=j+1

φh(l − j)1−1/r

≤ 2

(
sup
t
EZ2

j,t

)1/2(
sup
t
E |Zj,t|r

)1/r

n

∞∑
l=1

φh(l)1−1/r. (16)

The conditions on mixing coefficients (a*) are sufficient to ensure that
∞∑
l=1

φh(l)1−1/r <∞,

as it was previously discussed in the proof of Lemma 3 in Lecture 7. The results in equations (14), (15), and
(16) together with the norm inequality

(
EZ2

j,t

)1/2 ≤ (E |Zj,t|r)
1/r imply that the result in (13) holds:

E

∣∣∣∣∣∣
n∑

t=j+1

Zj,t

∣∣∣∣∣∣
2

≤ 2n (j + 1) sup
t
EZ2

j,t + 2

(
sup
t
EZ2

j,t

)1/2(
sup
t
E |Zj,t|r

)1/r

n

∞∑
l=1

φh(l)1−1/r

= 2n (j + 1) ∆2/r + 2∆2/rn

∞∑
l=1

φh(l)1−1/r

≤ 2∆2/r

(
1 +

∞∑
l=1

φh(l)1−1/r

)
n (j + 2) .

Lastly, from (12) and (13),

P (|Rn,1| > ε) ≤ m2
nC

2

n2ε2
∆∗n

mn∑
j=1

(j + 2)

11



≤ C2∆∗

2ε2
m3
n (mn + 5)

n
→ 0,

since, by assumption (i), mn = o
(
n1/4

)
.

Now, we construct a feasible HAC estimator of Ωn. Let

Ût = Yt −X ′tβ̂n.

Define

Ω̂n = Ω̂n(0) +

mn∑
j=1

w (j,mn)
(

Ω̂n(j) + Ω̂n(j)′
)
,

Ω̂n(j) = n−1
n∑

t=j+1

(
XtÛt

)(
Xt−jÛt−j

)′
,

Theorem 3 Under assumptions Under Assumptions (a*), (b), (c**), (d**), (g)-(i), Ω̂n − Ωn →p 0.

Proof. It is sufficient to show that Ω̂n − Ω̃n →p 0.

Ω̂n − Ω̃n

= n−1
n∑
t=1

Û2
t XtX

′
t +

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

ÛtÛt−j
(
XtX

′
t−j +Xt−jX

′
t

)
−n−1

n∑
t=1

U2
t XtX

′
t −

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

UtUt−j
(
XtX

′
t−j +Xt−jX

′
t

)
.

Since
Ût = Ut −X ′t

(
β̂n − β

)
,

We have
Ω̂n − Ω̃n = −2Bn,1 +Bn,2 −Bn,3 −Bn,4 +Bn,5,

where

Bn,1 = n−1
n∑
t=1

((
β̂n − β

)′
XtUt

)
XtX

′
t,

Bn,2 = n−1
n∑
t=1

((
β̂n − β

)′
Xt

)2

XtX
′
t,

Bn,3 =

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

((
β̂n − β

)′
XtUt−j

)(
XtX

′
t−j +Xt−jX

′
t

)
,

Bn,4 =

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

((
β̂n − β

)′
Xt−jUt

)(
XtX

′
t−j +Xt−jX

′
t

)
,

Bn,5 =

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

((
β̂n − β

)′
Xt

)((
β̂n − β

)′
Xt−j

)(
XtX

′
t−j +Xt−jX

′
t

)
.

By the same argument as on page 4 of Lecture 1,

‖Bn,1‖ ≤
∥∥∥β̂n − β∥∥∥n−1 n∑

t=1

|Ut| ‖Xt‖3 .

12



Further, by Holder’s inequality with p = 4, q = 4/3

E
(
|Ut| ‖Xt‖3

)r+δ/4
≤
(
E |Ut|4r+δ

)1/4 (
E ‖Xt‖4r+δ

)3/4
,

and bounded uniformly in t. Therefore, by the SLLN, n−1
∑n
t=1 |Ut| ‖Xt‖3 = Oa.s.(1). Hence, since β̂n is

strongly consistent, Bn,1 = oa.s.(1). Similarly,

‖Bn,2‖ ≤
∥∥∥β̂n − β∥∥∥2 n−1 n∑

t=1

‖Xt‖4

= oa.s.(1)Oa.s.(1).

Next, consider Bn,3. By the triangle inequality and since the weights w(j,m) are non-negative,

‖Bn,3‖ ≤ 2‖β̂n − β‖
mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

|Ut−j |‖Xt‖2‖Xt−j‖. (17)

By the same argument as for Rn,1 in the proof of Lemma 2, we can show that

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

(
|Ut−j |‖Xt‖2‖Xt−j‖ − E

[
|Ut−j |‖Xt‖2‖Xt−j‖

])
= op(1). (18)

This can be achieved by re-defining Zj,t in (11) as

Zj,t = |Ut−j |‖Xt‖2‖Xt−j‖ − E
[
|Ut−j |‖Xt‖2‖Xt−j‖

]
. (19)

Note that similarly to the definition of Zj,t in (11), the expression in (19) also involves a cross-moment of
order 4, and is φ- or α-mixing of the same size. Therefore, the rest of the argument used in showing that
|Rn,1| →p 0 goes through without any essential changes. Moreover, given the assumed mixing and moment
conditions,

mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

E
[
|Ut−j |‖Xt‖2‖Xt−j‖

]
= O(1). (20)

The results in (17), (18), and (20) together with consistency of β̂n imply that

Bn,3 = op(1).

Using the same argument as for Bn,3, we can show that Bn,4 and Bn,5 are op(1). This can be done since

‖Bn,4‖ ≤ 2‖β̂n − β‖
mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

|Ut−j |‖Xt‖‖Xt−j‖2,

‖Bn,5‖ ≤ 2‖β̂n − β‖2
mn∑
j=1

w (j,mn)n−1
n∑

t=j+1

‖Xt‖2‖Xt−j‖2.

The rest of the prove for Bn,4 and Bn,5 is essentially the same as that for Bn,3 (or Rn,1).
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