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LECTURE 7

STATIONARITY, ERGODICITY, WEAK DEPENDENCE

The material is adapted from Peter Phillips’ Lecture Notes on Stationary and Nonstationary Time Series
and White (1999).

Often econometricians have to deal with data sets that come in the form of a time series or stochastic
process, a collection of observations on the same variable (or vector of variables) indexed by the date of
measurement of each observation. The data is usually collected at equally spaced dates (daily, weekly,
monthly and etc.) and indexed by t = 1, . . . , n:

{Xt : t = 1, . . . , n} .

The index t measures passage of time, and Xt measures evolution of the process in time. It is usually
assumed that the observed sample is only a segment of the process that started in the infinite past and will
go on indefinitely:

{. . . , X−1, X0, X1, X2, . . . , Xn, Xn+1, . . .} .

Preliminaries
A random experiment is an experiment the outcome of which cannot be predicted with certainty. A sample
space, Ω, is a collection (set) of all possible outcomes of the random experiment.

Definition 1 (σ-field) A collection F of subsets of a set Ω is a σ-field provided that

(i) Ω ∈ F .

(ii) if F ∈ F then F c ∈ F .

(iii) if Fi ∈ F for all i = 1, 2, . . . then ∪∞i=1Fi ∈ F .

A simple example of a σ-field is {∅,Ω} . Given an event F ⊂ Ω, the smallest σ-field that includes F is
given by F = {F, F c, ∅,Ω}. We say that such F is generated by F. For example, let Ω = {ω1, ω2, ω3} , then
the smallest σ-field that includes {ω1} is F = {{ω1} , {ω2, ω3} , ∅, {ω1, ω2, ω3}} .

A pair (Ω,F) is called a measurable space. The events in σ-field are the elements for which it is possible
to assign probabilities without violating the axioms of probabilities given below.

Definition 2 (Probability) A mapping P : F → [0, 1] is called a probability measure provided that

(i) P (Ω) = 1.

(ii) For any F ∈ F , P (F ) ≥ 0.

(iii) Let Fi ∈ F for all i = 1, 2, . . . , and Fi ∩ Fj = ∅ for i 6= j, then P (∪∞i=1Fi) =
∑∞
i=1 P (Fi) .

The triple (Ω,F , P ) is called a probability space. Note that probabilities are defined on the elements of
F and not on Ω.

Let (Ω,F) and (Λ,G) be two measurable spaces, and T : Ω→ Λ. For F ⊂ Ω.

TF = {T (ω) : ω ∈ F} ⊂ Λ. (1)

Let G ⊂ Λ, then
T−1G = {ω ∈ Ω : T (ω) ∈ G} ⊂ Ω. (2)

T is said to be measurable if T−1G ∈ F for all G ∈ G. If T is measurable, and (Ω,F , P ) is a probability
space, then the probability of G ∈ G is given by P

(
T−1G

)
= P ({ω : T (ω) ∈ G}).

When the sample space is given by R, the relevant σ-field is a σ-field generated by the collection of all
open subsets of R.
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Definition 3 (Borel σ-field) The Borel σ-field B is the smallest σ-field that includes all open subsets of
R.

The Borel σ-field is an extremely rich collection of subsets of the real line. However, there exist subsets
of real line that are not in B. For such subsets probabilities cannot be defined.

Definition 4 (Random variable) A random variable is a measurable function X : Ω→ R.

The σ-field generated by the random variable X, denoted as σ (X) , is the smallest σ-field of Ω with
respect to which X is measurable. We can think of σ (X) as the information contained in or revealed by X.

The Borel σ-field B can be also generated by the collection of all half-lines (−∞, x] , x ∈ R. Recall that
the cumulative distribution function (CDF) of X is F (x) = P ((−∞, x]) . Consequently, from a CDF we can
compute P (B) for any B ∈ B.

Definition 5 (Conditional expectation) Let X be a random variable on (Ω,F , P ) , and G ⊂ F be a σ-
field. The conditional expectation of X with respect to G is any G measurable random variable denoted as
E (X|G) such that

´
G
XdP =

´
G
E (X|G) dP for any G ∈ G.

Stationarity
Let h : Ω → R∞. Let x be a sequence in R∞, i.e. x = (. . . , x−1, x0, x1, . . .) . The probability space is now
given by (R∞,B∞, P ) , where B∞ is a σ-field generated by the cylinder sets ×0

j=−∞R ×nj=1 Bi ×∞j=n+1 R,
where Bi ∈ B. Consider the sequence (time-series) of random variables {Xt}nt=1 , where Xt (x) picks the t-th
coordinate of x:

Xt (x) = xt.

The sequence {Xt}nt=1 is measurable with respect to B∞. Note that a single outcome in the sample space
determines the entire infinite trajectory of {Xt}.

Definition 6 (Strict stationarity) {Xt} is strictly stationary if (Xt1 , . . . , Xtk) has the same joint distri-
bution as (Xt1+h, . . . , Xtk+h) for all k, h and t1, . . . tk.

An example of a stationary sequence is a sequence of iid random variables (however, a stationary sequence
does not have to be iid). Note that the identically distributed property is not sufficient, since strict station-
arity puts restrictions on all joint distributions. It is possible to construct a sequence of random variables
having the same marginal distribution for all t, but with different joint distributions for different collections
of t’s Next, we discuss construction of strictly stationary sequences.

Definition 7 (Backshift transformation) S : R∞ → R∞ such that

x =
(
. . . , x−1, x0, x1, . . .

)
and

S(x) =
(
. . . , x0, x1, x2, . . .

)
is called backshift transformation.

Thus, S transforms x by shifting each coordinate back by one location. Suppose that in x ∈ R∞, the
value x1 is located at coordinate 1, x2 is located at 2, and etc. Using S and X1 we can generate the entire
process {Xt}:

X1(x) = x1,

X2(x) = X1 (S(x)) = x2,

X3(x) = X1

(
S2 (x)

)
= x3,

. . .

Xn(x) = X1

(
Sn−1(x)

)
= xn.
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Let’s define a set of infinite trajectories x that satisfy a certain condition (this set is denoted by E below).
For example, for B ∈ B∞, let

E = {x : (Xn (x) , . . .) ∈ B} .

We have

SE = {S (x) : x ∈ E} (by the definition in (1))
= {S (x) : (Xn (x) , . . .) ∈ B} (by the definition of E)
= {x : (Xn−1 (x) , . . .) ∈ B} ,

where the equality in the last line holds because S shifts the value that was at coordinate n to coordinate
n− 1 and by the definition of Xn−1 (x). Similarly, by the definition in (2),

S−1E = {x : S (x) ∈ E}
= {x : (Xn (S (x)) , . . .) ∈ B} (by the definition of E)
= {x : (Xn+1 (x) , . . .) ∈ B} .

Definition 8 Measurable transformation S is measure preserving if P (E) = P
(
S−1E

)
for all E ∈ B∞.

Theorem 1 If {Xt} is strictly stationary then there exists a measure preserving transformation S such that
Xt(x) = X1

(
St−1(x)

)
.

Proof. Let S be the backshift transformation. The condition Xt(x) = X1

(
St−1(x)

)
is satisfied by the

definition of the backshift transformation. We need to show that S is measure preserving. Pick some k and
t1, . . . , tk. Let B be an element of the Borel σ-field on Rk , and E = {x : (Xt1(x), . . . , Xtk(x)) ∈ B} (recall
that the definition of strict stationarity involves only finite collections of random variables).

P
(
S−1E

)
= P {x : (Xt1(S(x)), . . . , Xtk(S(x))) ∈ B}
= P {x : (Xt1+1(x), . . . , Xtk+1(x)) ∈ B} (by the definition of S)
= P {x : (Xt1(x), . . . , Xtk(x)) ∈ B} (due to strict stationarity of {Xt} )
= P (E) ,

where the equality before last follows from the strict stationarity of {Xt} .
The converse result is also true.

Theorem 2 Let S be a measure preserving transformation, and X : R∞ → R. Then {Xt} is constructed as
Xt(x) = X

(
St−1(x)

)
is strictly stationary.

Proof.

P ({x : (Xt1(x), . . . , Xtk(x)) ∈ B}) = P (E)

= P
(
S−1E

)
= P

(
S−hE

)
= P ({x : (Xt1+h(x), . . . , Xtk+h(x)) ∈ B}) ,

where the second and third equalities are due to the fact that S is measure preserving.
Theorems 1 and 2 together imply that, if one is interested only in strictly stationary processes, then he

can restrict his attention to the processes generated as

Xt(x) = X
(
St−1(x)

)
, where S is measure preserving. (3)

Now that we know that all strictly stationary processes are generated according to (3), we can investigate
the implications of that result. The following theorem says that measurable functions of strictly stationary
processes produce strictly stationary processes.
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Theorem 3 Suppose that

(i) {Xt} is strictly stationary.

(ii) ϕ : R∞ → R is measurable.

(iii) {Yt} is generated as Yt = ϕ (. . . , Xt−1, Xt, Xt+1, . . .).

Then {Yt} is strictly stationary.

Proof. Choose some arbitrary t1, . . . , tk. Since {Xt} is strictly stationary, Xt(x) = X1

(
St−1(x)

)
, where

S the backshift transformation and S is measure preserving. Hence, we can view each Yt as a function of
x ∈ R∞:

Yt = ϕ (. . . , Xt−1, Xt, Xt+1, . . .)

= ϕ(. . . , X1(St−2(x)), X1(St−1(x)), X1(St(x)), . . .)

≡ Yt(x).

Let C be an element of the Borel σ-field on Rk, and consider the following event (Yt1 , . . . Ytk) ∈ C. Since
Y ’s are functions of x, we can re-state this event in terms of possible trajectories x (of {Xt}). Hence,

P {(Yt1 , . . . Ytk) ∈ C} = P {x : (Yt1 (x) , . . . Ytk (x)) ∈ C}
= PS−h {x : (Yt1 (x) , . . . Ytk (x)) ∈ C} (because S is measure preserving)
= P

{
x :
(
Yt1
(
Sh(x)

)
, . . . Ytk

(
Sh(x)

))
∈ C

}
= P {x : (Yt1+h (x) , . . . Ytk+h (x)) ∈ C}
= P {(Yt1+h, . . . Ytk+h) ∈ C} .

Ergodicity
When studying the asymptotic properties of various estimators, we rely on convergence of sample averages.
It turns out that strict stationarity by itself is not sufficient for convergence of sample averages. One needs
another property: Ergodicity.

Ergodicity is concerned with a question whether temporal averages converge to population averages
(expectations). Consider the following example. Let {Xt : t = 1, . . . , n} be a sequence of iid random variables
with mean zero. Let Z be another mean zero random variable independent of {Xt} . Define Yt = Xt + Z.
Note that EYt = 0, and {Yt} is stationary:

P (Yt1 ≤ a1, . . . , Ytk ≤ ak) = P (Xt1 + Z ≤ a1, . . . , Xtk + Z ≤ ak)

= P (Z ≤ a1 −Xt1 , . . . , Z ≤ ak −Xtk)

= EP (Z ≤ a1 −Xt1 , . . . , Z ≤ ak −Xtk |Xt1 , . . . , Xtk)

=

ˆ ∞
−∞

. . .

ˆ ∞
−∞

P (Z ≤ a1 − xt1 , . . . , Z ≤ ak − xtk) dPXt1 ,...,Xtk
(x1, . . . , xk)

=

ˆ ∞
−∞

. . .

ˆ ∞
−∞

P (Z ≤ a1 − xt1 , . . . , Z ≤ ak − xtk) dPXt1+h,...,Xtk+h
(x1, . . . , xk)

= P (Xt1+h + Z ≤ a1, . . . , Xtk+h + Z ≤ ak)

= P (Yt1+h ≤ a1, . . . , Ytk+h ≤ ak) ,
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where the equality in the fourth line holds by independence of Z and {Xt}. While the process {Yt} is strictly
stationary, at the same time we have

n−1
n∑
t=1

Yt = n−1
n∑
t=1

Xt + Z

→p Z

6= EYt.

The problem with this example is that {Yt} shows too much temporal dependence: no matter how large h
is, Yt and Yt+h have the same non-zero correlation.

Definition 9 (Invariance) An event F is invariant under a transformation S if F = S−1F.

According to the definition and when S is the backshift transformation, once an invariant event occurs
in some period, it will keep occurring in the future. In the above example, the invariant events are given by
σ(Z), the σ-field generated by the variable Z.

Definition 10 (Ergodic transformation) Transformation S is ergodic if for all invariant events F ∈ B∞,
P (F ) = 0 or P (F ) = 1.

Definition 11 (Ergodic process) A process {Xt} such that Xt(x) = X1

(
St−1(x)

)
is ergodic if S is ergodic.

Ergodicity means that the invariant events are certain (such as the whole sample space) or can be ignored.
In the absence of ergodicity, there is some positive probability of hitting an invariant event. As a result, it
is impossible to fully sample from the sample space as n→∞.

Theorem 4 (Pointwise Ergodic theorem) Suppose that

(i) S is measure preserving.

(ii) Xt(x) = X1

(
St−1(x)

)
.

(iii) E |X1| <∞.

Let G be the σ-field generated by the collection of all invariant events under S. Then, as n→∞,

P

(
n−1

n∑
t=1

Xt → E (X1|G)

)
= 1.

In the above example, the σ-field of the invariant events is given by σ (Z) . Therefore, the Pointwise
Ergodic theorem suggests, we have that n−1

∑n
t=1 Yt →a.s. E (Y1|Z) = Z.

The following result follows from the Pointwise Ergodic theorem.

Corollary 1 (SLLN for stationary and ergodic processes) Let {Xt : t = 1, . . . , n} be a strictly sta-
tionary and ergodic process such that E |X1| <∞. Then, as n→∞,

P

(
n−1

n∑
t=1

Xt → E (X1)

)
= 1.

Proof. Since {Xt} is strictly stationary, by the Pointwise Ergodic theorem, n−1
∑n
t=1Xt → E (X1|G) with

probability 1, where G is generated by the collection of invariant events. Note that since the process is
ergodic, for all G ∈ G we have that P (G) = 0 or P (G) = 1.

By the definition of conditional expectation, E (X1|G) is a G-measurable random variable such that
ˆ
G

X1dP =

ˆ
G

E (X1|G) dP for any G ∈ G.
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If G is such that P (G) = 0, then
´
G
X1dP = 0, and we can simply set E (X1|G) = E (X1) on such sets G.

If P (G) = 1 then using the facts that P (Gc) = 0 and R∞ = G ∪Gc we can write
ˆ
G

X1dP =

ˆ
G

X1dP + 0

=

ˆ
G

X1dP +

ˆ
Gc

X1dP

=

ˆ
R∞

X1dP

= E (X1) .

Since G contains only trivial events (events that have probability zero or one, we conclude that E (X1|G) =
E (X1) with probability 1.

The following theorem says that measurable functions of strictly stationary and ergodic processes are
strictly stationary and ergodic.

Theorem 5 Suppose that

(i) {Xt} is strictly stationary and ergodic.

(ii) ϕ : R∞ → R is measurable.

(iii) {Yt} is generated as Yt = ϕ (. . . , Xt−1, Xt, Xt+1, . . .).

Then {Yt} is strictly stationary and ergodic.

Proof. Stationarity has been shown above. Let Cy be an invariant event for {Yt}. We need to show that
P (Cy) = 0 or 1. Let C be some event in B∞, and suppose

Cy = {(. . . , Yt−1, Yt, Yt+1, . . .) ∈ C}

is an invariant event. Note that we can write Yt(x) = ϕ(. . . , Xt−1(x), Xt(x), Xt+1(x), . . . , ), and that Cy
occurs if and only if Cx occurs, where

Cx = {x : (. . . , Yt−1 (x) , Yt (x) , Yt+1 (x) , . . .) ∈ C} ,

so that
P (Cy) = P (Cx) .

Similarly, S−1Cy occurs if and only if S−1Cx occurs. Since Cy is invariant, S−1Cy = Cy, and we have that
S−1Cx = Cx or Cx is invariant for {Xt}. However, since {Xt} is strictly stationary and ergodic, S must be
ergodic and P (Cx) = 0, 1. It follows that P (Cy) = 0, 1

According to the last theorem, if {Xt} is strictly stationary and ergodic, then {Yt} generated as

Yt =

∞∑
j=−∞

βjXt−j , where
∞∑

j=−∞
|βj | <∞,

is also strictly stationary and ergodic
In a typical econometric application, it is assumed that {(X ′t, Ut)} is strictly stationary and ergodic

sequence, and Yt = X ′tβ + Ut, β ∈ Rk. Since stationarity and ergodicity are preserved under measurable
transformations, {(XtX

′
t)} and {(XtUt)} are also strictly stationary and ergodic. Next, if it is assumed

that EX1U1 = 0, EX2
1j < ∞ for all j = 1, . . . , k, and EX1X

′
1 is positive definite, it follows that β̂n =

β +
(
n−1

∑n
t=1XtX

′
t

)−1
n−1

∑n
t=1XtUt →a.s. β + (EX1X

′
1)
−1

0 = β.
The following theorem gives the necessary and sufficient conditions for ergodicity.
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Theorem 6 A measure preserving transformation S is ergodic if and only if

lim
n→∞

n−1
n∑
i=1

P
(
F ∩ S−iG

)
= P (F )P (G) (4)

for all F,G ∈ B∞.

Proof. Suppose that S is ergodic. Define the random variable 1G (x) = 1 if x ∈ G and zero otherwise. Note
that {Xt} generated as

Xt = 1G
(
St (x)

)
is a strictly stationary by Theorem 2, and since S is ergodic, it is also ergodic. By the SLLN for stationary
and ergodic processes, with the probability 1,

lim
n→∞

n−1
n∑
i=1

1G
(
Si (x)

)
= E1G

= P (G) .

Multiply both sides of the above equation by 1F . Then,

lim
n→∞

n−1
n∑
i=1

1F 1G
(
Si (x)

)
= 1FP (G) .

Next taking expectations on both sides of the above equation, we obtain

P (F )P (G) = E

(
lim
n→∞

n−1
n∑
i=1

1F 1G
(
Si (x)

))

= lim
n→∞

n−1
n∑
i=1

E
(
1F 1G

(
Si (x)

))
= lim

n→∞
n−1

n∑
i=1

P
(
F ∩ S−iG

)
,

where the second equality is due to the dominated convergence theorem.
Now, suppose that (4) holds for all F,G ∈ B∞. Let E be an invariant event, so that E = S−iE. Since

(4) holds for all elements of B∞, let’s apply it with F = G = E:

lim
n→∞

n−1
n∑
i=1

P
(
E ∩ S−iE

)
= P (E)P (E) .

On the other hand, since E is invariant,

lim
n→∞

n−1
n∑
i=1

P
(
E ∩ S−iE

)
= lim

n→∞
n−1

n∑
i=1

P (E ∩ E)

= P (E) .

Therefore, P (E) = (P (E))
2 or P (E) is either zero or one.

The event S−hG is G shifted h periods into the future. If F and S−hG were independent, we would have
P
(
F ∩ S−hG

)
= P (F )P

(
S−hG

)
= P (F )P (G) , since S is measure preserving. Thus ergodicity means

that F,G and S−hG are on average asymptotically independent.
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Mixing and weak dependence
Ergodicity is related to the concept of mixing, the capacity of the transformation S to mix the points in Ω,
so that all non-negligible events are sampled from.

Definition 12 Let S be measure preserving. S is said to be mixing if for all F,G ∈ B∞,

lim
n→∞

P
(
F ∩ S−nG

)
= P (F )P (G) .

The following theorem establishes the relationship between mixing and ergodicity. Note that the converse
result is not true. The proof of the above theorem can be based on the same argument as that of the second
part of Theorem 6.

Theorem 7 If S is mixing then it is ergodic.

The idea of mixing is that distant events are almost independent. The following two measures of depen-
dence are commonly used.

Definition 13 Let F and G be two σ-fields. Define

α (F ,G) = sup
F∈F,G∈G

|P (F ∩G)− P (F )P (G)| ,

φ (F ,G) = sup
F∈F,G∈G:P (G)>0

|P (F |G)− P (F )| .

For a time series {Xt} (not necessary stationary), let Bsr = σ (Xr, . . . , Xs) .

Definition 14 (Mixing coefficients)

(a) (Strong a- mixing) α (m) = supj α
(
Bj−∞,B∞j+m

)
.

(b) (Uniform φ- mixing) φ (m) = supj φ
(
Bj−∞,B∞j+m

)
.

The mixing coefficients measure how much dependence exists between events separated by at least m
periods.

For example, suppose that {Xt} is a sequence of iid random variables. Then, φ (m) = 0 for all m > 0.
Now, suppose that {Yt} is generated from {Xt} as Yt = Xt + θ1Xt−1 + . . . + θkXt−k. Then, φ (m) = 0 for
all m > k.

Definition 15 A process {Xt} is said to be α-mixing (strong mixing) if limm→∞ α(m) = 0. Similarly, it is
φ-mixing (uniform mixing) if limm→∞ φ(m) = 0.

A mixing process is also called weakly dependent. In general, a mixing process can be nonstationary:
distributions are allowed to change over time.

Note that for P (G) > 0,

|P (F |G)− P (F )| =

∣∣∣∣P (F ∩G)

P (G)
− P (F )

∣∣∣∣
=
|P (F ∩G)− P (F )P (G)|

P (G)

≥ |P (F ∩G)− P (F )P (G)| ,

where the last equality holds because 0 < P (G) ≤ 1. Therefore, uniform mixing implies strong mixing.
Thus, strong mixing is a weaker concept.
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Definition 16 A mixing coefficient is said to be of size −a, a > 0 if for some ε > 0 it is O (m−a−ε) .

Mixing coefficients explicitly control the amount of dependence. A sequence shows less dependence as a
increases.

The mixing property is preserved under transformations.

Theorem 8 Let {Xt} be α-mixing (φ-mixing) of size −a, a > 0. Suppose that Yt = g (Xt, Xt−1, . . . , Xt−h),
where g is measurable and h is finite. Then, {Yt} is α-mixing (φ-mixing) of size −a as well.

Proof. (Davidson, 1994) Let Bsr = σ (Xr, . . . , Xs) , and let Csr = σ (Yr, . . . , Ys) . Since Yt is a function of
Xt, Xt−1, . . . , Xt−h, it is measurable with respect to any σ-field on which Xt, Xt−1, . . . , Xt−h is measurable.
Thus, Cj−∞ ⊂ B

j
−∞, and C∞j+m ⊂ B∞j+m−h for all j and m ≥ h (Since Y ’s are functions of X’s, a σ-field

generated by Y ’s cannot contain more information than a σ-field generated by X’s).

αY (m) = sup
j

sup
F∈Cj−∞,G∈C∞j+m

|P (F ∩G)− P (F )P (G)|

≤ sup
j

sup
F∈Bj

−∞,G∈B∞j+m−h

|P (F ∩G)− P (F )P (G)|

= αX (m− h)

= O
(
m−a−ε

)
for ε > 0 and finite h < m,

where the last inequality follows because h is fixed. The proof is identical in the case of uniform mixing.
The above theorem implies that if, for example, the vector sequence {(X ′t, ut)} is mixing of size −a, then

{Xtut} , {XtX
′
t} are also mixing of size −a.

The following results give the SLLN and CLT for weakly dependent sequences. Note that stationarity is
not required.

Theorem 9 (SLLN) Let {Xt} be a sequence such that

(i) φ is of size −r/ (2r − 1), r ≥ 1, or α is of size −r/ (r − 1) , r > 1,

(ii) for some δ > 0, suptE |Xt|r+δ < ∆ <∞.
Then, as n→∞,

P

(
n−1

n∑
t=1

Xt − n−1
n∑
t=1

EXt → 0

)
= 1.

The above theorem does not require that n−1
∑n
t=1EXt converges. However, if it converges, then, with

probability, one n−1
∑n
t=1Xt converges to limn→∞ n−1

∑n
t=1EXt

Theorem 10 (CLT) Let {Xt} be a sequence such that EXt = 0, and

(i) φ is of size −r/2 (r − 1) , r ≥ 2 or α of size −r/ (r − 2) , r > 2,

(ii) suptE |Xt|r < ∆ <∞.
If ωn = V ar

(
n−1/2

∑n
t=1Xt

)
> δ > 0 for all n sufficiently large, then, as n→∞,

n−1/2
n∑
t=1

Xt/ω
1/2
n →d N (0, 1) .

In the above two results, note the trade-off between the amount of temporal dependence and likelihood of
observing outliers (moment restrictions). Larger r means a smaller probability of observing outliers. At the
same time, larger r means that the mixing coefficients in the above LLN and CLT theorems are of smaller
size and therefore there is more temporal dependence. For example, for r > 1 and h > 0,

r

r − 1
− r + h

r + h− 1
=

h

(r − 1) (r + h− 1)
> 0.

The CLT can be extended to the case of random vectors.
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Lemma 1 (Cramer-Wold device) Let {Zn} be a sequence of random k-vectors. Suppose that Z is a
random k-vector. Zn →d Z if and only if, for all λ ∈ Rk (non-random) such that λ′λ = 1, λ′Zn →d λ

′Z.

Definition 17 Let {Mn} be a sequence of k × k matrices. Let en be the smallest eigenvalue of Mn. Then,
Mn is said to be uniformly positive definite if, for all n sufficiently large, en > δ > 0 uniformly in n.

Corollary 2 Let {Xt} be a sequence of k-vectors such that EXt = 0, and

(i) φ is of size −r/2 (r − 1) , r ≥ 2 or α of size −r/ (r − 2) , r > 2,

(ii) suptE |Xtj |r < ∆ <∞ for all j = 1, . . . , k.

If Ωn = V ar
(
n−1/2

∑n
t=1Xt

)
is uniformly positive definite for all n sufficiently large, then, as n→∞,

Ω−1/2n n−1/2
n∑
t=1

Xt →d N (0, Ik) .

The proof will use the Minkowski’s inequality. Suppose that E |X|r <∞ and E |Y |r <∞, r ≥ 1. Then,

(E |X + Y |r)1/r ≤ (E |X|r)1/r + (E |Y |r)1/r .

Proof. We will use the Cramer-Wold device with Zn = Ω
−1/2
n n−1/2

∑n
t=1Xt and Z ∼ N (0, Ik). Let λ ∈ Rk

such that λ′λ = 1. Since λ′Z ∼ N (0, λ′λ) =d N (0, 1), by the Cramer-Wold device it is sufficient to show
that λ′Zn = λ′Ω

−1/2
n n−1/2

∑n
t=1Xt →d N (0, 1) if λ′λ = 1. This can be achieved by verifying the conditions

of Theorem 10 for the stochastic process
{
λ′Ω
−1/2
n Xt

}n
t=1

, where λ′λ = 1.

First, E
(
λ′Ω
−1/2
n Xt

)
= 0. Second, by Theorem 8, λ′Ω−1/2n Xt is φ-mixing of size −r/2 (r − 1) , r ≥ 2 or

α-mixing of size −r/ (r − 2) , r > 2. Next, set cn = Ω
′−1/2
n λ.

E
∣∣∣λ′Ω−1/2n Xt

∣∣∣r = E

∣∣∣∣∣∣
k∑
j=1

cjnXtj

∣∣∣∣∣∣
r

≤

 k∑
j=1

|cjn| (E |Xjt|r)
1/r

r

(by Minkowski’s)

< ∆

 k∑
j=1

|cjn|

r

≤ ∆

k k∑
j=1

|cjn|2
r/2

(by Cauchy-Schwartz)

= ∆kr/2
(
λ′Ω−1n λ

)r/2
.

Since Ωn is symmetric and uniformly positive definite, we can write Ωn = CnEnC
′
n, where En is the matrix

of eigenvalues, and C ′nCn = CnC
′
n = Ik. Set dn = C ′nλ. We have d′ndn = λ′CnC

′
nλ = 1. Let en be the

smallest eigenvalue of En (and, therefore, e−1n is the largest eigenvalue of E−1n ). Since Ωn is uniformly
positive definite, there is some δ > 0 such that en > δ. Next,

λ′Ω−1n λ = d′nE
−1
n dn

≤ e−1n

k∑
i=1

d2ni

< δ−1 <∞. (5)
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Thus,
sup
t
E
∣∣∣λ′Ω−1/2n Xt

∣∣∣r < ∆kr/2δ−r/2.

Lastly,

V ar

(
λ′Ω−1/2n n−1/2

n∑
t=1

Xt

)
= λ′Ω−1/2n V ar

(
n−1/2

n∑
t=1

Xt

)
Ω
′−1/2
n λ

= λ′Ω−1/2n ΩnΩ
′−1/2
n λ

= λ′λ

= 1.

Hence, by the univariate CLT, λ′Ω−1/2n n−1/2
∑n
t=1Xt →d N (0, 1) for any λ such that λ′λ = 1. The

conclusion follows.
Note that the result in (5) implies if Ωn is uniformly positive definite then Ω−1n = O (1).

Long-run variance
For a scalar process {Xt}, limn→∞ ωn (when exists) is called the long-run variance of {Xt} (and it is denoted
Ω = limn→∞Ωn for a vector process). When EXt = 0 for all t,

V ar

(
n−1/2

n∑
t=1

Xt

)
= n−1

n∑
t=1

n∑
s=1

EXtXs

= n−1
n∑
t=1

EX2
t + 2

n−1∑
j=1

n−1
n∑

t=j+1

EXtXt−j . (6)

A sufficient condition for the existence of the long-run variance is that, in addition to moments restrictions,
the correlation between Xt and Xt−j goes to zero sufficiently fast. The covariance (correlation) between Xt

and Xt−j is called autocovariance (autocorrelation) of order j. The following result establishes a relationship
between autocovariances and mixing coefficients.

Lemma 2 (White (1999), Corollary 6.17, page 155) Let EXt = 0 and E |Xt|r <∞ for some r ≥ 2 and all
t. Then

|EXtXt−j | ≤ 2φ (j)
1−1/r (

EX2
t−j
)1/2

(E |Xt|r)
1/r

, and

|EXtXt−j | ≤ 2
(

21/2 + 1
)
α (j)

1/2−1/r (
EX2

t−j
)1/2

(E |Xt|r)
1/r

.

Using Lemma 2, we can obtain conditions sufficient for the long-run variance to be bounded. This is an
important result that will be used repeatedly in Lecture 8.

Lemma 3 Let {Xt} be mixing φ of size −r/ (r − 1) , r ≥ 2 or α of size −2r/ (r − 2) , r > 2. Suppose that
EXt = 0, and suptE |Xt|r ≤ ∆ <∞. Then, Ωn = O(1).

Proof. By the norm inequality (see Davidson (1994), page 138) and since r > 2,(
EX2

t

)1/2 ≤ (E |Xt|r)
1/r

,

and therefore,

n−1
n∑
t=1

EX2
t ≤ sup

t
EX2

t

≤ sup
t

(E |Xt|r)
2/r

< ∆2/r <∞.

11



Next, in the case of φ-mixing,∣∣∣∣∣∣n−1
n∑

t=j+1

EXtXt−j

∣∣∣∣∣∣ ≤ n−1
n∑

t=j+1

|EXtXt−j |

≤ n−1φ (j)
1−1/r

n∑
t=j+1

2
(
EX2

t−j
)1/2

(E |Xt|r)
1/r

≤ n− j
n

2

(
sup
t
EX2

t

)1/2(
sup
t
E |Xt|r

)1/r

φ (j)
1−1/r

≤ n− j
n

2∆2/rφ (j)
1−1/r

≤ 2∆2/rφ (j)
1−1/r

.

However, given the conditions imposed on the mixing coefficients, for some ε > 0, there exists a constant
K > 0 such that

φ (j) < Kj−r/(r−1)−ε for j = 1, 2, . . . ,

and therefore,

∞∑
j=1

φ (j)
1−1/r

< K

∞∑
j=1

j−(r/(r−1)+ε)(1−1/r)

= K

∞∑
j=1

j−1−ε(1−1/r)

< ∞.

By a similar argument, n−1
∑n
t=j+1EXtXt−j is summable for j ≥ 1 in the case of α-mixing.

Definition 18 (Covariance stationarity) A process{Xt} such that EX2
t < ∞ for all t is covariance

stationary if EXt = µ and Cov (Xt, Xs) = γ (|s− t|) for all t, s.

While strict stationarity requires that all joint finite dimensional distributions of {Xt} remain unchanged
when shifted in time, for a covariance stationary process only the first two moments remain the same. For a
covariance stationary process, the autocovariances are independent of t and depend only on j, the time lag
between Xt and Xt−j .

For a covariance stationary process, let γ(j) be the j-th autocovariance. Note that the variance can be
written as γ(0). Then the long-run variance is

ω = γ(0) + 2

∞∑
j=1

γ(j),

provided that
∞∑
j=1

|γ(j)| <∞.

For autocovariances to be summable, γ(j) has to go to zero at sufficiently fast rate as j → ∞. Note that
γ(j)→ 0 as j →∞ is implied by mixing.

In the case of a vector process {Xt} such that EXt = 0, (6) becomes

n−1
n∑
t=1

EXtX
′
t +

n−1∑
j=1

n−1
n∑

t=j+1

(
EXtX

′
t−j + EXt−jX

′
t

)
,
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If {Xt} is covariance stationary, its long-run variance-covariance matrix, when exists, is

Ω = EX0X
′
0 +

∞∑
j=1

(
EXjX

′
0 + EX0X

′
j

)
= Γ (0) +

∞∑
j=1

(
Γ (j) + Γ (j)

′)
,

where

Γ (j) = EXjX
′
0

= EXtX
′
t−j for all t.

When the long-run variance exists, the CLT can be stated as

n−1/2
n∑
t=1

Xt →d N
(

0, lim
n→∞

Ωn

)
,

which is N
(

0, EX0X
′
0 +

∑∞
j=1

(
EXjX

′
0 + EX0X

′
j

))
in the covariance stationary case. Recall that in the iid

case, the asymptotic variance is EX0X
′
0. Thus, weak dependency of {Xt} is reflected asymptotically through

the sum of all autocovariances in the expression for the asymptotic variance of the averages.
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