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LECTURE 4
SIMULTANEOUS EQUATIONS III: FULL INFORMATION ML (FIML)

De�nition

Consider again the model de�ned in Lecture 2,

�0Yi = B0Zi + Ui;

EZiU
0
i = 0;

where subscript 0 is used to denote the true values of the coe¢ cients. We assume that all m equations are
identi�ed through zero (and unity) restrictions on the elements of � and B. Thus, we have in fact that

�0 = � (�0) ;

B0 = B (�0) ;

where � =
�
�01; : : : ; �

0
m

�0
; and ��s are the coe¢ cients in

y1i = X 0
1;i�0;1 + u1i;

: : :

ymi = X 0
m;i�0;m + umi;

as de�ned in Lecture 3.
Assume that

UijZi � N (0;�0)
and iid across i�s. This implies that

YijZi � N
�
��10 B0Zi;�

�1
0 �0

�
��10

�0�
;

and iid across the observations. For a square matrix A, let jAj denote its determinant. The conditional
density of Yi given Zi is

f (yjZi) = (2�)�m=2
�����10 �0

�
��10

�0����1=2 exp��1
2

�
y � ��10 B0Zi

�0 �
��10 �0

�
��10

�0��1 �
y � ��10 B0Zi

��
;

and the log-likelihood function for (Y 01 ; : : : ; Y
0
n)
0 is then can be written as

Qn (�; B;�) =
1

n

nX
i=1

log f (YijZi)

= �m
2
log (2�) +

1

2
log
�����1� ���1�0����1 � 1

2n

nX
i=1

�
Yi � ��1BZi

�0 �
��1�

�
��1

�0��1 �
Yi � ��1BZi

�
= �m

2
log (2�) + log j�j+ 1

2
log
����1��� 1

2n

nX
i=1

(�Yi �BZi)0 ��1 (�Yi �BZi) : (1)

In order to obtain the ML estimates of the parameters, the log-likelihood function must be maximized
with respect to � and unknown elements of � and B: It is useful �rst to derive concentrated log-likelihood
by maximizing Qn with respect to �; taking � and B as �xed. Using

@ log jAj
@A

= (A0)
�1
; and

@ (c0Ac)

@A
= cc0,
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we obtain:

2
@Qn (�; B;�)

@��1
= �� n�1

nX
i=1

(�Yi �BZi) (�Yi �BZi)0 :

Hence, given � and B, the ML estimator of � is

b� (�; B) = n�1 nX
i=1

(�Yi �BZi) (�Yi �BZi)0 : (2)

The concentrated log-likelihood is then

Qn (�; B) = �m
2
log (2�) + log j�j+ 1

2
log
���b��1 (�; B)���� 1

2n

nX
i=1

(�Yi �BZi)0 b��1 (�; B) (�Yi �BZi)
= �m

2
log (2�) + log j�j+ 1

2
log
���b��1 (�; B)���� 1

2n

nX
i=1

tr
�
(�Yi �BZi)0 b��1 (�; B) (�Yi �BZi)�

= �m
2
log (2�) + log j�j+ 1

2
log
���b��1 (�; B)���� 1

2n

nX
i=1

tr
�b��1 (�; B) (�Yi �BZi) (�Yi �BZi)0�

= �m
2
log (2�) + log j�j+ 1

2
log
���b��1 (�; B)���� 1

2
tr

 b��1 (�; B)n�1 nX
i=1

(�Yi �BZi) (�Yi �BZi)0
!

= �m
2
(log (2�) + 1) + log j�j+ 1

2
log
���b��1 (�; B)��� ;

= �m
2
(log (2�) + 1) + log j�j � 1

2
log

�����n�1
nX
i=1

(�Yi �BZi) (�Yi �BZi)0
����� (3)

= �m
2
(log (2�) + 1)� 1

2
log
����1��2 � 1

2
log

�����n�1
nX
i=1

(�Yi �BZi) (�Yi �BZi)0
�����

= �m
2
(log (2�) + 1)� 1

2
log

�����n�1
nX
i=1

�
Yi � ��1BZi

� �
Yi � ��1BZi

�0����� :
We can ignore the �rst summand in the above equation and rede�ne

Qn (�; B) =

�����n�1
nX
i=1

�
Yi � ��1BZi

� �
Yi � ��1BZi

�0����� :
The FIML estimator of (�; B) is de�ned as�b�; bB� = argmin

�;B
Qn (�; B) :

There exists no closed form solution for the FIML estimator of � and B; and the concentrated log-likelihood
must be maximized numerically. Alternatively, since some elements of � and B are restricted to zero, we
can de�ne the FIML estimator of �; b� = argmin

�
Qn (�(�); B(�)) :

Consistency of FIML

The normality assumptions has been used to de�ne the FIML estimator. It is not, however, required for
consistency and asymptotic normality of FIML. If the underlying distribution of the data is not normal,
FIML is actually a Quasi-ML estimator.

2



A Quasi-ML estimator is consistent if Qn (�; B)!p Q (�; B) uniformly in � and B, �0 and B0 uniquely
minimize Q (�; B) over some compact set, and Q is continuous.
Note that

Yi � ��1BZi = �
�
��1B � ��10 B0

�
Zi + �

�1
0 Ui:

One can show that

n�1
nX
i=1

�
Yi � ��1BZi

� �
Yi � ��1BZi

�0 !p

�
��1B � ��10 B0

�
EZiZ

0
i

�
��1B � ��10 B0

�0
+ ��10 �0 (�

0
0)
�1
;

and, therefore, by the Slutsky�s Theorem,

Qn (�; B)!p Q (�; B)

=
������1B � ��10 B0

�
EZiZ

0
i

�
��1B � ��10 B0

�0
+ ��10 �0 (�

0
0)
�1
��� ;

and, in fact, convergence is uniform. Next, if A and B are two positive semi-de�nite matrices, then jA+Bj �
jAj : Assuming that both EZiZ 0i and �0 = EUiU 0i are positive de�nite, we have that

Q (�; B) �
�����10 �0 (�

0
0)
�1
��� :

Note also that ��10 �0 (�
0
0)
�1 does not depend on � and B and can be attained by choosing � = �0 and

B = B0. Thus, �0 and B0 minimize Q (�; B) : Further, since �0 = �
�1
0 B0; a minimizer of Q (�; B) must be

a solution to
��0 = B:

The rank identi�cation condition guarantees that �0 and B0 is the only solution to the above equation.
Thus, �

�̂; B̂
�
!p (�0; B0) :

Since � and B are composed of the elements of �; the above result can be written as well asb� !p �0:

Asymptotic equivalence of FIML and 3SLS

One can show further that the FIML estimator of � is asymptotically normal and has the same asymptotic
variance as that of the 3SLS estimator (under conditional homoskedasticity). We won�t provide a formal
prove of asymptotic normality, but will illustrate the reason for asymptotic equivalence of FIML and 3SLS.
The FIML estimator solves the ML �rst-order conditions. Consider (1). Note that some elements of

� (�) and B (�) are restricted to ones or zeros. Therefore, we cannot simply set to zero the derivative of the
log-likelihood function Qn with respect to � and B. The solution is to set to zero only the partial derivatives
that correspond to the unrestricted elements of � and B. Let�s introduce the following partitions:

� =

0B@ �01
...
�0m

1CA ;

B =

0B@ B01
...
B0m

1CA ;
��1 =

0@ �11 : : : �1m

: : : : : : : : :
�m1 : : : �mm

1A ;
3



where
�
�0j ; B

0
j

�0
is the vector of structural parameters corresponding to equation j; and �ij is a scalar. The

last summand in (1) can be written as

� 1

2n

nX
i=1

mX
s=1

mX
t=1

�st (�0sYi �B0sZi) (�0tYi �B0tZi) :

Its derivative with respect to B0s (the coe¢ cients of the exogenous variables in equation s) is given by

n�1
nX
i=1

mX
t=1

�st (�0tYi �B0tZi)Z 0i

= n�1
nX
i=1

�
��1

�0
s
(�Yi �BZi)Z 0i;

where
�
��1

�0
s
is row s of ��1: Hence, the derivative of � (2n)�1

Pn
i=1 (�Yi �BZi)

0
��1 (�Yi �BZi) with

respect to B is given by
@Qn (�; B;�)

@B
= n�1

nX
i=1

��1 (�Yi �BZi)Z 0i:

The derivative corresponding to equation j is given by

n�1
nX
i=1

�
��1

�0
j
(�Yi �BZi)Z 0i:

In equation j only lj elements of B are unrestricted. Hence, we havehb��1i0
j

nX
i=1

�b�Yi � bBZi�Z 0ji = 0; (4)

where b� = ��b�� ; bB = B �b��, b� is the FIML estimate of �, and b� = b��b�; bB�.
Similarly, the derivative of � (2n)�1

Pn
i=1 (�Yi �BZi)

0
��1 (�Yi �BZi) with respect to � is

�n�1
nX
i=1

��1 (�Yi �BZi)Y 0i ;

and, since
@ log jAj
@A

= (A0)
�1
;

we have
@Qn (�; B;�)

@�
= (�0)

�1 � n�1
nX
i=1

��1 (�Yi �BZi)Y 0i : (5)

Next, from (2) we have

(�0)
�1

= �̂�1n�1
nX
i=1

(�Yi �BZi) (�Yi �BZi)0 (�0)�1

= n�1
nX
i=1

�̂�1 (�Yi �BZi) (Yi ��Zi)0 : (6)

Combining (5) and (6), we obtain

@Qn

�
�; B; �̂

�
@�

= n�1
nX
i=1

�̂�1 (�Yi �BZi) (�Zi)0 :
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The derivative corresponding to equation j is given by

n�1
nX
i=1

h
�̂�1

i0
j
(�Yi �BZi) (�Zi)0 :

By the same argument as in (4), we have,

hb��1i0
j

nX
i=1

�b�Yi � bBZi� bY 0ji = 0; (7)

where bYi = ��b��Zi.
Let�s de�ne bXj;i = � ZjibYji

�
:

Then, after transposing, (4) and (7) can be written together as

0 =
nX
i=1

bXj;i �b�Yi � bBZi�0 hb��1i
j

= bX 0

j

�
y1 �X1b�1 : : : ym �Xmb�m � hb��1i

j

= bX 0

j

 
mX
s=1

�
ys �Xsb�s� b�js!

=

mX
s=1

b�js bX 0

j

�
ys �Xsb�s� ;

where the matrix notation as in Lecture 3. Collecting the results for all m equations, we obtain

0 =

0@ b�11 bX 0

1 : : : b�1m bX 0

1

: : : : : : : : :b�m1 bX 0

m : : : b�mm bX 0

m

1A
0B@ y1 �X1b�1

...
ym �Xmb�m

1CA

=

0@ bX 0

1 0
: : :

0 bX 0

m

1A�b��1 
 In�
0B@ y1 �X1b�1

...
ym �Xmb�m

1CA
= bX 0

�b��1 
 In��Y �Xb�� :
Hence, the FIML estimator must satisfy

b� = � bX 0
�b��1 
 In�X��1 bX 0

�b��1 
 In�Y:
Note that this is not a closed-form expression for b�; since bX and b� both depend on b�: However, it is similar to
the expression for 3SLS in Lecture 3. Together with consistency of b�; it explains the asymptotic equivalence
of 3SLS and FIML.
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