March 3, 2010

LECTURE 4
SIMULTANEOUS EQUATIONS III: FULL INFORMATION ML (FIML)

Definition
Consider again the model defined in Lecture 2,

IvY; = BoZ;+ U,
EZU! = o,

where subscript 0 is used to denote the true values of the coefficients. We assume that all m equations are
identified through zero (and unity) restrictions on the elements of I' and B. Thus, we have in fact that

Iy = T(d),
By = B(do),
where § = (87,...,8,,)", and &’s are the coefficients in
i = X7;001 + s,
Ymi = X;n,ﬁo,m + Ui,

as defined in Lecture 3.
Assume that
U;|Z; ~ N (0,%)

and iid across i’s. This implies that
YilZi ~ N (Tg" BoZi,T5 %o (T51))

and iid across the observations. For a square matrix A, let |A| denote its determinant. The conditional
density of Y; given Z; is

f91Z) = (2m) "2 P55, (15

—1/2 1 ~1
exp (— (v-T5'Boz) (1550 (151)) (- FolBoZi)> :
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and the log-likelihood function for (Y7,...,Y!)" is then can be written as
1 n
Qu(T,BX) = —3 logf(YilZ)
i=1
m 1 1 1 AN ]. i -1 / 1 —1\/ -1 -1
= ~Plogem) + Jlog[P (07| - L3 (V-1 'Bz) (TS (0Y)) (v - T BZ)
n
1=1
= —Dog(2r) +log |T| + 1 =1 - L i (TY; — BZ;))' 7' (TY; — BZ)) (1)
5 log g 5 log 7 2 (1Y i f i) -

In order to obtain the ML estimates of the parameters, the log-likelihood function must be maximized
with respect to ¥ and unknown elements of I' and B. It is useful first to derive concentrated log-likelihood
by maximizing @, with respect to X, taking I" and B as fixed. Using

Olog | A

i = ()7 and
d(cAc)
aA = cc,



we obtain:

2% =% -—n! i (TY; — BZ;) TY; — BZ;)'.
Hence, given I and B, the ML estimator of ¥ is
ST,B)=n"" zn: (TY; — BZ;) (TY; — BZ;)' . (2)
i=1
The concentrated log-likelihood is then
Q,(T,B) = —%log (27) + log |T| + %log ST, B)| - % (TY; — BZ;)' ™Y (T, B) (TY; — BZ)
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= f% log (2) + log [T + 5 log |E~ (I, B)| = o~ > _tr (2*1 (T, B) (TY; — BZ;) (TY; — BZi)’)
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—% log (27) + log |T'| + 3 log |71 (T, B)| — 3t (2—1 (T, B)n™* § (TY; — BZ;) (TY; — BZZ-)'>
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(log (2r) + 1) + log T + ; log ‘zfl (T, B)
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n~' > (TY; - BZ) (IY; - BZ;)'
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We can ignore the first summand in the above equation and redefine

n 'y (Y, -T7'BZ) (Y -T7'BZ)’

i=1

@n (T, B) =

The FIML estimator of (T', B) is defined as
(F,B) = arg 1%1%1 Q. (T, B).

There exists no closed form solution for the FIML estimator of I and B, and the concentrated log-likelihood
must be maximized numerically. Alternatively, since some elements of I' and B are restricted to zero, we
can define the FIML estimator of §,

0 =arg min Q.. (T'(6), B(6)).

Consistency of FIML

The normality assumptions has been used to define the FIML estimator. It is not, however, required for
consistency and asymptotic normality of FIML. If the underlying distribution of the data is not normal,
FIML is actually a Quasi-ML estimator.



A Quasi-ML estimator is consistent if @, (T', B) —, Q (T, B) uniformly in I' and B, I'y and By uniquely
minimize @ (I', B) over some compact set, and @ is continuous.
Note that
Y, -T7'BZ;=—-(T7'B-Ty'By) Z; +I{'U;.

One can show that
n! Z (Yi-T7'BZ) (Yi -T7'BZ) —, (0"'B-T'By) EZ:Z, (T'B—Ty'By) + Ty % (Th) ™,
i=1
and, therefore, by the Slutsky’s Theorem,
Q. (T,B) -, Q(,B)
(T'B—Ty'By) EZ;Z, (T 'B —Ty'By) + T % (T))

)

and, in fact, convergence is uniform. Next, if A and B are two positive semi-definite matrices, then |A + B| >
|A|. Assuming that both EZ,;Z] and ¥y = EU,U] are positive definite, we have that

Q(,B) > ‘I‘glEo (F{))_l‘.

Note also that Tj'% (T') ™" does not depend on I' and B and can be attained by choosing I' = Ty and
B = By. Thus, I'y and By minimize Q (T, B) . Further, since Iy = I'; * By, a minimizer of Q (T, B) must be
a solution to

I'll, = B.

The rank identification condition guarantees that I'g and By is the only solution to the above equation.
Thus,

(f7 B) —p (F07 BO) :
Since I" and B are composed of the elements of §, the above result can be written as well as

S —p 60.

Asymptotic equivalence of FIML and 3SLS

One can show further that the FIML estimator of § is asymptotically normal and has the same asymptotic
variance as that of the 3SLS estimator (under conditional homoskedasticity). We won’t provide a formal
prove of asymptotic normality, but will illustrate the reason for asymptotic equivalence of FIML and 3SLS.

The FIML estimator solves the ML first-order conditions. Consider (1). Note that some elements of
I'(6) and B (9) are restricted to ones or zeros. Therefore, we cannot simply set to zero the derivative of the
log-likelihood function @Q,, with respect to I' and B. The solution is to set to zero only the partial derivatives
that correspond to the unrestricted elements of I' and B. Let’s introduce the following partitions:

I

I

By

B

ol .. oglm

ml mm
o e, O



where (F;-, B;)/ is the vector of structural parameters corresponding to equation j, and ¢ is a scalar. The
last summand in (1) can be written as

1 n m m
—5- DY > ot (LY = BLZ) (T)Y: — BiZ)).
n
=1 s=1 t=1

Its derivative with respect to B/ (the coefficients of the exogenous variables in equation s) is given by

n m

n 'Y N "ot (TY; - BiZi) Z)
i=1 t=1
= —12 (TY; — BZ;) Z,,

where [E_l]; is row s of 1. Hence, the derivative of — (2n)" St (TY; — BZ) 71 (TY; — BZ;) with
respect to B is given by

Q. (T, B,x) L .
o5 Zz (TY; — BZ;) Z..

The derivative corresponding to equation j is given by

n' Y [27(TY; - BZ) Z.
=1

In equation j only [; elements of B are unrestricted. Hence, we have

POV ~
[2*1]j > (FY,- - BZZ) Z, =0, (4)
=1

where I' =T (3) , B=2B (g>, 3 is the FIML estimate of 0, and S=3 (f, E)
Similarly, the derivative of — (2n) ™" S (TY; — BZ) 71 (TY; — BZ;) with respect to T is

—n' Y STN(Y; - BZ) Y,

and, since
Jdlog|A ,
PB Al — ()
we have
0Qn (F,B,E) n—1 -1 - -1 /
———==(T — > (I'Y; — BZ,) Y.
S =) Y S Y- B2, o)
Next, from (2) we have
()~ = STy (Y - BZ) (LY - BZy) (1)
i=1
n 'Y OSTNYY; - BZ) (Y —1Z) (6)
i=1
Combining (5) and (6), we obtain
oo (L EE) (53 ¢ SL(TY; — BZ:) (11Z;)
0 =n Z (TY; — BZ;) (11Z;) .



The derivative corresponding to equation j is given by
li

(TY; — BZ;) (1Z;)'.

where SA/Z =1I (5) Z;.
Let’s define

- Z;
Xii=\ ¢ |-
Je

Then, after transposing, (4) and (7) can be written together as

= Xj ( Y1 — X161 ... Ym — Xinlm ) |:E_1:|j
m
=-&< @—&QWﬁ
s=1
m N
= Zaﬂsz (ys Xsés) )
s=1
where the matrix notation as in Lecture 3. Collecting the results for all m equations, we obtain
X, ... "X, y1 — X0
0 = e e e :
~ml 3/ ~mm 3 ~
O'"L X7n . O_TVL’VLX/"L ym _ Xm(sm
X, 0 Y1 — X101
— . (i*l ® In) :
0 Xm Ym — X ’m6m

- X (i—l @1, (Y - XS) .
Hence, the FIML estimator must satisfy
~ ~, [~ -1 . /A
b= (Y (Sen)x) X (Semn)y.

Note that this is not a closed-form expression for 3, since X and & both depend on S. However, it is similar to
the expression for 3SLS in Lecture 3. Together with consistency of J, it explains the asymptotic equivalence
of 3SLS and FIML.



