
APRIL 25, 2019

LECTURE 3

SIMULTANEOUS EQUATIONS II: MULTIPLE-EQUATION GMM, 3SLS.

In this lecture, we consider joint GMM estimation of more than one simultaneous equation. As we will
see, joint estimation can lead to efficiency gains.

Multiple-equation GMM estimator
Suppose that allm equations (in (1) in Lecture 2) are identified. Adopting the notation of Lecture 2, equation
(7), we can write the system of m equations as follows:

y1i = X ′1,iδ1 + u1i,

. . .

ymi = X ′m,iδm + umi,

where for all j = 1, . . . ,m, δj ∈ Rkj , kj = mj + lj , and the random l-vector Zi is such that

rank
(
EZiX

′
j,i

)
= kj ,

EZiuji = 0.

Equivalently, the system can be re-written in the matrix notation as

y1 = X1δ1 + u1,

. . .

ym = Xmδm + um,

where, for j = 1, . . . ,m, Xj collects the n observations on the right-hand side variables in the j-th equation:

Xj =

 X ′j,1
...

X ′j,n

 ,

yj collects the n observations on the left-hand side variable in the j-th equation:

yj =

 yj1
...
yjn

 ,

and uj is defined similarly. Further, define

X =

 X1 0
. . .

0 Xm

 ,

Y =

 y1
...
ym

 ,

U =

 u1
...
um

 ,

δ =

 δ1
...
δm

 .
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Note that X is (nm)× k, where k = k1 + . . .+ km, Y and U are (nm)× 1, and δ is k × 1. The system can
now be compactly written as

Y = Xδ + U.

In this system, we have ml population moment conditions:

E

 Ziu1i
...

Ziumi

 = E(Ui ⊗ Zi) = 0,

where Ui = (u1i, . . . , umi)
′, and A ⊗ B denotes the Kronecker product of A and B.1 To define sample

moment conditions that can be used for estimation, consider the ml-vector of sample covariations between
the exogenous variables and errors: Z ′u1

...
Z ′um

 =

 Z ′(y1 −X1δ1)
...

Z ′(ym −Xmδm)

 ,

where Z denotes the n× l matrix of observations on the exogenous variables. Using the Kronecker product
notation, this can be conveniently written as:

(Im ⊗ Z)′U = (Im ⊗ Z)′(Y −Xδ),

Let An be an (ml) × (ml) weight matrix. The system or multiple-equation GMM estimator is obtained by
solving

min
d∈Rk

(Y −Xd)
′
(Im ⊗ Z)A′nAn(Im ⊗ Z)′ (Y −Xd) .

Thus, the system GMM estimator is given by2

δ̂ = (X ′(Im ⊗ Z)A′nAn(Im ⊗ Z)′X)−1X ′(Im ⊗ Z)A′nAn(Im ⊗ Z)′Y.

Define
Wn = A′nAn,

and introduce a partition

Wn =

 W11,n . . . W1m,n

. . . . . . . . .
Wm1,n . . . Wmm,n

 ,

where each Wij,n is an l × l symmetric matrix. The system GMM estimators for the m equations can be
1Suppose that A is k × l and B is m× n. Then A⊗B is a (km)× (ln) matrix given by

A⊗B =

 a11 . . . a1l
. . .

ak1 . . . akl

⊗B =

 a11B . . . a1lB
. . .

ak1B . . . aklB

 .

The properties of the Kronecker product include: (A⊗B)′ = A′ ⊗B′, (A⊗B)−1 = A−1 ⊗B−1 when A and B are invertible,
and (A⊗B)(C ⊗D) = AC ⊗BD for properly defined matrices C and D.

2Recall that in the single equation case, the GMM estimator solves minb(Y −Xb)′ZA′nAnZ′(Y −Xb), and the solution is
given by β̂ = (X′ZA′nAnZ′X)−1X′ZA′nAnZ′Y .
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written as δ̂1
...
δ̂m

 =

=

 X ′1Z 0
. . .

0 X ′mZ

 W11,n . . . W1m,n

. . . . . . . . .
Wm1,n . . . Wmm,n

 Z ′X1 0
. . .

0 Z ′Xm

−1

×

 X ′1Z 0
. . .

0 X ′mZ

 W11,n . . . W1m,n

. . . . . . . . .
Wm1,n . . . Wmm,n


 Z ′y1

...
Z ′ym

 (1)

=

 X ′1ZW11,nZ
′X1 . . . X ′1ZW1m,nZ

′Xm

. . . . . . . . .
X ′mZWm1,nZ

′X1 . . . X ′mZWmm,nZ
′Xm

−1 X ′1ZW11,nZ
′y1 + . . .+X ′1ZW1m,nZ

′ym
. . .

X ′mZWm1,nZ
′y1 + . . .+X ′mZWmm,nZ

′ym

 .(2)

We can compare the above expression with that for equation-by-equation GMM: δ̃1
...
δ̃m

 =

 X ′1ZA
′
1nA1nZ

′X1 0
. . .

0 X ′mZA
′
mnAmnZ

′Xm

−1 X ′1ZA
′
1nA1nZ

′y1
. . .

X ′mZA
′
mnAmnZ

′ym

 .

From the comparison, it is apparent that the equation-by-equation GMM estimator is a particular case of
the system GMM estimator with weighting matrices Wij,n = 0 for i 6= j.

Large-sample properties of the multiple-equation GMM estimator
From (1), we can write δ̂1 − δ1

...
δ̂m − δm

 =

=

 ∑n
i=1X1,iZ

′
i 0

. . .
0

∑n
i=1Xm,iZ

′
i

 W11,n . . . W1m,n

. . . . . . . . .
Wm1,n . . . Wmm,n

 ∑n
i=1 ZiX

′
1,i 0

. . .
0

∑n
i=1 ZiX

′
m,i

−1

×

 ∑n
i=1X1,iZ

′
i 0

. . .
0

∑n
i=1Xm,iZ

′
i

 W11,n . . . W1m,n

. . . . . . . . .
Wm1,n . . . Wmm,n



∑n

i=1 Ziu1i
...∑n

i=1 Ziumi

 .

In addition to the previous assumptions, we assume:

• {(Y ′i , Z ′i) : i ≥ 1} are iid.

• Wn →p W positive definite (and symmetric).

• The elements of Ui = (u1i, . . . , umi)
′ and Zi have finite second moments (which together with the

reduced form equations implies that EZiX
′
j,i is finite for all j = 1, . . . ,m).

Under these assumptions we have consistency of the system GMM estimator: δ̂j →p δj for all j = 1, . . . ,m.
Next, for asymptotic normality we also assume that:
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• The elements of Ui and Zi have finite fourth moments (which implies that the elements of Yi have
finite fourth moments as well).

Under these assumptions,

n−1/2


∑n

i=1 Ziu1i
...∑n

i=1 Ziumi

→d N (0,Ω) ,

where

Ω = E

 Ziu1i
...

Ziumi


 Ziu1i

...
Ziumi


′

= E (Ui ⊗ Zi) (Ui ⊗ Zi)
′

= E (UiU
′
i ⊗ ZiZ

′
i) .

Then, we have that

n1/2

 δ̂1 − δ1
...

δ̂m − δm

→d N (0, V (W )) ,

where

V (W ) = (C ′WC)
−1
C ′WΩWC (C ′WC)

−1
,

C =

 Q1 0
. . .

0 Qm

 ,

Qj = EZiX
′
j,i, for j = 1, . . . ,m.

Let’s assume that

• Ω is positive definite.

As usual, the efficient GMM estimator corresponds to Wn that satisfies

Wn →p Ω−1.

For example,

Wn = Ω̂−1n

=

(
n−1

n∑
i=1

(
ÛiÛ

′
i ⊗ ZiZ

′
i

))−1
,

where Ûi is constructed using some preliminary consistent estimators of δj ’s, for example, equation-by-
equation 2SLS estimators:

Ûi =

 y1i −X ′1,iδ̃2SLS
1

...
ymi −X ′m,iδ̃

2SLS
m

 .

The asymptotic variance of the efficient GMM estimator is given by

V
(
Ω−1

)
=
(
C ′Ω−1C

)−1
. (3)
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Homoskedastic errors
In the case of homoskedastic errors, i.e. if

E (UiU
′
i |Zi) = Σ,

where Σ is some positive definite m×m matrix, we have

Ω = E (UiU
′
i ⊗ ZiZ

′
i)

= E (E (UiU
′
i |Zi)⊗ ZiZ

′
i)

= Σ⊗ EZiZ
′
i.

In this case,

Ω̂n = Σ̂n ⊗ n−1
n∑

i=1

ZiZ
′
i,

where

Σ̂n = n−1
n∑

i=1

ÛiÛ
′
i .

A GMM estimator with

Wn = Σ̂−1n ⊗

(
n−1

n∑
i=1

ZiZ
′
i

)−1
is called the three-stage LS estimator (3SLS).

The 3SLS estimator can be written in the matrix notation as follows:

δ̂3SLS =
(
X ′ (Im ⊗ Z)

(
Σ̂−1n ⊗ (Z ′Z)

−1
)

(Im ⊗ Z)
′
X
)−1

X ′ (Im ⊗ Z)
(

Σ̂−1n ⊗ (Z ′Z)
−1
)

(Im ⊗ Z)
′
Y

=
(
X ′
(

Σ̂−1n ⊗
(
Z (Z ′Z)

−1
Z ′
))

X
)−1

X ′
(

Σ̂−1n ⊗
(
Z (Z ′Z)

−1
Z ′
))

Y

=
(
X ′
(

Σ̂−1n ⊗ PZ

)
X
)−1

X ′
(

Σ̂−1n ⊗ PZ

)
Y,

where PZ = Z(Z ′Z)−1Z ′. Further, let σ̂ij be the (i, j)-th element of Σ̂−1n , and define

X̂j = PZXj ,

X̂ =

 X̂1 0
. . .

0 X̂m

 .

We have, δ̂3SLS
1
...

δ̂3SLS
m

 =

 σ̂11X ′1PZX1 . . . σ̂1mX ′1PZXm

. . . . . . . . .
σ̂m1X ′mPZX1 . . . σ̂mmX ′mPZXm

−1

×

 σ̂11X ′1PZy1 + . . .+ σ̂1mX ′1PZym
...

σ̂m1X ′mPZy1 + . . .+ σ̂mmX ′mPZym



=

 σ̂11X̂ ′1X1 . . . σ̂1m
m X̂ ′1Xm

. . . . . . . . .

σ̂m1X̂ ′mX1 . . . σ̂mmX̂ ′mXm

−1
 σ̂11X̂ ′1y1 + . . .+ σ̂1mX̂ ′1ym

...
σ̂m1X̂ ′my1 + . . .+ σ̂mmX̂ ′mym


=

(
X̂ ′
(

Σ̂−1n ⊗ In
)
X
)−1

X̂ ′
(

Σ̂−1n ⊗ In
)
Y.
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Using (3), the asymptotic variance of the 3SLS estimator is given by the inverse of Q1 0
. . .

0 Qm

′ (Σ−1 ⊗ (EZiZ
′
i)
−1
) Q1 0

. . .
0 Qm


=

 Q1 0
. . .

0 Qm

′ σ11 (EZiZ
′
i)
−1

. . . σ1m (EZiZ
′
i)
−1

. . . . . . . . .

σm1 (EZiZ
′
i)
−1

. . . σmm (EZiZ
′
i)
−1

 Q1 0
. . .

0 Qm

 ,

where

Σ−1 =

 σ11 . . . σ1m

. . . . . . . . .
σm1 . . . σmm

 .

Thus, the asymptotic variance of the 3SLS estimator is

V
(
Ω−1

)
=

 σ11EX1,iZ
′
i (EZiZ

′
i)
−1
EZiX

′
1,i . . . σ1mEX1,iZ

′
i (EZiZ

′
i)
−1
EZiX

′
m,i

. . . . . . . . .

σm1EXm,iZ
′
i (EZiZ

′
i)
−1
EZiX

′
1,i . . . σmmEXm,iZ

′
i (EZiZ

′
i)
−1
EZiX

′
m,i

−1 .
Single- vs. multiple-equation GMM
As we have seen, the equation-by-equation GMM corresponds to the case whereWn has a diagonal structure.
Since in general Ω−1 does not take this form, even the "efficient" version of the equation-by-equation GMM
estimator is inefficient when compared to the multiple-equation GMM. The reason for this is that the single
equation estimator for equation j ignores the information about that equation contained in other equations.
However, there are two exceptions to that rule.

First, let’s assume conditional homoskedasticity. Suppose further that the errors are uncorrelated across
the equations, i.e. Σ is diagonal:

Σ =

 Eu21i . . . Eu1iumi

. . . . . . . . .
Eumiu1i . . . Eu2mi


=

 Eu21i . . . 0
. . . . . . . . .
0 . . . Eu2mi


=

 σ2
1 . . . 0
. . . . . . . . .
0 . . . σ2

m

 .

In this case,

V
(
Ω−1

)
=


 Q′1 0

. . .
0 Q′m

 σ2
1EZiZ

′
i 0

. . .
0 σ2

mEZiZ
′
i

−1 Q1 0
. . .

0 Qm



−1

=


σ2
1

(
Q′1 (EZiZ

′
i)
−1
Q1

)−1
0

. . .

0 σ2
m

(
Q′m (EZiZ

′
i)
−1
Qm

)−1
 .
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First, one can see that the estimators are asymptotically independent across the equation. Second, the
asymptotic variance of the multiple-equation efficient GMM estimator is the same as that of the equation-
by-equation 2SLS estimator. Hence, in the homoskedastic case and when the errors are uncorrelated across
the equations (conditional on Z’s), the equation-by-equation 2SLS estimator is efficient.

The equation-by-equation estimator is also efficient when all equations are exactly identified. In fact,
single- and multiple-equations estimators are the same when the system is exactly identified: δ̂1

...
δ̂m

 =
(
X ′ (Im ⊗ Z)Wn (Im ⊗ Z)

′
X
)−1

X ′ (Im ⊗ Z)Wn (Im ⊗ Z)
′
Y

=
(
(Im ⊗ Z)

′
X
)−1

W−1n (X ′ (Im ⊗ Z))
−1
X ′ (Im ⊗ Z)Wn (Im ⊗ Z)

′
Y

=
(
(Im ⊗ Z)

′
X
)−1

(Im ⊗ Z)
′
Y

=

 (Z ′X1)
−1
Z ′y1

...
(Z ′Xm)

−1
Z ′ym

 .

Thus, when the system is exactly identified, all the estimators discussed so far reduce to the equation-by-
equation IV estimator.

7


