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LECTURE 2

SIMULTANEOUS EQUATIONS I: DEFINITION, IDENTIFICATION, INDIRECT LS,
SINGLE-EQUATION GMM

Definition
We consider the following system of equations:

ΓYi = BZi + Ui, (1)
EZiU

′
i = 0, (2)

where Yi is an m-vector of endogenous variables:

Yi =

 y1i
...
ymi

 ,

Zi is an l-vector of exogenous variables, Ui is an m-vector of residuals:

Ui =

 u1i
...

umi

 .

The unknown parameters are given by the m×m matrix Γ and m× l matrix B. The econometrician observes
the data {(Y ′i , Z ′i) : i = 1, . . . , n} .

We have m equations determining m endogenous variables. The first equation is given by

m∑
j=1

Γ1jyji =

l∑
j=1

B1jZji + u1i.

Multiplying all Γ1j ’s and B1j ’s by a nonzero constant would affect the variance of unobservable error term
u1i., however, it would not change the relationship between the observable variables, i.e. Γ and B can be
identified only up to scale. hence, we must introduce some normalization to the system. We will assume that
Γjj = 1 for all j = 1, . . . ,m. Later, this will allow us to treat yij as the "dependent" variable in equation j.

Next, we assume that Γ−1 exists, since, otherwise, there is no unique expression for Yi in terms of
exogenous variables Z’s and shocks U ’s. Let’s rewrite (1) as

Yi = Γ−1BZi + Γ−1Ui, or
Yi = ΠZi + Vi, where (3)
Π = Γ−1B,

Vi = Γ−1Ui.

The system of equations in (3) is called the reduced form as opposed to structural equations in (1). Due to (2)
we have that EZiV

′
i = 0, and, consequently, the matrix of the reduced form parameters Π can be estimated

consistently by OLS. The reduced form is useful, for example, for forecasting of Y ’s from Z’s, however,
we are usually interested in estimating economic relations that are given by the structural equations. The
structural parameters cannot be estimated directly by OLS, since each of the structural equations has Y ’s
on the right-hand side, and in general,

EYiU
′
i = ΠEZiU

′
i + Γ−1EUiU

′
i

= Γ−1V ar (Ui)

6= 0.
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Hence, the first question is whether it is possible to recover the structural parameters Γ from Π.
Structural equation is said to be identified if its coefficients are uniquely determined by the elements of

Π. The structural equation is not identified when the structural parameters cannot be recovered uniquely
from Π (we know that there is a solution for Γ and B because by construction Π = Γ−1B). Simple counting
shows that there are m2 −m+ml unknown parameters in Γ and B, while there are only ml reduced form
coefficients in Π. Thus, without imposing additional restrictions on the structural parameters, the system
or its parts cannot be identified. The most common type of restrictions is a zero restriction or exclusion of
variables from equations. It is possible that some equations are identified while others are not, and, therefore,
identification should be considered equation by equation.

Without loss of generality, let’s consider the first equation. Suppose that the first equation has m1

endogenous and l1 exogenous variables included on the right-hand side. Write

Γ =

(
1 −γ′1 0′

Γ1 Γ2 Γ3

)
,

where, in the first row, γ1 is an m1-vector with all elements different from zero, and 0 is actually an
(m−m1 − 1)-vector of zeros;

B =

(
β′1 0′

B1 B2

)
,

where in the first row β1 is an l1-vector with all elements different from zero, and 0 is an (l − l1)-vector of
zeros. Accordingly, let’s partition Π such that ΓΠ = B:(

1 −γ′1 0′

Γ1 Γ2 Γ3

) π1 π2
Π1 Π2

Π3 Π4

 =

(
β′1 0′

B1 B2

)
, and

π1 − γ′1Π1 = β′1, (4)
π2 − γ′1Π2 = 0′, (5)

where π1 is 1× l1, π2 is 1× (l − l1) , Π1 is m1 × l1, and Π2 is m1 × (l − l1) . The expression in (4) says that
we can find β1 if we know γ1. Next, (5) is a system of l − l1 equations with m1 unknowns (γ1). In order to
be able to solve for γ1, there should be at least as many equations as unknowns, which gives us the following
order condition:

l − l1 ≥ m1,

i.e. the number of exogenous variables excluded from the equation should exceed the number of endogenous
variables included on the right-hand side. The order condition is only necessary but not sufficient. Given
the fact that there is a solution (because Π is determined by Γ and B), the necessary and sufficient condition
for there to be a unique solution for γ1 is the following rank condition:

rank (Π2) = m1

(see the appendix for a proof). Thus, the equation is not identified when l − l1 < m1 or the rank condition
fails. It is overidentified when l− l1 > m1, and the rank condition is met. The equations is exactly identified
when l − l1 = m1, and the rank condition is met In the exactly identified case, we have

γ′1 = π2Π−12 . (6)

Indirect LS
Since Π can be estimated consistently by OLS, we can use (6) in order to estimate the structural parameters
of an exactly identified equation. The indirect LS estimator of γ1 is given by

γ̂ILS
1 =

(
Π̂′2

)−1
π̂′2,
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where π̂2 and Π̂2 are the LS estimators of π2 and Π2 respectively.
Let’s write

Yi =
(
y1i Y ′1,i Y ∗′1,i

)′
,

where Y1i is the m1-vector of the endogenous variables included on the right-hand side in equation 1, and
Y ∗1i is the (m−m1 − 1)-vector of excluded endogenous variables. Similarly, write

Zi =
(
Z ′1,i Z∗′1,i

)′
,

where Z1,i and Z∗1,i are the vectors of included and excluded exogenous variables respectively (for the first
equation). Further, write  y1i

Y1,i
Y ∗1,i

 =

 π1 π2
Π1 Π2

Π3 Π4

( Z1,i

Z∗1,i

)
+

 v1i
V1,i
V ∗1,i

 .

Note that π2 is the vector of reduced form coefficients of Z∗1i in the y1’s equation; and Π2 gives the coefficients
of Z∗1i in the Y1’s equation. We have

π̂′2 = (Z∗′1 M1Z
∗
1 )
−1
Z∗′1 M1y1,

Π̂′2 = (Z∗′1 M1Z
∗
1 )
−1
Z∗′1 M1Y1,

where

y1 =

 y11
...
y1n

 ,

Y1 =

 Y ′1,i
...

Y ′1,n

 ,

Z∗1 =

 Z∗′1,1
...

Z∗′1,n

 ,

Z1 =

 Z ′1,1
...

Z ′1,n

 ,

M1 = In − Z1 (Z ′1Z1)
−1
Z ′1.

Hence,
γ̂ILS
1 = (Z∗′1 M1Y1)

−1
Z∗′1 M1y1.

Note that this is just an IV estimator of Y1 from the regression of y1 against Y1 and Z1, where Z∗1 were used
as instruments for Y1. Indeed, write the IV estimated equation as

y1 = Y1γ̂
IV
1 + Z1β̂

IV
1 + û1,

where Z ′1û1 = 0 and Z∗′1 û1 = 0. Then,

γ̂ILS
1 = (Z∗′1 M1Y1)

−1
Z∗′1 M1

(
Y1γ̂

IV
1 + Z1β̂

IV
1 + û1

)
= γ̂IV1 + (Z∗′1 M1Y1)

−1
Z∗′1 M1û1,
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and

Z∗′1 M1û1 = Z∗′1 û1 − Z∗′1 Z1 (Z ′1Z1)
−1
Z ′1û1

= 0.

The Indirect LS estimator is unique only if the equation is exactly identified. In case of an overidentified
equation, one could choose some m1 restrictions out of l − l1 in (5), in order to construct the indirect LS
estimator. However, a better approach is to use GMM estimation.

Identification and GMM estimation of a single equation
Consider the case where the first equation is identified, i.e. l − l1 ≥ m1, and Π2 has the rank m1 (the rank
condition is satisfied). Let’s re-write the first equation again as

y1i = Y ′1,iγ1 + Z ′1,iβ1 + u1i

= X ′1,iδ1 + u1i, (7)

where

X1,i =
(
Y ′1,i Z ′1,i

)′
,

δ1 =
(
γ′1 β′1

)′
.

The equation can be estimated by GMM provided that the rank condition for GMM estimation is satisfied,
i.e. rank

(
EZiX

′
1,i

)
= m1 + l1. For this to hold, the necessary condition is that the number of instruments

in Zi must exceed the number of regressors in Xi: l ≥ m1 + l1 or l− l1 ≥ m1, which gives us back the order
condition. Next, we will see that rank

(
EZiX

′
1,i

)
= m1 + l1 is equivalent to rank(Π2) = m1.

EZiX
′
1,i = E

(
Z1,i

Z∗1,i

)(
Y ′1,i Z ′1,i

)
= E

(
Z1,i

Z∗1,i

)( (
Π1Z1,i + Π2Z

∗
1,i + V1,i

)′
Z ′1,i

)
=

(
E
(
Z1,iZ

′
1,i

)
Π′1 + E

(
Z1,iZ

∗′
1,i

)
Π′2 E

(
Z1,iZ

′
1,i

)
E
(
Z∗1,iZ

′
1,i

)
Π′1 + E

(
Z∗1,iZ

∗′
1,i

)
Π′2 E

(
Z∗1,iZ

′
1,i

) ) .
Suppose this l × (m1 + l1) matrix does not have the full column rank. This is the case if and only if there
exists some nonzero (m1 + l1)-vector θ =

(
θ′1 θ′2

)′ such that EZiX
′
1,iθ = 0:

0 =

(
E
(
Z1,iZ

′
1,i

)
Π′1 + E

(
Z1,iZ

∗′
1,i

)
Π′2 E

(
Z1,iZ

′
1,i

)
E
(
Z∗1,iZ

′
1,i

)
Π′1 + E

(
Z∗1,iZ

∗′
1,i

)
Π′2 E

(
Z∗1,iZ

′
1,i

) )( θ1
θ2

)
=

(
E
(
Z1,iZ

′
1,i

)
Π′1θ1 + E

(
Z1,iZ

∗′
1,i

)
Π′2θ1 + E

(
Z1,iZ

′
1,i

)
θ2

E
(
Z∗1,iZ

′
1,i

)
Π′1θ1 + E

(
Z∗1,iZ

∗′
1,i

)
Π′2θ1 + E

(
Z∗1,iZ

′
1,i

)
θ2

)
=

(
E
(
Z1,iZ

′
1,i

)
E
(
Z1,iZ

∗′
1,i

)
E
(
Z∗1,iZ

′
1,i

)
E
(
Z∗1,iZ

∗′
1,i

) )( Π′1θ1 + θ2
Π′2θ1

)
.

Assuming that EZiZ
′
i is positive definite, EZiX

′
1,i does not have the full rank if and only if

Π′1θ1 + θ2 = 0,

Π′2θ1 = 0, (8)

i.e. the m1 columns of Π′2 are linearly dependent. (Note that both θ1 and θ2 must be non-zero, since if
θ1 = 0, then 0 = Π′1θ1 + θ2 = 0 + θ2 = θ2.) Hence, rank

(
EZiX

′
1,i

)
< m1 + l1 implies that rank(Π2) < m1.

Consequently, rank(Π2) = m1 implies that rank
(
EZiX

′
1,i

)
= m1 + l1.
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Next, for any θ = (θ′1, θ
′
2)
′ we have that

(
EZiX

′
1,i

)
θ =

(
E
(
Z1,iZ

′
1,i

)
E
(
Z1,iZ

∗′
1,i

)
E
(
Z∗1,iZ

′
1,i

)
E
(
Z∗1,iZ

∗′
1,i

) )( Π′1θ1 + θ2
Π′2θ1

)
Suppose that rank(Π2) < m1. Then, there exists a nonzero θ1 such that (8) holds. Next, define θ2 = −Π′1θ1.
For such a choice of θ = (θ′1, θ

′
2)
′ we have that

(
EZiX

′
1,i

)
θ = 0. Hence, rank(Π2) < m1 implies that

rank
(
EZiX

′
1,i

)
< m1 + l1, and, therefore, rank

(
EZiX

′
1,i

)
= m1 + l1 implies rank(Π2) = m1. Thus, the two

rank conditions are equivalent: EZiX
′
1,i has the full column rank m1 + l1 if and only if the rank of Π2 is m1.

We have shown that the GMM rank condition on EZiX
′
1,i is equivalent to the rank condition on the

corresponding matrix of the reduced form parameters. Thus, provided that the equation is identified, one
can use the usual GMM technique to estimate that equation:

δ̃1 (A1n) =

(
n∑

i=1

X1,iZ
′
i (A′1nA1n)

n∑
i=1

ZiX
′
1,i

)−1 n∑
i=1

X1,iZ
′
i (A′1nA1n)

n∑
i=1

Ziy1i.

The efficient A1n is such that A′1nA1n →p

(
Eu21iZiZ

′
i

)−1. The efficient GMM reduces to the 2SLS estimator
in the homoskedastic case (A′1nA1n = (

∑n
i=1 ZiZ

′
i)
−1), which in turn is the same as the IV estimator when

the system is exactly identified.
The estimators of δj are asymptotically correlated across the equations, even if different equations in the

system are estimated separately. Suppose that the first two equations are identified. We have

n1/2

(
δ̃1 (A1n)− δ1
δ̃2 (A2n)− δ2

)
=

(
S1,n 0

0 S2,n

)
n−1/2

n∑
i=1

(
Ziu1i
Ziu2i

)
,

where

Sj,n (Ajn) =

(
n−1

n∑
i=1

Xj,iZ
′
i

(
A′jnAjn

)
n−1

n∑
i=1

ZiX
′
j,i

)−1
n−1

n∑
i=1

Xj,iZ
′
i

(
A′jnAjn

)
,

for j = 1, 2. Next, under the usual assumptions

Sj,n (Ajn)→p Sj (Aj)

=
(
Q′jA

′
jAjQj

)−1
Q′jA

′
jAj ,

where Qj = EZiX
′
j,i. Further,

n−1/2
n∑

i=1

(
Ziu1i
Ziu2i

)

= n−1/2
n∑

i=1

(
u1i
u2i

)
⊗ Zi →d N (0,Ω1,2) ,

where A⊗B denotes the Kronecker product of A and B,1 and

Ω1,2 = E

((
u21i u1iu2i

u1iu2i u22i

)
⊗ ZiZ

′
i

)
.

1Suppose that A is k × l and B is m× n. Then A⊗B is a (km)× (ln) matrix given by

A⊗B =

 a11 . . . a1l
. . .

ak1 . . . akl

⊗B =

 a11B . . . a1lB
. . .

ak1B . . . aklB

 .

The properties of the Kronecker product include: (A⊗B)′ = A′ ⊗B′, (A⊗B)−1 = A−1 ⊗B−1 when A and B are invertible,
and (A⊗B)(C ⊗D) = AC ⊗BD for properly defined matrices C and D.
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Thus,

n1/2

(
δ̃1 (A1n)− δ1
δ̃2 (A2n)− δ2

)
→d N (0, V (A1, A2)) ,

where

V (A1, A2) =

(
S1 (A1) 0

0 S2 (A2)

)
Ω1,2

(
S1 (A1) 0

0 S2 (A2)

)′
.

One can see that the asymptotic covariance between δ̃1 (A1n) and δ̃2 (A2n) is given by

(Q′1A
′
1A1Q1)

−1
Q′1A

′
1A1E (u1iu2iZiZ

′
i)A

′
2A2Q2 (Q′2A

′
2A2Q2)

−1

Appendix: solving a linear system of equations
This discussion follows Magnus J.R. and H. Neudecker (2007): "Matrix Differential Calculus."

Consider a system of linear equations
Ax = b,

where A is a known l ×m matrix and b is a known l-vector. We are looking for an m-vector x that solves
the system. In the case of a system of simultaneous equations, A = Π′2, x = γ1, and b = π′2.

A solution can be conveniently expresses using a generalized inverse of A. A generalized inverse of A is a
matrix A− such that AA−A = A. A generalized inverse is not unique. A Moore-Penrose inverse of a matrix
A (denoted by A+) is a generalized inverse that satisfies the following conditions:

1. AA+A = A.

2. A+AA+ = A+.

3. A+A is symmetric.

4. AA+ is symmetric.

A unique A+ always exists for any matrix A. For example, if A has full column rank, i.e. rank (A) = m,
then

A+ = (A′A)
−1
A′,

which can be easily checked by verifying conditions 1-4.
We will establish below several results useful in characterizing a solution to Ax = b. First, let’s consider

a homogeneous system of linear equations
Ax = 0

(note that in this case there is always a solution x = 0).

Lemma 1 A general solution to the homogeneous system of linear equations Ax = 0 is

x =
(
Im −A+A

)
q,

where q is an arbitrary m-vector.

Proof. Obviously, x = (Im −A+A) q is a solutions since, due to property 1 of a Moore-Penrose inverse,

A
(
Im −A+A

)
q =

(
A−AA+A

)
q

= (A−A) q

= 0.

Next, suppose x is a solution. Then, it has to satisfy x = (Im −A+A)x, because (Im −A+A)x = x −
A+Ax = x−A+0 = x. Thus, any solution can be written as x = (Im −A+A) q for some q.
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Lemma 2 Ax = b has a solution if and only if rank (A) = rank
([

A b
])
.

Proof. Write A =
[
a1 . . . am

]
, where ai is an l-vector, i = 1, . . . ,m. Suppose the vector x =

(x1, . . . , xm)
′ is a solutions, i.e. Ax = b. Then,

a1x1 + . . .+ amxm = b,

and the last column in the extended matrix
[
A b

]
is a linear combination of the columns of A. Therefore,

rank
([

A b
])

= rank (A).
Now, suppose that rank (A) = rank

([
A b

])
. Since A is an l ×m matrix, its rank is less or equal to

m. Since
[
A b

]
is l × (m+ 1) and has rank at most m, its columns are linearly dependent. Thus, there

is a vector (x1, . . . , xm, xm+1)
′ such that

a1x1 + . . .+ amxm + bxm+1 = 0.

Suppose that xm+1 = 0. In this case, b is linearly independent of the columns of A, and since the column and
row ranks of a matrix are equal, rank

([
A b

])
= rank (A) + 1, which is a contradiction. Thus, xm+1 6= 0

and (−x1/xm+1, . . . ,−xm/xm+1)
′ is a solution to Ax = b.

Lemma 3 Ax = b has a solution if and only if AA+b = b.

Proof. From the definition of A+, AA+A = A, and AA+Ax = Ax. Suppose that x is a solution. Then,
Ax = b, and AA+Ax = Ax implies that AA+b = b. Now, suppose that AA+b = b. Set x̃ = A+b. Then,
Ax̃ = AA+b = b, and therefore x̃ is a solution.

Next, we describe a general solution to Ax = b, provided that it exists.

Lemma 4 If Ax = b has a solution, then it takes the following general form:

x = A+b+
(
Im −A+A

)
q,

where q is an arbitrary m-vector.

Proof. Since there is a solution by the assumption, AA+b = b. It is easy to see that, due to the property
AA+A = A of a Moore-Penrose inverse, x = A+b+ (Im −A+A) q is a solution:

A
(
A+b+

(
Im −A+A

)
q
)

= AA+b+
(
A−AA+A

)
q

= b+ (A−A) q

= b.

Now, suppose x̃ is a solution. Then, Ax̃ = b = AA+b or A (x̃−A+b) = 0. The last equation is a
homogeneous system of equations, and by Lemma 1,

x̃−A+b =
(
Im −A+A

)
q

for some q ∈ Rm.
In the case of simultaneous equations, the identification depends on whether the structural parameters

can be solved uniquely from the reduced-form coefficients. Here is the main identification result:

Theorem 5 A system Ax = b, where A is l ×m, x ∈ Rm, and b ∈ Rl has a unique solution if and only if

rank
([

A b
])

= rank (A) = m.
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Proof. Existence of a solution follows from Lemma 2, so it is left to prove uniqueness. By Lemma 4, the
general solution is given by

x = A+b+
(
Im −A+A

)
q,

where q is arbitrary. Thus, uniqueness of the solution is equivalent to A+A = Im. Suppose that rank (A) =

m. In this case, A has full column rank, and A+ =
(
A

′
A
)−1

A′. It follows that A+A =
(
A

′
A
)−1

A′A = Im.
Suppose now that A+A = Im. Then, min (rank (A+) , rank (A)) ≥ rank (Im) = m. Therefore, since A

is l ×m, it has rank m. (The rank of A cannot exceed m. If rank (A) < m, then rank (A+A) < m and,
therefore, A+A 6= Im.)

Note that in the case of simultaneous equations, the reduced-form coefficients are defined through the
structural parameters, Π = Γ−1B, and therefore there is at least one solution to ΓΠ = B. Hence, identifica-
tion is stated as the rank condition rank (Π2) = m1.
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