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LECTURE 1

REVIEW OF GMM FOR LINEAR MODELS

Definition and asymptotic properties
Suppose that an econometrician observes the data {(Yi, X ′i, Z ′i) : i = 1, . . . , n}, and the model is given by

Yi = X ′iβ + Ui, and
E (ZiUi) = 0, (1)

where β ∈ Rk is the vector of unknown parameters, Xi is a random k-vector of regressors, and Zi is a
random l-vector of instrumental variables (IVs). In the usual regression model, we have Xi = Zi. In the IV
regression model, Xi or some of its elements might be endogenous, i.e. E (XiUi) 6= 0, which requires using
(weakly) exogenous instruments Zi (exogenous elements of Xi may be a part of Zi as well). A simple rule
is that for every endogenous regressor in Xi there should be at least one instrument in Zi that is excluded
from Xi. For the formal requirement, see the rank condition for E (ZiX

′
i) below.

When k = l, we can estimate β by the value that solves the sample analogue of (1), β̂n:

0 = n−1
n∑
i=1

Zi

(
Yi −X ′iβ̂n

)
.

This provides us with k equations in k unknowns, which can be solved to obtain β̂n:

β̂n =

(
n∑
i=1

ZiX
′
i

)−1 n∑
i=1

ZiYi,

provided that
∑n
i=1 ZiX

′
i is invertible. However, when l > k, in general, there is no β̂n ∈ Rk that solves all l

equations exactly. In this case, we can choose the value that makes the sample moments as close to zero as
possible.

Let An be a (possibly random ) l × l weight matrix such that An →p A, where A is non-random and
has full rank (l). For a given choice of the weight matrix An, the Generalized Method of Moments (GMM)
estimator of β is the value of b that minimizes the weighted distance of n−1

∑n
i=1 Zi (Yi −X ′ib) from zero:

β̂n (An) = arg min
b

∥∥∥∥∥Ann−1
n∑
i=1

Zi (Yi −X ′ib)

∥∥∥∥∥
2

= arg min
b

(
n−1

n∑
i=1

Zi (Yi −X ′ib)

)′
A′nAn

(
n−1

n∑
i=1

Zi (Yi −X ′ib)

)
. (2)

The GMM actually produces a class of estimators indexed by An, i.e. different choices of An produce different
estimators. Note that A′A is positive definite.

By obtaining the first order conditions and solving for β̂n (An), one obtains

β̂n (An) =

(
n∑
i=1

XiZ
′
i (A′nAn)

n∑
i=1

ZiX
′
i

)−1 n∑
i=1

XiZ
′
i (A′nAn)

n∑
i=1

ZiYi.

We will show next that the GMM estimator is consistent. We will use the following assumptions.

• {(Yi, Xi, Zi) : i ≥ 1} are iid.

• Yi = X ′iβ + Ui, β ∈ Rk.
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• EZiUi = 0.

• E (ZiX
′
i) has rank k.

• An →p A, where A has rank l ≥ k.

• EX2
i,j <∞ for all j = 1, . . . , k.

• EZ2
i,j <∞ for all j = 1, . . . , l.

Write

β̂n (An) = β +

(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiUi.

The last two of the above assumptions and Cauchy-Schwartz inequality imply that

E |Xi,rZi,s| ≤
√
EX2

i,rEZ
2
i,s

< ∞

for all r = 1, . . . , k and s = 1, . . . , l. Therefore, by the Weak Law of Large Numbers (WLLN),

n−1
n∑
i=1

XiZ
′
i →p EXiZ

′
i.

Since An →p A, we also have that

n−1
n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i →p EXiZ

′
i (A′A)EZiX

′
i.

Further, since E (ZiX
′
i) has rank k, A has rank l ≥ k, it follows that the k × k matrix EXiZ

′
i (A′A)EZiX

′
i

has a full rank k and, therefore, invertible. Consequently, by the Slutsky’s Theorem,(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
→p (EXiZ

′
i (A′A)EZiX

′
i)
−1
.

Next, by the WLLN,

n−1
n∑
i=1

ZiUi →p EZiUi

= 0,

and thus β̂n (An)→p β.
In order to show asymptotic normality, we will use the following three assumptions in addition to the

above.

• EZ4
i,j <∞ for all j = 1, . . . , l.

• EU4
i <∞,

• EU2
i ZiZ

′
i is positive definite.
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Write

n1/2
(
β̂n (An)− β

)
=

(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1/2

n∑
i=1

ZiUi.

The two additional assumptions imply that the variance of ZiUi, EU2
i ZiZ

′
i is finite:

E
∣∣U2
i Zi,rZi,s

∣∣ ≤ √
EU4

i E (Zi,rZi,s)
2

≤
√
EU4

i

√
EZ4

i,rEZ
4
i,s

< ∞, (3)

for all r, s = 1, . . . , l. Hence, we can apply the Central Limit Theorem (CLT) to obtain that

n−1/2
n∑
i=1

ZiUi →d N
(
0, EU2

i ZiZ
′
i

)
.

Let’s define

Q = EZiX
′
i,

Ω = EU2
i ZiZ

′
i.

Combining the above results, we have

n1/2
(
β̂n (An)− β

)
→d N (0, V (A)) , (4)

where the asymptotic variance V (A) takes a sandwich form:

V (A) = (Q′A′AQ)
−1
Q′A′AΩA′AQ (Q′A′AQ)

−1
.

Estimation of the asymptotic variance
The variance-covariance matrix V (A) can be estimated consistently by replacing A, Q and Ω with their
consistent estimators An, Q̂n and Ω̂n respectively:

V̂n(An) =
(
Q̂′nA

′
nAnQ̂n

)−1
Q̂′nA

′
nAnΩ̂nA

′
nAnQ̂n

(
Q̂′nA

′
nAnQ̂n

)−1
Q̂n = n−1

n∑
i=1

ZiX
′
i,

Ω̂n = n−1
n∑
i=1

Û2
i ZiZ

′
i, where

Ûi = Yi −X ′iβ̂n (An)

= Ui −X ′i
(
β̂n (An)− β

)
.
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In order to show consistency of V̂n(An), we need to show that Ω̂n →p Ω. To make the notation shorter, I
will suppress the dependence of the GMM estimator of β on An. Write

Ω̂n = n−1
n∑
i=1

Û2
i ZiZ

′
i

= n−1
n∑
i=1

U2
i ZiZ

′
i − 2R1,n +R2,n, where

R1,n = n−1
n∑
i=1

((
β̂n − β

)′
XiUi

)
ZiZ

′
i,

R2,n = n−1
n∑
i=1

((
β̂n − β

)′
Xi

)2

ZiZ
′
i.

From (3) we know that EU2
i ZiZ

′
i is finite, and, therefore,

n−1
n∑
i=1

U2
i ZiZ

′
i →p EU

2
i ZiZ

′
i

= Ω.

Thus, we need to show that both R1,n and R2,n converge in probability to zero. In addition to the above
assumptions we will assume that

• EX4
i,j <∞ for all j = 1, . . . , k.

Define the matrix norm of a r × c matrix B as

‖B‖ = (tr (B′B))
1/2

=

 r∑
i=1

c∑
j=1

B2
ij

1/2

,

where Bij denotes the (i, j)-th element of the matrix B. We have

‖R1,n‖ ≤ n−1
n∑
i=1

∥∥∥∥((β̂n − β)′XiUi

)
ZiZ

′
i

∥∥∥∥
= n−1

n∑
i=1

∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ |Ui| tr (ZiZ
′
iZiZ

′
i)

1/2

= n−1
n∑
i=1

∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ |Ui| ‖Zi‖ tr (ZiZ
′
i)

1/2

= n−1
n∑
i=1

∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ |Ui| ‖Zi‖2
≤

∥∥∥β̂n − β∥∥∥n−1 n∑
i=1

|Ui| ‖Xi‖ ‖Zi‖2 .

Now,
∥∥∥β̂n − β∥∥∥ →p 0. Hence, ‖R1,n‖ →p 0 provided that n−1

∑n
i=1 |Ui| ‖Xi‖ ‖Zi‖2 does not diverge as

n → ∞. Next, we will use the Holder’s inequality. According to Holder’s inequality, for p > 1, q > 1 such
that 1/p+ 1/q = 1,

E |XY | ≤ (E |X|p)1/p (E |Y |q)1/q .
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Set p = 4 and q = 4/3 to obtain

E |Ui| ‖Xi‖ ‖Zi‖2 ≤
(
E |Ui|4

)1/4 (
E ‖Xi‖4/3 ‖Zi‖8/3

)3/4
.

Apply the Holder’s inequality once again with p = 3 and q = 3/2,

E ‖Xi‖4/3 ‖Zi‖8/3 ≤
(
E ‖Xi‖4

)1/3 (
E ‖Zi‖4

)2/3
.

Thus,

E |Ui| ‖Xi‖ ‖Zi‖2 ≤
(
E |Ui|4

)1/4 (
E ‖Xi‖4

)1/4 (
E ‖Zi‖4

)1/2
< ∞,

and, therefore, by the WLLN

n−1
n∑
i=1

|Ui| ‖Xi‖ ‖Zi‖2 →p E |Ui| ‖Xi‖ ‖Zi‖2 ,

a finite constant. In a similar way, one can show that ‖R2,n‖ →p 0.

Efficient GMM
An efficient GMM estimator is such that it has the smallest asymptotic variance V (A) among the class
of GMM estimators β̂n (An) . The lower bound on V (A) is given by

(
Q′Ω−1Q

)−1
. This can be shown by

proving that
(
Q′Ω−1Q

)−1 − V (A) is negative semi-definite or, alternatively, that Q′Ω−1Q − (V (A))
−1 is

positive semi-definite for all A’s of full rank l. Consider

Q′Ω−1Q− (V (A))
−1

= Q′Ω−1Q−Q′A′AQ (Q′A′AΩA′AQ)
−1
Q′A′AQ. (5)

Assume that Ω is positive definite. We can write

Ω−1 = C ′C,

where C is invertible as well. Write (5) as

Q′C ′CQ−Q′A′AQ
(
Q′A′AC−1 (C ′)

−1
A′AQ

)−1
Q′A′AQ

= Q′C ′
(
I − (C ′)

−1
A′AQ

(
Q′A′AC−1 (C ′)

−1
A′AQ

)−1
Q′A′AC−1

)
CQ. (6)

Define
H = (C ′)

−1
A′AQ,

and note that, using this definition, (6) becomes

Q′C ′
(
I −H (H ′H)

−1
H ′
)
CQ.

The above matrix is positive semi-definite if I −H (H ′H)
−1
H ′ is positive semi-definite. Next,(

I −H (H ′H)
−1
H ′
)(

I −H (H ′H)
−1
H ′
)

= I − 2H (H ′H)
−1
H ′ +H (H ′H)

−1
H ′H (H ′H)

−1
H ′

= I −H (H ′H)
−1
H ′.
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Therefore, I −H (H ′H)
−1
H ′ is idempotent and, consequently, positive semi-definite.

The lower bound is achieved if A′nAn →p A
′A = Ω−1. A natural choice for such A′nAn is Ω̂−1n . Thus, the

efficient GMM estimator is given by

β̂n =

(
n∑
i=1

XiZ
′
iΩ̂
−1
n

n∑
i=1

ZiX
′
i

)−1 n∑
i=1

XiZ
′
iΩ̂
−1
n

n∑
i=1

ZiYi. (7)

It can be constructed using a two-step procedure.

1. Choose some An. For example, A′nAn = Il. Obtain the corresponding (inefficient) estimates of β, say
β̃n.

2. Using β̃n, construct Ω̂n :

Ω̂n = n−1
n∑
i=1

Û2
i ZiZ

′
i, where

Ûi = Yi −X ′iβ̃n,

Obtain the efficient GMM estimates of β using (7).

2SLS and control function approach
Consider the homoskedastic case:

E
(
U2
i |Zi

)
= σ2,

where σ2 is some constant. In this case, Ω = σ2EZiZ
′
i and Ω̂n = σ̂2

nn
−1∑n

i=1 ZiZ
′
i, where σ̂2

n is some
consistent estimator of σ2. In this case, the efficient GMM estimator is the 2SLS estimator:

β̂2SLS
n =

 n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiX
′
i

−1 n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiYi.

In fact, in the homoskedastic case, one does not need to perform the first step involving an inefficient GMM
estimator, since the optimal weight matrix can be obtained directly.

Define:

X =

 X ′1
...
X ′n

 , Z =

 Z ′1
...
Z ′n

 , Y =

 Y1
...
Yn

 , and U =

 U1

...
Un

 .

In matrix notation, the 2SLS estimator can be written as

β̂2SLS
n =

(
X ′Z(Z ′Z)−1Z ′X

)−1
X ′Z(Z ′Z)−1Z ′Y

= (X ′PZX)−1X ′PZY

=
(
X̂ ′X̂

)−1
X̂ ′Y,

where

PZ = Z(Z ′Z)−1Z ′,

X̂ = PZX.
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Here, PZ is the orthogonal projection matrix for the sub-space of Rl spanned by the columns of Z. Note
that X̂ = PZX has an interpretation of fitted values from a regression of the columns of X against Z:

X = ZΠ + V,

where Π is a l × k matrix of parameters, and V is an n × k matrix of errors uncorrelated with Z’s. The
above equation is often referred to as the first-stage. The matrix of parameters is consistently estimated by
Π̂n = (Z ′Z)−1Z ′X, and we have X̂ = PZX = ZΠ̂n.

When k = l, one can easily show that the 2SLS estimator reduces to

β̂IVn =

(
n∑
i=1

ZiX
′
i

)−1 n∑
i=1

ZiYi = (Z ′X)
−1
Z ′Y,

which is often called the IV estimator.
The 2SLS estimator can be viewed as a basic example of the so-called “fitted values method” (see Blundell

and Powell “Endogeneity in Nonparametric and Semiparametric Regression Models”. According to this
method, the matrix of endogenous regressors X in Y = Xβ + U should be replaced with fitted values from
the first-stage. To justify this approach, note that substitution of the first-stage in Y = Xβ + U produces

Y = ZΠβ + U + V β.

Since ZΠ is uncorrelated with U and V , one could estimate β by OLS using ZΠ as regressors if Π were
known. Since Π is unknown, one has to use Π̂n instead, which leads to 2SLS. Note that the fitted values
method can only be used with linear models. If the true model for Y is nonlinear, e.g. Y = m(X,β) + U ,
substitution of the first-stage will produce Y = m(ZΠ + V, β) + U , where m(ZΠ + V, β) 6= m(ZΠ, β) + V
unless m(·, β) is a linear function. Thus with nonlinear models, one cannot expect that the fitted values
approach will lead to consistent estimation of β.

The 2SLS estimator can also be viewed as an example of the so-called “control function” approach to
estimation. Consider again the first-stage equation

X = ZΠ + V.

Since Z is exogenous and X is endogenous, X can be correlated with U only through V . Define:

λ = (EViV
′
i )−1EViUi,

and write

Yi = X ′iβ + Ui

= X ′iβ + V ′i λ+ (Ui − V ′i λ)

= X ′iβ + V ′i λ+ εi,

where V ′i λ is the so-called control function, and εi = Ui − V ′i λ is the new error term. Adding the control
function to the regression eliminates the endogeneity problem. First of all, by construction Vi and εi are
uncorrelated:

EViεi = EVi(Ui − V ′i λ)

= EViUi − EViV ′i λ
= EViUi − EViV ′i (EViV

′
i )−1EViUi,

= 0.

As a result, Xi and εi are uncorrelated as well:1

EXiεi = E (Π′Zi + Vi) εi

= Π′E(Ziεi) + E(Viεi)

= 0.

1X = ZΠ + V can be re-written in observation to observation notation as X′
i = Z′

iΠ + V ′
i , or Xi = Π′Zi + Vi.
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Hence, β can be consistently estimated by regressing Y against X and V . Since V is unobservable, one
should replace it with first-stage fitted residuals:

V̂ = MZX = (In − PZ)X.

Define:
MV̂ = In − V̂

(
V̂ ′V̂

)−1
V̂ ′.

Using the partitioned regression result, the control function estimator of β can be written as

β̂CFn =
(
X ′MV̂X

)−1
X ′MV̂ Y.

Next, consider X ′MV̂X:

X ′MV̂X = X ′
(
In − V̂

(
V̂ ′V̂

)−1
V̂ ′
)
X

= X ′X −X ′V̂
(
V̂ ′V̂

)−1
V̂ ′X

= X ′X −X ′MZX (X ′MZX)
−1
X ′MZX

= X ′X −X ′MZX

= X ′PZX.

Similarly, one can show
X ′MV̂ Y = X ′PZY,

and, therefore, in the case of the linear IV model, the control function and fitted values approaches produce
the same 2SLS estimator:

β̂CFn = β̂2SLS
n .

Unlike the fitted values approach, the control function approach can be used in nonlinear regression
models for construction of consistent estimators.

Confidence intervals and hypothesis testing
It is a common practice to construct symmetric confidence intervals using the normal approximation (4).
Confidence intervals for the j-th element of β, βj , with asymptotic coverage probability 1 − α can be con-
structed as follows:

CIn,j,1−α =

[
β̂jn (An)− z1−α/2

√[
V̂n(An)

]
jj
/n, β̂jn (An) + z1−α/2

√[
V̂n(An)

]
jj
/n

]
,

where
[
V̂n(An)

]
ij

denotes the element (i, j) of the matrix V̂n(An), and zα is the α quantile of the standard

normal distribution, i.e. for Z ∼ N(0, 1), P (Z ≤ zα) = α. One can show that

P (βj ∈ CIn,j,1−α)→ 1− α. (8)

Note that the random element in the above expression is CIn,j,1−α.
Suppose the econometrician is interested in testing H0 : β = β0 against the alternative H1 : β 6= β0. A

test that has asymptotic size α can be based on the Wald statistic:

Wn = n
(
β̂n (An)− β0

)′ (
V̂n(An)

)−1 (
β̂n (An)− β0

)
.

One can show that under the null,
Wn →d χ

2
k, (9)
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and, therefore, the null should be rejected when Wn > χ2
k,1−α, where χ

2
k,1−α is the (1 − α) quantile of the

χ2
k distribution.
The power properties of the test (rejection of the null when it is wrong) can be considered in fixed or

local alternatives frameworks. In the case of fixed alternatives, we assume that

H1 : β = β0 + δ,

where δ ∈ Rk, ‖δ‖ > 0 gives the deviation from the null. In this case, β̂n (An)− β0 →p δ, and, therefore,

Wn/n→p δ
′ (V (A))

−1
δ

> 0.

As a result,
P
(
Wn > χ2

k,1−α
)
→ 1. (10)

We say that a test based on Wn is consistent, since the probability to reject the null when it is wrong
approaches 1 with the sample size.

In the case of local alternatives, it is assumed that

H1 : β = β0 + δ/
√
n.

Thus, we consider only local to H0 or very small deviations from the null hypothesis, where "small" is defined
relatively to the sample size n. The 1/

√
n-rate is chosen so that the statistic would have a non-degenerate

asymptotic distribution when n→∞. Write

n1/2
(
β̂n (An)− β0

)
= δ +

(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1/2

n∑
i=1

ZiUi.

One can show that under the local alternative,

n1/2
(
β̂n (An)− β0

)
→d N (δ, V (A)) , (11)

where V (A) has the same expression as before. Thus, under the local alternative, the asymptotic distribution
of n1/2

(
β̂n (An)− β0

)
is no longer centered around zero. Naturally, noncentrality in the distribution of

n1/2
(
β̂n (An)− β0

)
translates to that of the Wald statistic. Note that we still have that β̂n (An)→p β0 and

V̂n(An)→p V (A). In order to see that the last result is true, write Ûi = Ui −X ′i
(
β̂n (An)− β0

)
+X ′iδ/

√
n,

and use it together with β̂n (An)− β0 →p 0 to show that Ω̂n →p Ω, where Ω = EU2
i ZiZ

′
i as before.

Let Vc be a random k-vector such that Vc ∼ N (c, Ik) . The distribution of V ′cVc is called the noncentral
χ2
k distribution with the noncentrality parameter ‖c‖2 (written as V ′cVc ∼ χ2

k

(
‖c‖2

)
). If c = 0 we have the

usual (central) χ2
k distribution. The probability P

(
V ′cVc > χ2

k,1−α

)
> α, where χ2

k,1−α is the 1−α quantile

of the central χ2
k distribution and c 6= 0. Further, P

(
V ′cVc > χ2

k,1−α

)
is an increasing function of ‖c‖2.

To show that the distribution of V ′cVc depends only on ‖c‖2 (a scalar parameter), first, write Vc = c+Z,
where Z ∼ N(0, Ik). Next, we will show that there is a standard normal random vector X ∼ N(0, Ik) such
that, for any u ∈ R,

P

 k∑
j=1

(cj + Zj)2 > u

 = P

(‖c‖+ X1)2 +

k∑
j=2

Xj2 > u

 .
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Let b1, . . . , bk be orthonormal k-vectors (b′ibi=1 and b′ibj = 0 for i 6= j) such that b1 = c/ ‖c‖. Define a k× k
matrix

B =


c′

‖c‖
b′2
...
b′k

 ,
and note that BB′ = Ik, (B−1)′B−1 = Ik, and

Bc =


‖c‖
0
...
0

 .
Next, define

X = BZ.

It follows that
X ∼ N(0, BB′) =d N(0, Ik).

Furthermore,

(c+ Z)′(c+ Z) = (B (c+ Z))
′ (
B−1

)′
B−1 (B (c+ Z))

= (Bc+ X )′(Bc+ X )

= (‖c‖+ X1)2 +

k∑
j=2

Xj2,

and the result follows. Note also that P
(

(‖c‖+ X1)2 +
∑k
j=2 Xj2 > u

)
is increasing in ‖c‖.

From (11), one can show that under the local alternative H1 : β = β0 + δ/
√
n,

Wn →d χ
2
k

(
δ′ (V (A))

−1
δ
)
. (12)

Hence,

P
(
Wn > χ2

k,1−α
)
→ ρ

(
δ′ (V (A))

−1
δ
)

≡ P

(√δ′ (V (A))
−1
δ + X1

)
2 +

k∑
j=2

Xj2 > χ2
k,1−α


where X1, . . . ,Xk are iid N(0, 1), and therefore ρ(·) is a non-decreasing function such that

α ≤ ρ
(
δ′ (V (A))

−1
δ
)
≤ 1,

with ρ(δ′ (V (A))
−1
δ) = α if and only if δ = 0. Consequently, when the null hypothesis is wrong, a test based

on the Wald statistic will reject the null with asymptotic probability higher than α (the asymptotic size of
the test). In this case, we say that the test has nontrivial power against local alternatives. The probability
to reject the null depends on the magnitude of the noncentrality parameter δ′ (V (A))

−1
δ. Thus, it increases

with the distance from the null δ and decreases with the variance V.
The local alternatives framework can be used to compare various tests. For example, since the power

of the Wald test increases with the noncentrality parameter, as we mentioned above, the asymptotically
efficient test (in the GMM sense) corresponds to V (A) =

(
Q′Ω−1Q

)−1.
10



Testing overidentified restrictions
In this section, we discuss a specification test that allows one to test whether the moment condition EZiUi = 0
holds. Contrary to the tests discussed before, this is not a test of whether β takes on some specific value, but
rather whether the model, as defined by the moment conditions, is correctly specified. The null hypothesis is
that there exists some β such that EZi (Yi −X ′iβ) = 0. The alternative hypothesis is that EZi (Yi −X ′iβ) 6= 0
for all β ∈ Rk. Note that, when the model is exactly identified, the system of k equations in k unknowns
EZi (Yi −X ′iβ) = 0 can be solved exactly. Thus, in this sense an exactly identified model is never misspecified
(see, for example, Hall and Inoue, Journal of Econometrics, 2003). Thus, we can test validity of moment
restrictions only if the model is overidentified. In the linear framework discussed here, the overidentified
restrictions test is often interpreted as a test of whether the instruments are exogenous.

When the model is overidentified, in general, it is impossible to choose b such that n−1
∑n
i=1 Zi (Yi −X ′ib)

is exactly zero. However, if the moment condition holds, we should expect that n−1
∑n
i=1 Zi (Yi −X ′iβ) is

close to zero, and further,

n−1/2
n∑
i=1

Zi (Yi −X ′iβ)→d N (0,Ω) .

If we use the efficient matrix An, then
A′nAn →p Ω−1. (13)

In this case, the weighted distance(
n−1/2

n∑
i=1

Zi (Yi −X ′iβ)

)′
A′nAn

(
n−1/2

n∑
i=1

Zi (Yi −X ′iβ)

)

asymptotically has the χ2
l distribution (the degrees of freedom are determined by the l moment restrictions).

It turns out that, when β is replaced by its efficient GMM estimator β̂GMM
n , the degrees of freedom change

from l to l − k. We have the following result. Under the null hypothesis H0 : EZi (Yi −X ′iβ) = 0 for some
β ∈ Rk, and provided that An satisfies (13) and β̂GMM

n is efficient,(
n−1/2

n∑
i=1

Zi

(
Yi −X ′iβ̂GMM

n

))′
A′nAn

(
n−1/2

n∑
i=1

Zi

(
Yi −X ′iβ̂GMM

n

))
→d χ

2
l−k.

The reason for change in degrees of freedom is that we have to estimate k parameters β before construction
the test statistic. Another explanation is that we need k restrictions to estimate β. Thus, we can test only
additional (overidentified) l − k restrictions.

Consider the linear and homoskedastic case. The efficient GMM estimator is the 2SLS estimator, and the
efficient weight matrix is given by (

∑n
i=1 ZiZ

′
i)
−1
. One should reject the null of correctly specified model if

n−1/2
n∑
i=1

ÛiZ
′
i

(
n−1

n∑
i=1

ZiZ
′
i

)−1
n−1/2

n∑
i=1

ÛiZi/σ̂
2
n

=

(
n∑
i=1

(
Yi −X ′iβ̂GMM

n

)
Zi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

(
Yi −X ′iβ̂GMM

n

)
Zi

)
/σ̂2

n

> χ2
l−k,1−α,

where σ̂2
n is any consistent estimator of σ2 = EU2

i , such as n−1
∑n
i=1

(
Yi −X ′iβ̂GMM

n

)2
.

Efficient instruments
The presentation in this section follows Shinichi Sakata’s lecture notes.
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In section, we consider a linear IV regression model, however, with a stronger exogeneity condition:

Yi = X ′iβ + Ui,

E (Ui|Zi) = 0.

The above restriction on the conditional mean of Ui is also known as “strong exogeneity” as opposed to “weak
exogeneity” in (1). While mean independence in the conditional moment restriction is substantially stronger
than just uncorrelatedness of weak exogeneity, in practice, exogeneity of instruments is often motivated by
arguing statistical independence between instruments and errors, which also implies mean independence. It
is obvious from the previous discussion that the conditional moment restriction is stronger than what is
need to obtain a consistent estimator of β. However, we will see that the conditional mean restriction has
important efficiency implications.

Strong exogeneity implies that Zi can be potentially used as in an instrument, as mean independence
implies uncorrelatedness. However, it also implies that functions of Zi are uncorrelated with Ui as well:

Eg(Zi)Ui = EE (g(Zi)Ui|Zi) = E (g(Zi)E (Ui|Zi)) = 0,

Hence, in this framework we have potentially infinitely many instruments.
In practice, of course, one can construct a GMM estimator only with finitely many instruments. An

interesting question is, therefore, if there exists a vector-valued function g∗(Zi) that can be used as an in-
strument to produce the most efficient GMM estimator of β among infinitely many possible GMM estimators
corresponding to different functions g(·).

Suppose we use g(Zi) as an instrument, i.e. we construct an asymptotically efficient GMM estimator for
β based on the following unconditional moment restriction:

Eg(Zi) (Yi −X ′iβ) = 0.

Let β̂g,n denote an asymptotically efficient GMM estimator corresponding to g(·). Its asymptotic variance is

Vg =
(
Q′gΩ

−1
g Qg

)−1
,

where

Qg = Eg(Zi)X
′
i,

Ωg = EU2
i g(Zi)g(Zi)

′,

and we assume that Qg has rank k and Ωg is positive definite.
Define

g∗(Zi) =
E(Xi|Zi)
E(U2

i |Zi)
,

and note that g∗(·) is a k-vector valued function. Next, let

Q∗ = Eg∗(Zi)X
′
i,

Ω∗ = EU2
i g
∗(Zi)g

∗(Zi)
′.

We have:

Q∗ = E

(
E(Xi|Zi)
E(U2

i |Zi)
X ′i

)
= E

(
E(Xi|Zi)E(Xi|Zi)′

E(U2
i |Zi)

)
,
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where the last equality holds by the law of iterated expectation. Further,

Ω∗ = E

(
U2
i

E(Xi|Zi)E(Xi|Zi)′

(E(U2
i |Zi))

2

)

= E

(
E(Xi|Zi)E(Xi|Zi)′

E(U2
i |Zi)

)
= Q∗.

Hence, since with g∗(Zi) the model is exactly identified, its corresponding efficient GMM estimator β̂∗ has
the asymptotic variance

V ∗ =
(
Q∗

′
(Ω∗)

−1
Q∗
)−1

= (Q∗)
−1

= (Ω∗)
−1
.

We will show next that
Vg − V ∗ ≥ 0. (14)

To prove the claim, we will use the following lemma.

Lemma 1 Let e and ε be two random l-vectors such that Eeε′ = Eee′. Then Eεε′ − Eee′ ≥ 0.

Proof. Consider E(ε− e)(ε− e)′. It is a matrix of second moments and, therefore, is positive semidefinite.
Hence,

0 ≤ E(ε− e)(ε− e)′

= Eεε′ + Eee′ − Eeε′ − Eεe′

= Eεε′ − Eee′,

where the equality in the last line follows by Eeε′ = Eee′ = Eεe′.
To show (14) using Lemma 1, let

ε ≡
(
Q′gΩ

−1
g Qg

)−1
Q′gΩ

−1
g Uig(Zi),

e ≡ (Ω∗)
−1
Uig
∗(Zi).

We have

Eεε′ =
(
Q′gΩ

−1
g Qg

)−1
= Vg,

Eee′ = (Ω∗)
−1

= V ∗.

Next,
Eεe′ =

(
Q′gΩ

−1
g Qg

)−1
Q′gΩ

−1
g E

(
U2
i g(Zi)g

∗′(Zi)
)

(Ω∗)
−1
.

Furthermore,

E
(
u2i g(Zi)g

∗′(Zi)
)

= E

(
U2
i g(Zi)E(X ′i|Zi)
E(U2

i |Zi)

)
= E

(
E(U2

i |Zi)g(Zi)E(X ′i|Zi)
E(U2

i |Zi)

)
= E (g(Zi)E(X ′i|Zi))
= E (g(Zi)X

′
i)

= Qg,

where the equalities in the second and fourth lines follow by the law of iterated expectation. Therefore,
Eεe′ = (Ω∗)

−1
= V ∗, and (14) follows by Lemma 1.

13



In general, efficient instrument E(Xi|Zi)/E(U2
i |Zi) is unknown as it depends on the unknown joint

distributions of Xi and Zi, and Ui and Zi. It is however can be estimated nonparametric kernel methods.
To illustrate the approach, suppose for simplicity that l = k = 1. An estimator for E(Xi|Zi = c) is

m̂(c) =

∑n
j=1XjK((Zj − c)/h)∑n
j=1K((Zj − c)/h)

,

where K(·) is a kernel function, and h is the bandwidth. It is usually assumed that K(·) is non-negative,
symmetric around zero, integrates to one, and K(u) = 0 outside [−1, 1] interval. For example, K(u) =
1{−1 ≤ u ≤ 1}/2 (uniform kernel). Bandwidth h is a tuning parameter assigned some small positive value.
Since K(·) is compactly supported on [−1, 1] , only observations j with c − h ≤ Zj ≤ c + h will have a
non-zero weight in the formula for m̂(c). Hence, m̂(c) is a local average of X’s that have Z’s close to c.

Estimator m̂(c) is an example of nonparametric regression. Consistency of m̂ is obtained by requiring
that h→ 0 and nh→∞ as n→∞. One can think about nh as the effective sample size. Because of that,
the convergence rate of m̂(c) is therefore 1/

√
nh, which is slower than the usual rate of 1/

√
n.

Note that to construct an efficient instrument, one has to compute m̂(Zi) for each i = 1, . . . , n. To
estimate E(U2

i |Zi), one can use, first, a consistent (but inefficient) estimator of β to construct Ûi. Then,
E(U2

i |Zi) can be estimated as a nonparametric regression of Û2
i against Zi.

When Zi is a vector, one can use products of univariate kernels to construct multivariate kernels.
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