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LECTURE 16
TIME SERIES TOPICS

De�nitions

Often econometricians have to deal with data sets that come in the form of a time series or stochastic process,
a collection of observations on the same variable (or vector of variables) indexed by the date of measurement
of each observation. The data is usually collected at equally spaced dates (daily, weekly, monthly and etc.)
and indexed by t = 1; : : : ; T :

fYt : t = 1; : : : ; Tg :
The index t measures passage of time, and Yt measures evolution of the process in time. It is usually assumed
that the observed sample is only a segment of the process that started in the in�nite past and will go on
inde�nitely:

f: : : ; Y�1; Y0; Y1; Y2; : : : ; YT ; YT+1; : : :g :
In the iid or cross-sectional cases, we can view the sample as a collection of n independent "copies" of

the same random variable/vector. Each Yi samples from the common probability space, and, therefore, as
the sample size increases, sample average n�1

Pn
i=1 Yi reveals the population average EYi; which is the same

for all i�s: The time series case di¤ers from the iid framework in the sense that each element in the trajectory
Y1; Y2; : : : ; YT is observed only once. If we are interested in learning about the underlying population model,
�rst, we should be concerned whether di¤erent observations share the same population model. It is possible
that EYt = �t is di¤erent across t�s. The second concern is whether the measurements made at di¤erent
dates e¤ectively sample from the population model. This might not be the case, if observations are highly
correlated. In order to address those issues we introduce following de�nitions.

De�nition 1 The process Yt is said to be strictly stationary if (Yt1 ; : : : ; Ytk) =
d (Yt1+h; : : : ; Ytk+h) for all

k, h and t1; : : : tk:

De�nition 2 Suppose that V ar (Yt) < 1 for all t: The process Yt is said to be (weakly or covariance)
stationary if

EYt = � for all t;

Cov (Yt; Yt�k) = Cov (Ys; Ys�k)

= 
 (k) for all s and k:

The function 
 (k) is called the autocovariance function. The stationarity assumption implies that the
covariance Cov (Yt; Ys) = 
(t� s), and therefore, in the scalar case,


(k) = Cov (Yt; Yt�k)

= Cov (Yt�k; Yt)

= 
(�k):

Similarly, in the vector case, we obtain that


(k) = 
(�k)0:

Note that for a stationary process, V ar (Yt) = 
(0): The autocorrelation function is de�ned as �(k) =

(k)=
(0):

De�nition 3 (loose). The process Yt is said to be ergodic if 
(k)! 0 as k !1:

The stationarity assumptions ensure that the observations measured at di¤erent time periods share
some common underlying model. The ergodicity assumption implies that distant observations are almost
uncorrelated.
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LLNs for a covariance stationary process

The LLNs for strictly stationary and ergodic sequence fYt : t � 1g says that if EYt = � (the mean is �nite),
then, as T !1;

T�1
TX
t=1

Yt !p �:

We will prove a weaker result. Let fYt : t � 1g be a covariance stationary sequence of random variables, and
assume that

P1
i=1 j
 (k)j <1: Then, as T !1;

T�1
TX
t=1

Yt !p EYt:

The condition
P1

i=1 j
 (k)j < 1 above says that the autocovariance function of Yt has to be absolute
summable. For this to hold, it must be true that 
(k)! 0 as k !1 (Yt is ergodic). However, contrary to
the �rst result, here we require existence of the second moment.
Proof. First, by the Markov�s inequality,

P

 �����T�1
TX
t=1

Yt � EYt

����� > "
!
�
E
���T�1PT

t=1 Yt � EYt
���2

"2
:

We need to show that the denominator on the right-hand side of the above expression converges to zero as
T !1:

E

�����T�1
TX
t=1

Yt � EYt

�����
2

= E

�����T�1
TX
t=1

(Yt � EYt)
�����
2

= T�2
TX
t=1

TX
s=1

(Yt � EYt) (Ys � EYs)

= T�2
TX
t=1

TX
s=1


 (t� s)

= T�2

0@T
(0) + 2 T�1X
j=1

(T � j) 
(j)

1A :
In order to verify the last equality, note that

PT
t=1

PT
s=1 
 (t� s) is given by the sum of all elements in the

following T � T matrix.0BBBB@

(0) 
(1) : : : 
(T � 2) 
(T � 1)

(1) 
(0) : : : 
(T � 3) 
(T � 2)
: : : : : : : : : : : : : : :

(T � 2) 
(T � 3) : : : 
(0) 
(1)

(T � 1) 
(T � 2) : : : 
(1) 
(0)

1CCCCA
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Thus, since (T � j) =T < 1 for 1 � j � T; we have that

E

�����T�1
TX
t=1

Yt � EYt

�����
2

� T�1

0@
(0) + 2 T�1X
j=1

T � j
T


(j)

1A
� T�1

0@
(0) + 2 T�1X
j=1

T � j
T

j
(j)j

1A
� T�1

0@
(0) + 2 T�1X
j=1

j
(j)j

1A
� T�1

0@
(0) + 2 1X
j=1

j
(j)j

1A
! 0;

since by the assumption
P1

j=1 j
(j)j <1:
The result can be extended to sequences of random p-vectors. In this case, 
(j) is a p � p matrix.

Its element (r; s) is given by Cov (Yr;t; Ys;t�j) : In the vector case, we require that, for all 1 � r; s � p;P1
j=0 jCov (Yr;t; Ys;t�j)j <1: In the vector case, the long-run variance covariance matrix is given by


(0) +
1X
j=1


(j) +
1X
j=1


(j)0:

Examples

White noise

Suppose that

EUt = 0 for all t;

EU2t = �2 for all t;

EUtUs = 0 for all s; t such that s 6= t: (1)

Such a process is called white noise. Sometimes condition (1) is replaced by a stronger one, which says that
Us and Ut are independent for all s 6= t: In this case, we say that Ut is independent white noise. Naturally,
a white noise process is stationary and ergodic.

Moving average models

Suppose that
Yt = Ut + �1Ut�1 + : : :+ �qUt�q;

where Ut is a white noise. Such a process is called moving average of order q and denoted by MA(q): We
will show that a moving average process is covariance stationary. First, EYt = 0 for all t (a non-zero mean
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can be obtained if we include a nonzero constant on the right-hand side of the above equation). Next,


(0) = �2
�
1 + �21 + : : : �

2
q

�
:


(1) = EYtYt�1

= E (Ut + �1Ut�1 + : : :+ �qUt�q) (Ut�1 + �1Ut�2 + : : :+ �qUt�1�q)

= �1EU
2
t�1 + �2�1EU

2
t�2 + : : :+ �q�q�1EU

2
t�q

= �2 (�1 + �2�1 + : : :+ �q�q�1) :

: : :


(q) = �2�q:


(k) = 0 for k > q:

Hence, MA(q) is covariance stationary and ergodic.

Autoregressive models

Suppose that
Yt = �1Yt�1 + : : : �pYt�p + Ut;

where Ut is a white noise process. Such process is called autoregression of order p and denoted by AR(p):
Non-zero mean processes can be modelled by including an intercept in the above equation.
Consider the case of AR(1). Write

Yt = �Yt�1 + Ut

= �2Yt�2 + �Ut�1 + Ut

= �tY0 +
t�1X
j=0

�jUt�j :

Assume that j�j < 1: Then, limj!1 �
j = 0; and, therefore,

Yt =
1X
j=0

�jUt�j :

This is called the MA(1) representation of a AR(1) process. We have,


(0) = �2
1X
j=0

�2j

=
�2

1� �2
;


(1) = �2
1X
j=0

�j�j+1

= ��2
1X
j=0

�2j

=
��2

1� �2
:


(k) = �2
1X
j=0

�j�j+k

=
�k�2

1� �2
:
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We have that the sequence of autocovariances 
(j) is independent of t; and, therefore, AR(1) is weakly
stationary. Further, it is ergodic since limj!1 
(j) = 0: The long-run variance of the AR(1) process is given
by

�2

1� �2
+ 2

1X
j=1

�j�2

1� �2

=
�2

1� �2

0@1 + 2� 1X
j=0

�j

1A
=

�2

1� �2
�
1 + 2

�

1� �

�
=

�2

(1� �)2
:

Wold decomposition

The MA(1) representation plays an important role in time-series analysis due to the result called the Wold
decomposition. According to it, if fYtg is covariance stationary and ergodic process, then there exists the
white noise sequence fUtg and the sequence of constants f�jg such that

Yt = �+
1X
j=0

�jUt�j ; where

1X
j=0

�2j < 1:

Such a process is called linear.

CLT for linear processes

Let Yt be a linear process:

Yt =

1X
j=0

�jUt�j ;

where fUtg are iid with EUt = 0 and EU2t = �2 < 1, the sequence f�jg is absolutely summable, andP1
j=0 �j 6= 0: Then,

T�1=2
TX
t=1

Yt !d N

0@0; 1X
j=�1


(j)

1A ;
where 
(j) is the j-th autocovariance of Yt; and, therefore,

P1
j=�1 
(j) is the long-run variance of Yt: For

example, in the scalar case, the long-run variance is given by

�2

0@ 1X
j=0

�j

1A2

:

Time-series regression

Suppose that the econometrician observes f(Yt; Xt) : t = 1; : : : ; Tg ; where
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� Yt = X 0
t� + Ut:

� � 2 Rk is a vector of unknown regression coe¢ cients.

� fXtg is strictly stationary and ergodic with �nite second moments, and EXtX 0
t is positive de�nite.

� fUtXtg is a vector process and satis�es the conditions of the CLT for linear processes.

Consider the OLS estimator of �:

T 1=2
�b�T � �� =

 
T�1

TX
t=1

XtX
0
t

!�1
T�1=2

TX
t=1

UtXt:

By the LLN we have that  
T�1

TX
t=1

XtX
0
t

!�1
!p (EXtX

0
t)
�1
:

The CLT implies that

T�1=2
TX
t=1

UtXt !d N (0;
) ;

where 
 is the long-run variance-covariance matrix of UtXt:


 = EU2t XtX
0
t +

1X
j=1

EUtUt�j
�
XtX

0
t�j +Xt�jX

0
t

�
:

Therefore,

T 1=2
�b�T � ��!d N(0; V );

where
V = (EXtX

0
t)
�1

 (EXtX

0
t)
�1
:

In this case, we allow Ut to be heteroskedastic and correlated across t (serially correlated). The result is
similar to the iid case, except for the expression for 
: The asymptotic variance matrix V can be consistently
estimated by

bVT =  T�1 TX
t=1

XtX
0
t

!�1 b
T  T�1 TX
t=1

XtX
0
t

!�1
;

where b
T is heteroskedasticity and autocorrelation consistent (HAC) estimator of 
 Newey-West (1987,
Econometrica):

b
T = T�1 TX
t=1

bU2t XtX 0
t + T

�1
LX
l=1

TX
t=l+1

l

L+ 1
bUt bUt�l �XtX 0

t�l +Xt�lX
0
t

�
;

where L is called the truncation parameter. The HAC estimator is consistent if L ! 1 at a suitable rate
(slower than T ).
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