
DECEMBER 8, 2008

LECTURE 15
BINARY RESPONSE MODELS

In this lecture, we discuss models in which the dependent can take on only two values, usually zero or
one. For example, Yi can measure whether or not individual i participates in labor force: Yi = 1 (yes) or
Yi = 0 (not). As we will see later, in such cases, the linear regression model might not be an appropriate
tool for the analysis.

Bernoulli trials

The econometrician observes fYi : i = 1; : : : ; ng where Yi�s are iid random variables. The distribution of Yi
is given by

Yi =

�
1 with probability �;
0 with probability 1� �:

Such a distribution is called Bernoulli(�): Note that

EYi = � (1)

= P (Yi = 1) :

We can write the PMF of Yi as

p (yi; �) = �
yi(1� �)1�yi for yi = 0; 1:

Thus, the log-likelihood function is given by

logLn (�) =

 
n�1

nX
i=1

Yi

!
log � +

 
1� n�1

nX
i=1

Yi

!
log (1� �)

= Y n log � +
�
1� Y n

�
log (1� �) ;

where Y n = n�1
Pn

i=1 Yi: It follows that the ML estimator of � is the average value of Y
0
i s:

b�ML

n = Y n:

Next,
d2 log p (Yi; �)

d�2
= �Yi

�2
� 1� Yi
(1� �)2

;

Equation (1) implies that

E
d2 log p (Yi; �)

d�2
= �1

�
� 1

1� �

= � 1

�(1� �) :

Thus, in this model, the information (scalar) is given by

I(�) =
1

�(1� �) ;

and the results in Lecture 14 imply that

Y n !p �;

n1=2
�
Y n � �

�
!d N (0; �(1� �)) :
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We can estimate the asymptotic variance consistently by Y n
�
1� Y n

�
: The 1 � � asymptotic con�dence

interval for � can be constructed as follows:24Y n � z1��=2
s
Y n
�
1� Y n

�
n

35 :
The Bernoulli trials is a univariate model. Next, we extend it to the case where the probability of Yi

taking on 1 is a function of some exogenous explanatory variables.

Linear probability model

Suppose that the econometrician observes f(Yi; Xi) : i = 1; : : : ; ng ; where Yi�s are binary f0; 1g variables,
and Xi�s are k-vectors of exogenous variables that explain P (Yi = 1jXi) : Let�s assume that

P (Yi = 1jXi) = F (X 0
i�) ;

for some function F . Contrary to the Bernoulli trials model, the probability of Yi taking on the value one
or zero is not constant and depends on some observable characteristics Xi:
If we assume that Yi and Xi are related by the liner regression model, i.e.

E (YijXi) = X 0
i�;

then we obtain that
F (X 0

i�) = X
0
i�:

In other words, the probability of Yi taking on 1 is a linear function of Xi: Such an assumption is a good
starting point for the analysis, however, it su¤ers from a serious �aw. If some of the X�s are continuous,
and since X 0

i� cannot be restricted to the zero-one interval, the model will produce probabilities that are
negative or greater than one. Thus, in order to avoid nonsense predictions, one has to consider functions F
restricted to zero-one interval, and therefore nonlinear. A natural choice for F is any CDF.

Probit and logit models

It is convenient to introduce a latent (unobservable) variable Y �i for which the usual linear regression model
holds:

Y �i = X
0
i� + Ui:

We assume further that f(Y �i ; Xi) : i = 1; : : : ; ng are iid, and that

Yi =

�
1 if Y �i > 0;
0 if Y �i � 0:

Let F be the conditional CDF of Ui given Xi:

F (ujXi) = P (Ui � ujXi)

Then,

P (Yi = 1jXi) = P (Y �i > 0jXi)
= P (X 0

i� + Ui > 0jXi)
= P (Ui > �X 0

i�jXi)
= 1� F (�X 0

i�) :
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A usual assumption in this framework is that F is symmetric around zero, i.e.

F (u) = 1� F (�u):

Under this assumption, we obtain that

P (Yi = 1jXi) = F (X 0
i�) :

The common choices for F are

� Probit model: F is the standard normal CDF, denoted by �:

� Logit model: F is logistic CDF, denoted by �:

� (X 0
i�) =

exp (X 0
i�)

exp (X 0
i�) + 1

=
1

1 + exp (�X 0
i�)
:

For either choice of F , the model is estimated by the ML method. The PMF of Yi conditional on Xi = xi
is similar to the PMF of Yi in the Bernoulli trials model, however with � replaced by F (x0i�):

p (yi; �jxi) = F (x0i�)
yi (1� F (x0i�))

1�yi for yi = 0; 1:

Thus, the log-likelihood is given by

logLn (�) = n
�1

nX
i=1

Yi logF (X
0
i�) + n

�1
nX
i=1

(1� Yi) log (1� F (X 0
i�)) :

The �rst-order condition for b�ML

n is

0 =
@ logLn

�b�ML

n

�
@�

= n�1
nX
i=1

Yi
@F
�
X 0
i
b�ML

n

�
=@�

F
�
X 0
i
b�ML

n

� � n�1
nX
i=1

(1� Yi)
@F
�
X 0
i
b�ML

n

�
=@�

1� F
�
X 0
i
b�ML

n

�
= n�1

nX
i=1

Yi
f
�
X 0
i
b�ML

n

�
F
�
X 0
i
b�ML

n

�Xi � n�1 nX
i=1

(1� Yi)
f
�
X 0
i
b�ML

n

�
1� F

�
X 0
i
b�ML

n

�Xi;
where f is the PDF of F :

f(u) =
dF (u)

du
:

There is no closed form expression for b�ML

n and it must be computed numerically. Statistical software
packages such as Eviews, Stata, SAS can produce the ML estimates and their asymptotic standard errors
for probit and logit models given the data on Yi and Xi.
In the case of logit, the PDF of � satis�es

d�(u)

du
= �(u) (1� �(u)) : (2)
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Therefore, for the logit model,

f (X 0
i�)

F (X 0
i�)

= 1� � (X 0
i�) ;

f (X 0
i�)

1� F (X 0
i�)

= � (X 0
i�) :

The �rst-order condition simpli�es to

@ logLn

�b�ML

n

�
@�

= n�1
nX
i=1

�
Yi � �

�
X 0
i
b�ML

n

��
Xi

= 0:

Similarly, we have that
@ log p (yi; �jxi)

@�
= (yi � � (x0i�))xi;

and
@2 log p (yi; �jxi)

@�@�0
= �� (x0i�) (1� � (x0i�))xix0i:

Thus, the information matrix is given by

I (�) = �E@
2 log p (Yi; �jXi)

@�@�0

= E� (X 0
i�) (1� � (X 0

i�))XiX
0
i:

Hence, we have that, in the case of the logit model b�ML

n !p �; and

n1=2
�b�ML

n � �
�
!d N

�
0; (E� (X 0

i�) (1� � (X 0
i�))XiX

0
i)
�1
�
:

The asymptotic variance-covariance matrix of b�ML

n can be estimated consistently by 
n�1

nX
i=1

�
�
X 0
i
b�ML

n

��
1� �

�
X 0
i
b�ML

n

��
XiX

0
i

!�1
:

Marginal e¤ects

In the linear regression model, the marginal e¤ect of Xi on E (YijXi) is given by the slope coe¢ cients �: In
the case of nonlinear binary choice models like probit or logit,

@E (YijXi)
@Xi

=
@P (Yi = 1jXi)

@Xi

=
@F (X 0

i�)

@Xi
= f (X 0

i�)�;

and

@P (Yi = 0jXi)
@Xi

=
@ (1� P (Yi = 1jXi))

@Xi
= �f (X 0

i�)�:
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Thus, in the case of the probit model, the marginal e¤ect of Xi on P (Yi = 1jXi) is given by

� (X 0
i�)�;

where �(u) = d�(u)=du is the standard normal density. In the case of logit, equation (2) implies that
@P (Yi = 1jXi) =@Xi is given by

�(X 0
i�) (1� �(X 0

i�))�:

The marginal e¤ects can be estimated by replacing the unknown coe¢ cients � with their ML estimators.
Fix Xi = x; then

\@P (Yi = 1jXi = x)
@Xi

= f
�
x0b�ML

n

� b�ML

n :

The Slutsky�s Theorem and consistency of the ML estimator of � imply that

\@P (Yi = 1jXi)
@Xi

= f
�
x0b�ML

n

� b�ML

n

!p f (x
0�)�

=
@P (Yi = 1jx)

@Xi
;

provided that f is continuous.

The asymptotic distribution of f
�
x0b�ML

n

� b�ML

n can be obtained using the delta method:

n1=2
�
f
�
x0b�ML

n

� b�ML

n � f (x0�)�
�

!d N

 
0;
@ (f (x0�)�)

@�0
I�1 (�)

@
�
f (x0�)�0

�
@�

!

= N

 
0;

�
@f (x0�)

@u
�x0 + f (x0�) Ik

�
I�1 (�)

�
@f (x0�)

@u
�x0 + f (x0�) Ik

�0!
:
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