
DECEMBER 21, 2010

LECTURE 12

GMM II

Efficient GMM
The GMM estimator depends on the choice of the weight matrix An. The efficient GMM estimator is the
one that has the smallest asymptotic variance among all GMM estimators (defined by different choices of
An). Next, we will show that the efficient GMM corresponds to An such that

A′nAn →p Ω−1.

Theorem 1 (a) A lower bound for the asymptotic variance of the class of GMM estimators indexed by An
is given by

(
Q′Ω−1Q

)−1
.

(b) The lower bound is achieved if A′nAn →p Ω−1.

Proof. In order to prove part (a), we need to show that(
Q′Ω−1Q

)−1 − (Q′A′AQ)
−1
Q′A′AΩA′AQ (Q′A′AQ)

−1

is negative semi-definite for any A that has rank l. Equivalently, we can show that

Q′Ω−1Q−Q′A′AQ (Q′A′AΩA′AQ)
−1
Q′A′AQ (1)

is positive semi-definite.
Since the inverse of Ω exists (Ω is positive definite), we can write

Ω−1 = C ′C,

where C is invertible as well. Write (1) as

Q′C ′CQ−Q′A′AQ
(
Q′A′AC−1 (C ′)

−1
A′AQ

)−1
Q′A′AQ

= Q′C ′
(
I − (C ′)

−1
A′AQ

(
Q′A′AC−1 (C ′)

−1
A′AQ

)−1
Q′A′AC−1

)
CQ. (2)

Define
H = (C ′)

−1
A′AQ,

and note that, using this definition, (2) becomes

Q′C ′
(
I −H (H ′H)

−1
H ′
)
CQ.

The above matrix is positive semi-definite if I −H (H ′H)
−1
H ′ is positive semi-definite. Next,(

I −H (H ′H)
−1
H ′
)(

I −H (H ′H)
−1
H ′
)

= I − 2H (H ′H)
−1
H ′ +H (H ′H)

−1
H ′H (H ′H)

−1
H ′

= I −H (H ′H)
−1
H ′.

Therefore, I − H (H ′H)
−1
H ′ is idempotent and, consequently, positive semi-definite. This completes the

proof of part (a).
For part (b), if A′nAn →p A

′A = Ω−1, then the asymptotic variance becomes(
Q′Ω−1Q

)−1
Q′Ω−1ΩΩ−1Q

(
Q′Ω−1Q

)−1
=

(
Q′Ω−1Q

)−1
.

�

A natural choice for such A′nAn is Ω̂−1n . This suggests the following two-step procedure:
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1. Set A′nAn = Il. Obtain the corresponding (inefficient) estimates of β, say β̃n. Using the inefficient (but
consistent) estimator of β, obtain Ω̂n. For example, in the linear case,

Ω̂n = n−1
n∑
i=1

Û2
i ZiZ

′
i, where

Ûi = Yi −X ′iβ̃n,

and, in the general case,

Ω̂n = n−1
n∑
i=1

g
(
Wi, β̃n

)
g
(
Wi, β̃n

)′
.

2. Obtain the efficient GMM estimates of β by minimizing(
n−1

n∑
i=1

g (Wi, b)

)′
Ω̂−1n

(
n−1

n∑
i=1

g (Wi, b)

)
,

where Ω̂n comes from the first step.

An alternative to Ω̂n in the first step is

n−1
n∑
i=1

(
g
(
Wi, β̃n

)
− n−1

n∑
i=1

g
(
Wi, β̃n

))(
g
(
Wi, β̃n

)
− n−1

n∑
i=1

g
(
Wi, β̃n

))′
,

the centered version of Ω̂n. The two versions are asymptotically equivalent, since E∂g (Wi, β) /∂b′ = 0.
However, the centered version often performs better.

In the linear case, a better choice for the first stage weight matrix is

A′nAn =

(
n∑
i=1

ZiZ
′
i

)−1
(3)

= (Z ′Z)
−1
.

The reason for this become clear in the next section.
The variance-covariane matrix of the efficient GMM estimator can be estimated consistently by(

Q̂′nΩ̂−1n Q̂n

)−1
,

where Q̂n was defined in Lecture 11. One can use Ω̂n from the first stage, or compute it again, using the
efficient GMM estimator to compute Ûi’s in the linear case or ∂g/∂b′ in the general case.

Two-stage Least Squares (2SLS)
Consider the linear IV regression model, and assume that

E
(
U2
i |Zi

)
= σ2. (4)

In this case,

Ω = E
(
U2
i ZiZ

′
i

)
= E

(
E
(
U2
i |Zi

)
ZiZ

′
i

)
= σ2E (ZiZ

′
i) .
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A natural estimator of E (ZiZ
′
i) is

n−1
n∑
i=1

ZiZ
′
i,

which gives the optimal weight matrix as in (3). Note that, in this case, the efficient GMM estimator can be
obtained without the first step, since the weight matrix in (3) does not depend on Ûi’s. The efficient GMM
is given by

β̂2SLS
n =

 n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiX
′
i

−1 n∑
i=1

XiZ
′
i

(
n∑
i=1

ZiZ
′
i

)−1 n∑
i=1

ZiYi

=
(
X ′Z (Z ′Z)

−1
Z ′X

)−1
X ′Z (Z ′Z)

−1
Z ′Y.

We have that
n1/2

(
β̂2SLS
n − β

)
→d N

(
0, σ2

(
EXiZ

′
i (EZiZ

′
i)
−1
EZiX

′
i

)−1)
.

The above estimator is also called the two stage LS estimator for the following reason. Define

X̃ = Z (Z ′Z)
−1
Z ′X

= PZX,

the orthogonal projection of the matrix of regressors X onto the space spanned by the instruments Z. Since
PZ is idempotent, we can write

β̂2SLS
n =

(
X̃ ′X̃

)−1
X̃ ′Y.

Thus, β̂n can be obtained using the two-step procedure. First, regress X against instruments, and obtain
the fitted values X̃. The first step removes from Xi the correlation with the error Ui. In the second step, one
should run the regression of Y against the fitted values X̃.

The 2SLS estimator is not efficient when the conditional homoskedasticity assumption (4) fails. In this
case, the efficient GMM estimator is

β̂GMM
n =

 n∑
i=1

XiZ
′
i

(
n∑
i=1

Û2
i ZiZ

′
i

)−1 n∑
i=1

ZiX
′
i

−1 n∑
i=1

XiZ
′
i

(
n∑
i=1

Û2
i ZiZ

′
i

)−1 n∑
i=1

ZiYi

Exactly identified case
When the number of instruments is equal to the number of regressors (l = k), and the k × k matrix Z ′X is
of full rank, the 2SLS estimator reduces to the IV estimator discussed in Lecture 10:

β̂2SLS
n =

(
X ′Z (Z ′Z)

−1
Z ′X

)−1
X ′Z (Z ′Z)

−1
Z ′Y

= (Z ′X)
−1

(Z ′Z) (X ′Z)
−1
X ′Z (Z ′Z)

−1
Z ′Y

= (Z ′X)
−1
Z ′Y

= β̂IVn .

The IV estimator is an example (linear) of the exactly identified case. In this case, the weight matrix
An plays no role. If the model is exactly identified, the we have k equations in k unknowns. Therefore, it is
possible to solve n−1

∑n
i=1 g (Wi, b) = 0 exactly. As a result, the solution to the GMM minimization problem

min
b∈B

∥∥∥∥∥Ann−1
n∑
i=1

g (Wi, b)

∥∥∥∥∥
2
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does not depend on An.
Since, in the exactly identified case, Q is k× k and invertible, the asymptotic variance-covariance matrix

takes the following form

(Q′A′AQ)
−1
Q′A′AΩA′AQ (Q′A′AQ)

−1

= Q−1 (A′A)
−1

(Q′)
−1
Q′A′AΩA′AQQ−1 (A′A)

−1
(Q′)

−1

= Q−1Ω
(
Q−1

)′
=

(
Q′Ω−1Q

)−1
independent of A and, naturally, efficient.

Confidence intervals and hypothesis testing in the GMM framework

In this section, we discuss constructing of confidence intervals and hypothesis testing. Let β̂GMM
n be the

efficient GMM estimator with the asymptotic variance-covariance matrix V =
(
Q′Ω−1Q

)−1
. Let V̂n denote

a consistent estimator of V.
Since β̂GMM

n is approximately normal in large samples, a confidence interval with the coverage probability
1− α for element j of β is given by[

β̂GMM
n,j − z1−α/2

√[
V̂n

]
jj
/n, β̂GMM

n,j + z1−α/2

√[
V̂n

]
jj
/n

]
,

for j = 1, . . . , k.
For example, in the linear and homoskedastic case, the asymptotic variance of β̂2SLS

n is

V = σ2
(
EXiZ

′
i (EZiZ

′
i)
−1
EZiX

′
i

)−1
,

and its consistent estimator is

V̂n = σ̂2
n

n−1 n∑
i=1

XiZ
′
i

(
n−1

n∑
i=1

ZiZ
′
i

)−1
n−1

n∑
i=1

ZiX
′
i

−1

= nσ̂2
n

(
X ′Z (Z ′Z)

−1
Z ′X

)−1
,

where σ̂2
n = n−1

∑n
i=1

(
Yi −X ′iβ̂2SLS

n

)2
. Therefore, the 1− α asymptotic confidence interval for βj is given

by

β̂2SLS
n,j ± z1−α/2

√
σ̂2
n

[(
X ′Z (Z ′Z)

−1
Z ′X

)−1]
jj

.

One can construct a test of the null hypothesis H0 : βj = β0,j against H1 : βj 6= β0,j by using the
following test statistic:

Tn,j =
β̂GMM
n,j − β0,j√[
V̂n

]
jj
/n

.

Since under the null hypothesis Tn,j →d N (0, 1) , the asymptotic α-size test is given by

Reject H0 if |Tn,j | > z1−α/2.

One can use a Wald statistic in order to test H0 : β = β0 against H1 : β 6= β0:

Wn = n
(
β̂GMM
n − β0

)′
V̂ −1n

(
β̂GMM
n − β0

)
.
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More generally, suppose that the null and alternative are given by H0 : h (β) = 0 and H1 : h (β) 6= 0 where
h : Rk → Rq. By the delta method, under the null

n1/2h
(
β̂GMM
n

)
→d N

(
0,
∂h (β)

∂β′
V
∂h (β)

′

∂β

)
.

Therefore, the Wald statistic is given by

Wn = nh
(
β̂GMM
n

)′∂h
(
β̂GMM
n

)
∂β′

V̂n
∂h
(
β̂GMM
n

)′
∂β


−1

h
(
β̂GMM
n

)
.

The asymptotic α-size test is given by

Reject H0 if Wn > χ2
q.

Testing overidentified restrictions
In this section, we discuss a specification test that allows one to test whether the moment condition
Eg (Wi, β) = 0. Contrary to the tests discussed before, this is not a test of whether β takes on some
specific value, but rather whether the model, as defined by the moment conditions, is correctly specified.
The null hypothesis is that there exists some β such that Eg (Wi, β) = 0. The alternative hypothesis is that
Eg (Wi, β) 6= 0 for all β ∈ Rk. Note that, when the model is exactly identified, the system of k equations in
k unknowns Eg (Wi, b) = 0 can be solved exactly. Thus, we can test validity of moment restrictions only if
the model is overidentified.

When the model is overidentified, in general, it is impossible to choose b such that n−1
∑n
i=1 g (Wi, b) is ex-

actly zero. However, if the moment condition Eg (Wi, β) = 0 holds, we should expect that n−1
∑n
i=1 g (Wi, β)

is close to zero, and further,

n−1/2
n∑
i=1

g (Wi, β) →d N
(
0, Eg (Wi, β) g (Wi, β)

′)
= N (0,Ω) .

If we use the efficient matrix An, then
A′nA→p Ω−1. (5)

In this case, the weighted distance(
n−1/2

n∑
i=1

g (Wi, β)

)′
A′nAn

(
n−1/2

n∑
i=1

g (Wi, β)

)

asymptotically has the χ2
l distribution (the degrees of freedom are determined by the l moment restrictions).

It turns out that, when β is replaced by its efficient GMM estimator β̂GMM
n , the degrees of freedom change

from l to l−k.We have the following result. Under the null hypothesis H0 : Eg (Wi, β) = 0 for some β ∈ Rk,
and provided that An satisfies (5) and β̂GMM

n is efficient,(
n−1/2

n∑
i=1

g
(
Wi, β̂

GMM
n

))′
A′nAn

(
n−1/2

n∑
i=1

g
(
Wi, β̂

GMM
n

))
→d χ

2
l−k.

The reason for change in degrees of freedom is that we have to estimate k parameters β before construction
the test statistic. Another explanation is that we need k restrictions to estimate β. Thus, we can test only
additional (overidentified) l − k restrictions.
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Consider the linear and homoskedastic case. The efficient GMM estimator is the 2SLS estimator, and the
efficient weight matrix is given by (

∑n
i=1 ZiZ

′
i)
−1
. One should reject the null of correctly specified model if

n−1/2
n∑
i=1

ÛiZ
′
i

(
n−1

n∑
i=1

ZiZ
′
i

)−1
n−1/2

n∑
i=1

ÛiZ
′
i/σ̂

2
n

=

(
n∑
i=1

(
Yi −X ′iβ̂GMM

n

)
Zi

)′( n∑
i=1

ZiZ
′
i

)−1( n∑
i=1

(
Yi −X ′iβ̂GMM

n

)
Zi

)
/σ̂2

n

> χ2
l−k,1−α,

where σ̂2
n is any consistent estimator of σ2 = EU2

i , such as n−1
∑n
i=1

(
Yi −X ′iβ̂GMM

n

)2
. Note that here we

test jointly exogeneity of the instruments and other assumptions such as linearity of the model.

6


