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GMM I

Definition
Suppose that an econometrician observes the data {Wi : i = 1, . . . , n} where Wi is a random p-vector. Let g
be a l dimensional function depending on Wi and the k-vector of parameters b:

g (Wi, b) =

 g1 (Wi, b)
...

gl (Wi, b)

 ,

and gj : Rp ×Rk → R for j = 1, . . . , l. The model is defined by the following moment condition.

Eg (Wi, β) = 0 for some β ∈ Rk. (1)

Examples:

• Linear regression. Let Wi = (Yi, X
′
i)
′ and Yi = X ′iβ + Ui, where β ∈ Rk, and E (XiUi) = 0. In this

case, g (Wi, b) = Xi (Yi −X ′ib) , l = k, and the moment condition is E (Xi (Yi −X ′iβ)) = 0.

• IV regression. Let Wi = (Yi, X
′
i, Z
′
i)
′
, Yi = X ′iβ + Ui, where β ∈ Rk, and E (ZiUi) = 0, where Zi is

a l-vector. In this case, g (Wi, b) = Zi (Yi −X ′ib) with the moment condition E (Zi (Yi −X ′iβ)) = 0.

• Lucas’ Model. Suppose that in period t investors receive utility from the consumption Ct be con-
sumption in period t. Let Rj,t be the rate of return on the risky asset j. Suppose that there are m
assets. Assume that the utility function is of the form

∑∞
t=1 δ

tC1−α
t / (1− α) . In the equilibrium, the

returns on risky assets are determined by the following Euler equations:

E

(
δ

(
Ct+1

Ct

)−α
(1 +Rj,t+1)

)
= 1 for j = 1, . . . ,m.

In this case we have Wt = (Ct, R1,t . . . , Rm,t) , b = (a, d) , gj (Wt, b) = d
(
Ct+1

Ct

)−a
(1 +Rj,t+1)− 1 for

j = 1, . . . ,m, and the moment conditions given by the above equations. Note that in this case g is
nonlinear in the parameters.

We say that the model is identified if Eg (Wi, β) = 0 and Eg
(
Wi, β̃

)
= 0 imply that β = β̃, i.e. the solution

of (1) is unique. The moment condition gives us l restrictions for k parameters. A necessary condition for
the model to be identified is that l ≥ k, i.e. we must have at least k restrictions. The necessary condition is
called the order condition. We say that the model is not identified or underidentified if the order condition
fails.

When k = l, applying the MM principle, we can estimate β by the value of b that solves the sample
analogue of (1):

n−1
n∑
i=1

g
(
Wi, β̂

MM
n

)
= 0.

However, when l > k, in general, there is no b ∈ Rk that solves all l equations exactly. In this case, we can
choose the value of b that makes the sample moments as close to zero as possible. Let An be a (possibly
random ) l × l weight matrix such that An →p A, where A is non-random and has full rank (l). The
Generalized Method of Moments (GMM) estimator of β is defined to be the value of b that minimizes the
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weighted distance of n−1
∑n
i=1 g (Wi, b) from zero:

β̂GMM
n = arg min

b∈B

∥∥∥∥∥Ann−1
n∑
i=1

g (Wi, b)

∥∥∥∥∥
2

= arg min
b∈B

(
n−1

n∑
i=1

g (Wi, b)

)′
A′nAn

(
n−1

n∑
i=1

g (Wi, b)

)
. (2)

The set B ⊂ Rk is usually assumed to be compact. Note that A′A is positive definite.

Linear case
In this section, we discuss in details the IV regression example. Note that in this case, the function g is linear
in parameters. Similarly to Lecture 10, we assume that some or all of the k regressors in Xi are endogenous:

E (XiUi) 6= 0,

and that the l instruments Zi are weakly exogenous:

E (ZiUi) = 0.

The model is identified, if the following rank condition is satisfied:

rank (E (ZiX
′
i)) = k.

If the rank condition is satisfied and l = k we say that the model is exactly or just identified. We say that
the model is overidentified if the rank condition is satisfied and l > k (there are more instruments than the
parameters that want to estimate). Contrary to the discussion in Lecture 10, we allow here the model to be
overidentified.

In the linear IV regression case, β̂GMM
n is the minimizer of(

n−1
n∑
i=1

Zi (Yi −X ′ib)

)′
A′nAn

(
n−1

n∑
i=1

Zi (Yi −X ′ib)

)
,

and given by the following expression:

β̂GMM
n =

(
n∑
i=1

XiZ
′
i (A′nAn)

n∑
i=1

ZiX
′
i

)−1 n∑
i=1

XiZ
′
i (A′nAn)

n∑
i=1

ZiYi.

We will show next that the GMM estimator is consistent. We need the following assumptions.

• {(Yi, Xi, Zi) : i = 1, . . . , n} are iid.

• Yi = X ′iβ + Ui, where β ∈ Rk.

• E (ZiUi) = 0.

• E (ZiX
′
i) has rank k.

• An →p A, where A has rank l ≥ k.

• EX2
i,j <∞ for all j = 1, . . . , k.

• EZ2
i,j <∞ for all j = 1, . . . , l.
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Write

β̂GMM
n = β +

(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiUi.

The last two of the above assumptions imply that

E |Xi,rZi,s| <∞ for all r = 1, . . . , k and s = 1, . . . , l.

By the WLLN,

n−1
n∑
i=1

XiZ
′
i →p EXiZ

′
i.

Since An →p A, we also have that

n−1
n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i →p EXiZ

′
i (A′A)EZiX

′
i.

Further, since E (ZiX
′
i) has rank k, A has rank l ≥ k, it follows that the k × k matrix EXiZ

′
i (A′A)EZiX

′
i

has full rank k and, therefore, invertible. Consequently, by the Slutsky’s Theorem,(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
→p (EXiZ

′
i (A′A)EZiX

′
i)
−1
.

Next, by the WLLN,

n−1
n∑
i=1

ZiUi →p 0,

and thus β̂GMM
n →p β.

In order to show asymptotic normality, we will need the following two assumptions in addition to the
above.

• EZ4
i,j <∞ for all j = 1, . . . , l.

• EU4
i <∞.

• EU2
i ZiZ

′
i is positive definite.

Write

n1/2
(
β̂GMM
n − β

)
=

(
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

XiZ
′
i (A′nAn)n−1/2

n∑
i=1

ZiUi.

The last two assumptions imply that the variance of ZiUi, EU2
i ZiZ

′
i is finite, and, by the CLT, we have that

n−1/2
n∑
i=1

ZiUi →d N
(
0, EU2

i ZiZ
′
i

)
.

Let’s define

Q = EZiX
′
i,

Ω = EU2
i ZiZ

′
i.
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Combining the above results, we have

n1/2
(
β̂GMM
n − β

)
→d N (0, V ) ,

where V takes the sandwich form:

V = (Q′A′AQ)
−1
Q′A′AΩA′AQ (Q′A′AQ)

−1
.

The variance-covariance matrix V can be estimated by replacing A, Q and Ω with their consistent estimators
An, Q̂n and Ω̂n respectively, where

Q̂n = n−1
n∑
i=1

ZiX
′
i,

Ω̂n = n−1
n∑
i=1

Û2
i ZiZ

′
i,

where Ûi = Yi −X ′iβ̂GMM
n .

General case
In the general case, the GMM estimator minimizes the nonlinear function in (2). Usually, we do not have a
closed-form expression for β̂GMM

n , and the minimization must be done using numerical procedures. Neverthe-
less, under general regularity conditions, it is possible to show that β̂GMM

n is consistent and asymptotically
normal. We will only provide heuristic proofs of consistency and asymptotic normality.

Since the criterion function in (2) involves averages, we should expect that∥∥∥∥∥Ann−1
n∑
i=1

g (Wi, b)

∥∥∥∥∥
2

→p ‖AEg (Wi, b)‖2 . (3)

Assuming that the model is uniquely identified, Eg (Wi, b) = 0 only if and only if b = β. Since ‖AEg (Wi, b)‖2 >
0 for all b 6= β, the true value β is the unique minimizer of ‖AEg (Wi, b)‖2 . Intuitively, β̂GMM

n is consistent
because

β̂GMM
n = arg min

b∈B

∥∥∥∥∥Ann−1
n∑
i=1

g (Wi, b)

∥∥∥∥∥
2

→p arg min
b∈B
‖AEg (Wi, b)‖2

= β.

The formal proof of consistency requires a number of regularity conditions, such as uniform in b ∈ B
convergence in (3), compactness of B, β being the interior point of B.

For asymptotic normality, note that β̂GMM
n solves the first-order conditions:n−1 n∑

i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

′A′nAnn−1 n∑
i=1

g
(
Wi, β̂

GMM
n

)
= 0. (4)

(In fact, it is sufficient if β̂GMM
n solves the first-order conditions approximately, i.e. on the right-hand side

of the above equation, instead of zero, we can have a term that goes to zero in probability at the rate n1/2.)
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Next, using the expansion of g
(
Wi, β̂

GMM
n

)
around g (Wi, β) (the element-by-element mean value theorem),

we obtain

g
(
Wi, β̂

GMM
n

)
= g (Wi, β) +

∂g
(
Wi, β̂

∗
n

)
∂b′

(
β̂GMM
n − β

)
, (5)

where β̂∗n is between β̂GMM
n and β. Substitution of (5) into (4) gives

0 =

n−1 n∑
i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

′A′nAnn−1 n∑
i=1

g (Wi, β)

+

n−1 n∑
i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

′A′nAn
n−1 n∑

i=1

∂g
(
Wi, β̂

∗
n

)
∂b′

(β̂GMM
n − β

)
,

We can write

n1/2
(
β̂GMM
n − β

)

= −


n−1 n∑

i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

′A′nAn
n−1 n∑

i=1

∂g
(
Wi, β̂

∗
n

)
∂b′



−1

×

n−1 n∑
i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

′A′nAnn−1/2 n∑
i=1

g (Wi, β) .

Since Eg (Wi, β) = 0, we should expect that, under some regularity conditions,

n−1/2
n∑
i=1

g (Wi, β)→d N
(
0, Eg (Wi, β)Eg (Wi, β)

′)
.

(Note that the asymptotic variance depends on the unknown β). Since β̂GMM
n is consistent, and, as a result

β̂∗n →p β as well, we should expect, that under some proper regularity conditions,

n−1
n∑
i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

→p E
∂g (Wi, β)

∂b′
,

n−1
n∑
i=1

∂g
(
Wi, β̂

∗
n

)
∂b′

→p E
∂g (Wi, β)

∂b′
,

and that the matrix (
E
∂g (Wi, β)

∂b′

)′
A′A

(
E
∂g (Wi, β)

∂b′

)
is invertible. Then,

n1/2
(
β̂GMM
n − β

)
→d N (0, V ) ,

where

V = (Q′A′AQ)
−1
Q′A′AΩA′AQ (Q′A′AQ)

−1
,

Q = E
∂g (Wi, β)

∂b′
,

Ω = Eg (Wi, β) g (Wi, β)
′
.
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The variance-covariance matrix V can be estimated by replacing A, Q and Ω with their consistent estimators
An and

Q̂n = n−1
n∑
i=1

∂g
(
Wi, β̂

GMM
n

)
∂b′

,

Ω̂n = n−1
n∑
i=1

g
(
Wi, β̂

GMM
n

)
g
(
Wi, β̂

GMM
n

)′
.
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