
DECEMBER 21, 2010

LECTURE 10

ENDOGENEITY AND INSTRUMENTAL VARIABLES ESTIMATION

Endogeneity
Consider a partitioned regression model:

Yi = X ′iβ + Ui

= X ′1iβ1 +X ′2iβ2 + Ui, (1)

where X1i is a k1-vector and X2i is a k2-vector of random regressors, β1 is k1 × 1 and β2 is k2 × 1 vectors of
unknown parameters, k1 + k2 = k. We assume that X1i is endogenous:

E (X1iUi) 6= 0,

as opposed to (weakly) exogenous X2i’s:
E (X2iUi) = 0.

(The assumption E (Ui|X2i) = 0 is called strong exogeneity.) Sources of endogeneity:

• Omitted variables. Consider the wage equation:

logWagei = α+ βEducationi + γGenderi + δAbilityi + Vi

= α+ βEducationi + γGenderi + Ui.

Since ability is unobservable, it "goes" to the residuals Ui = δAbilityi + Vi. We can assume that the
gender variable is exogenous, however, education is correlated with the ability, and, therefore, education
is endogenous.

• Errors in variables. Suppose that the true model is

Yi = X̃ ′1iβ +X ′2iβ2 + Vi,

however, X̃1i is unobservable. Instead, the econometrician observes X1i = X̃1i + εi, where εi is some
noise vector independent of X̃1i and X2i. Substituting X̃1i into the above equation,

Yi = X ′1iβ +X ′2iβ2 − ε′iβ + Vi.

Set Ui = −ε′iβ+Vi.While X2i is exogenous, X1i is endogenous, because it is correlated with Ui through
εi.

• Simultaneity. Consider the following equation

Hoursi = β1Childreni +X ′2iβ2 + Ui,

where Hoursi is the hours of work per week, and Childreni is the number of children in the family,
and X2i is a vector of exogenous variables. While the number of children affects labor supply, it is
reasonable to assume that career decisions affect family size, i.e. there is another equation determining
the number of children in the family:

Childreni = γ1Hoursi + Z ′1iγ2 + Vi,

where Z1i is another vector of exogenous variables. Substituting the expression for the hours into the
equation for the number of children, we obtain (assuming that 1− β1γ1 6= 0)

Childreni = X ′2i

(
β2γ1

1− β1γ1

)
+ Z ′1i

γ2
1− β1γ1

+
γ1

1− β1γ1
Ui +

1

1− β1γ1
Vi.

Assuming that X2i, Z1i and Vi are uncorrelated with Ui, we have that

E (UiChildreni) =
γ1

1− β1γ1
EU2

i

6= 0.
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Properties of the OLS under endogeneity
Consider first the OLS estimator of β1:

β̂1n = (X ′1M2X1)
−1
X ′1M2Y

= β1 + (X ′1M2X1)
−1
X ′1M2U,

where M2 = In −X2 (X ′2X2)
−1
X ′2. We have

n−1X ′1M2X1 = n−1
n∑
i=1

X1iX
′
1i − n−1

n∑
i=1

X1iX
′
2i

(
n−1

n∑
i=1

X2iX
′
2i

)−1
n−1

n∑
i=1

X2iX
′
1i,

n−1X ′1M2U = n−1
n∑
i=1

X1iUi − n−1
n∑
i=1

X1iX
′
2i

(
n−1

n∑
i=1

X2iX
′
2i

)−1
n−1

n∑
i=1

X2iUi

Assume that:

• {(Yi, Xi) : i ≥ 1} are iid

• EX2
i,j <∞ for all j = 1, . . . k.

• EXiX
′
i positive definite.

• EU2
i <∞.

By the WLLN we have

n−1
n∑
i=1

X1iX
′
1i →p EX1iX

′
1i,

n−1
n∑
i=1

X1iX
′
2i →p EX1iX

′
2i,

n−1
n∑
i=1

X2iX
′
2i →p EX2iX

′
2i,

n−1
n∑
i=1

X2iUi →p 0,

n−1
n∑
i=1

X1iUi →p EX1iUi.

Thus,

n−1X ′1M2X1 →p EX1iX
′
1i − EX1iX

′
2i (EX2iX

′
2i)
−1
EX2iX

′
1i,

n−1X ′1M2U →p EX1iUi − EX1iX
′
2i (EX2iX

′
2i)
−1
EX2iUi

= EX1iUi

6= 0,

and we conclude that β̂1n is inconsistent:

β̂1n →p β1 +
(
EX1iX

′
1i − EX1iX

′
2i (EX2iX

′
2i)
−1
EX2iX

′
1i

)−1
EX1iUi

6= β1.
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Inconsistency of the OLS estimator of β2 can be shown similarly. We have

β̂2n = β2 + (X ′2M1X2)
−1
X ′2M1U,

where M1 = In −X1 (X ′1X1)
−1
X ′1. We have

β̂2n →p β2 −
(
EX2iX

′
2i − EX2iX

′
1i (EX1iX

′
1i)
−1
EX1iX

′
2i

)−1
EX2iX

′
1i (EX1iX

′
1i)
−1
EX1iUi

6= β2.

Instrumental Variables estimation
Let Z1i be a k1-vector of exogenous variables:

EZ1iUi = 0.

It is important that Z1i is excluded from the model (1), i.e. Z1i does not contain any of the elements of
X2i. Define

Xi =

(
X1i

X2i

)
,

Zi =

(
Z1i

X2i

)
.

Here, Xi is the k-vector of regressors, and Zi is the k-vector of Instrumental Variables (IVs). Note that
the exogenous regressors appear again in the vector of IVs, and for each endogenous regressor we bring an
exogenous variable (IV) that must be excluded from the model Yi = X ′iβ + Ui. When all regressors are
endogenous, k1 = k and we do not have any overlapping elements between Xi and Zi.

We assume that the IVs are informative about the regressors. This is expressed as the following rank
condition:

rank (EZiX
′
i) = k. (2)

The rank condition in (2) will fail if, for example, EZ1iX
′
i = 0 (Z1i is exogenous but random noise). The

rank condition will also fail if some of the elements of Z1i are linear combinations of the elements of the
included exogenous regressors X2i.

Example. Consider the Hours/Children example. Angrist and Evans (1998) suggested to use the sex
composition of the first two children as an instrument to the number of children in the family (the sample
was restricted to women with at least two children). This is motivated by the observation that if the first
two children are of the same sex (boy-boy or girl-girl), the family is more likely to have a third child than in
the case (boy-girl or girl-boy). Consequently, the dummy variable for the first two children are of the same
sex has to be positively correlated with the total number of children. On the other hand, the instrument is
uncorrelated with the errors, because sex composition is determined randomly.

We have that
EZiUi = 0.

The MM principle suggests an estimator that solves the following system of k equations:

n−1
n∑
i=1

Zi

(
Yi −X ′iβ̂IVn

)
= 0, or

β̂IVn =

(
n∑
i=1

ZiX
′
i

)−1 n∑
i=1

ZiYi

= (Z ′X)
−1
Z ′Y.
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The estimator β̂IVn is called the IV estimator of β.
Next, we show consistency and asymptotic normality of the IV estimator. We assume:

• {(Yi, Xi, Zi) : i ≥ 1} are iid.

• EZiUi = 0.

• EX2
i,j <∞ for all j = 1, . . . k.

• EZ2
i,j <∞ for all j = 1, . . . k1.

• EZiX ′i is of rank k.

• EU2
i ZiZ

′
i is positive definite.

Write

β̂IVn = β +

(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

ZiUi. (3)

Note that, under the above assumptions, by the Cauchy-Shwartz inequality

E |Zi,rXi,s| ≤
√
EZ2

i,rEX
2
i,s

< ∞ for all r, s = 1, . . . k.

Therefore, by the Slutsky’s Theorem,

β̂IVn →p β + (EZiX
′
i)
−1
EZiUi

= β.

In order to show the asymptotic normality, we assume in addition that

• EZ4
i,j <∞ for all j = 1, . . . k.

• EU4
i <∞.

Write (3) as

n1/2
(
β̂IVn − β

)
=

(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1/2

n∑
i=1

ZiUi.

Similarly to the results in Lecture 7, for all r, s = 1, . . . , k,

E
∣∣U2
i Zi,rZi,s

∣∣ ≤ (
EU4

i

)1/2 (
EZ4

i,rEZ
4
i,s

)1/4
< ∞.

Therefore, by the CLT and Cramer Convergence Theorem,

n1/2
(
β̂IVn − β

)
→d (EZiX

′
i)
−1
N
(
0,
(
EU2

i ZiZ
′
i

))
= N

(
0, (EZiX

′
i)
−1 (

EU2
i ZiZ

′
i

)
(EXiZ

′
i)
−1
)
.

The asymptotic covariance matrix takes the sandwich form and can be estimated consistently by(
n−1

n∑
i=1

ZiX
′
i

)−1
n−1

n∑
i=1

Û2
i ZiZ

′
i

(
n−1

n∑
i=1

XiZ
′
i

)−1
,

where Ûi = Yi −X ′iβ̂IVn .
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Weak Instruments
Consider the following regression model with a single (endogenous) regressor:

Yi = βXi + Ui.

We assume that the endogenous regressor is related to a single IV through the following equation:

Xi = πnZi + Vi,

πn =
c√
n
.

This model defines weak, but different from zero correlation between the endogenous regressor X and its
instrument Z. We will rely on large n approximation for the distribution of the estimators, and, therefore,
weakness of the relationship between X and Z has to be modelled in terms of the sample size n. This is
because any fixed (independent of n) π, will be "large" when n → ∞ as long as it is different from zero.
Therefore, we assume that πn → 0 as n→∞. The rate of convergence is chosen in a such way so that small
correlations captured by the non-zero constant c will appear in the limit. In addition, we assume that the
IV is uncorrelated with the errors U and V , and that the errors are homoskedastic (conditional on Z). The
homoskedasticity assumption is not crucial, it is made here only for simplicity.

• {(Yi, Xi, Zi) : i = 1, . . . , n} are iid.

• EZi
(
Ui
Vi

)
= 0.

• E

((
Ui
Vi

)(
Ui
Vi

)′
|Zi

)
=

(
σ2
U σUV

σUV σ2
V

)
= Σ, a finite and positive definite matrix.

• EZ2
i = Q <∞.

With above assumptions, we have that

n−1
n∑
i=1

Z2
i →p Q,

n−1/2
n∑
i=1

Zi

(
Ui
Vi

)
→d N

(
0, Q

(
σ2
U σUV

σUV σ2
V

))
≡
(

ΨU

ΨV

)
.

The results follow by the WLLN and CLT respectively. In the result above result, ΨU and ΨV denote any
bivariate normal random variables with zero means, covariance σUVQ, and variances σ2

U and σ2
V respectively.

Note that the above result gives joint convergence in distribution of n−1/2
∑n
i=1 ZiUi and n

−1/2∑n
i=1 ZiVi.

Next, the IV estimator of β is given by

β̂IVn − β =

∑n
i=1 ZiYi∑n
i=1 ZiXi

− β

=

∑n
i=1 ZiUi∑n

i=1 Zi (πnZi + Vi)

=

∑n
i=1 ZiUi

cn−1/2
∑n
i=1 Z

2
i +

∑n
i=1 ZiVi

=
n−1/2

∑n
i=1 ZiUi

cn−1
∑n
i=1 Z

2
i + n−1/2

∑n
i=1 ZiVi

→d
ΨU

cQ+ ΨV
,
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where the last result follows by the CMT and the joint convergence in distribution of n−1/2
∑n
i=1 ZiUi and

n−1/2
∑n
i=1 ZiVi. Hence, due to the weak IV problem, the IV estimator of β is not consistent, and converges

instead to a random limit. Furthermore, due to inconsistency of β̂IVn , confidence intervals and hypotheses
testing procedures based on β̂IVn are invalid (incorrect asymptotic coverage probabilities and size). Note also
that the asymptotic distribution of β̂IVn depends on unknown parameters c and Σ that cannot be consistently
estimated under these circumstances . Hence, the distribution of β̂IVn − β cannot be evaluated.

Despite the fact that consistent point estimation in this situation is impossible, it turns out that one
can still test hypotheses concerning β. This can be done with, so called, Anderson-Rubin (AR) statistic.
Consider the null hypothesis H0 : β = β0. The null restricted residuals are given by

U0,i = Yi − β0Xi.

Provided that the null hypothesis is true, we have the true residuals, and therefore

n−1
n∑
i=1

U2
0,i →p σ

2
U ,

n−1/2
n∑
i=1

ZiU0,i →d ΨU

=d N
(
0, σ2

UQ
)
.

The AR statistic is given by

ARn (β0) =
n−1/2

∑n
i=1 Zi (Yi − β0Xi)√(

n−1
∑n
i=1 U

2
0,i

)
(n−1

∑n
i=1 Z

2
i )
.

We have that under the null hypothesis,

ARn (β0)→d N (0, 1) .

(The statistic above actually is not exactly the AR statistic, but is based on the same idea. The actual AR
statistic is designed for a model with more than one IV and also allows for exogenous regressors and therefore
constructed as a quadratic form and has a chi-square asymptotic distribution under the null.) One should
reject the null in favor of alternative, say H1 : β 6= β0, if |ARn (β0)| > z1−α/2, where zτ is the τ quantile of
the standard normal distribution. Such a test will have asymptotic size α regardless the strength of the IV.
Furthermore, one can construct confidence intervals for β by collecting all values β0 for which the AR test
cannot reject the null:

CI1−α,n =
{
β0 : |ARn (β0)| ≤ z1−α/2

}
.

If the null hypothesis is false, then U0,i’s are not true residuals, but a function of Xi’s and the residuals:

U0,i = Ui + (β − β0)Xi.

If the IV Zi is related to the regressor Xi, i.e. c 6= 0, then the asymptotic distribution of the AR statistic
will be different from the standard normal, and the test will have power to reject the null. One can show
that the power of the test depends on the distance from the null |β − β0| and the strength of the IV, which is
captured by c. If c = 0, i.e. the IV is irrelevant, the AR test will have no power to reject false null hypotheses.
The test will always be rejecting the null with probability α equal to the size, regardless of the value of β
(the power function is flat and equal to the size, α, for all values of β). In this case, the confidence interval
described above will have infinite length (it will include all values β0 ∈ R).

The approach can be extended to the case of IV regression with multiple endogenous and exogenous
regressors, as well as heteroskedastic errors. However, in the case of weak IVs, in general one cannot test
hypotheses on sub-vectors of coefficients using the AR test. The reason for this is that coefficient estimators
are inconsistent, and therefore, in order to have true null restricted residuals, one has to specify the values
of all coefficients under the null.

6


