DECEMBER 8, 2008

LECTURE 9
HETEROSKEDASTICITY AND GENERALIZED LS

Generalized LS

In this lecture, we consider the same model as in Lecture 8, defined by Assumptions (Al), (A6) - (A9).
However, we will assume that

(A2**) E (U;|X;) =0

The assumption is stronger than the one we needed for consistency and asymptotic normality of the OLS.
The stronger assumption allows us to investigate the issue of efficiency in the case of heteroskedastic errors:
E (U?|X;) = 02, where 07 is a function of X;: 07 = 02 (X;).

Example: suppose that Y; ; = X/ 8+ U;; for i = 1,...,n (n industries) and j = 1,...,m; (m; firms in
the i-th industry). Assume that the observations are iid across i’s and j’s. Suppose that the econometrician
observes only the average values for the n industries: Y; Z L Yi;/mi and X; Zml X j/m;. Assume

that the errors U; ; are homoskedastic, i.e. E (U?;1X;;) = o foralli=1,...,nand j =1,...,m,;. However,
T, = Y0 Uyj/mi, and E (U X, ) = 02 /m,.

Under heteroskedasticity, the OLS estimator is consistent and asymptotically normal, however, not effi-
cient. There exists an estimator with a smaller (asymptotic) variance. Under (A2**) and (A6), E (B,L|X ) =
B (unbiased), and

1

Var (B,L|X) = (X'X)7'X'DX (X'X)"", where
o 0 ... O
D - 0 o3 ... 0
0 ... 0 o

n

Suppose further that o? = o2 (X;) is known for all i’s. The Generalized LS estimator (GLS) is defined as

~GLS
n

- (X'D7'X)'X'DY

n -1 5
(Z 0'1-2X7;X1{> ZUZQXiYi- (1)
i=1 i=1

In the case of diagonal matrix D, the GLS estimator is also called the Weighted LS estimator, since it involves
the weighted averages of X; X/ and X,Y; with the weights equal to o; . Under the assumption E (U;|X;) = 0

~GLS
and (A6), we have that 5,  is unbiased:

E (B GLS|X) = B+ (X'D'X) X' DE(UIX)
Its variance is given by

Var (BSLSLX) =

'X)"' X'D'E(UU|X) D X (X'D X))
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We will show next that Var ( |X) (BH\X) . First,
(5.
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Next,
X'D7'X - X'X (X'DX)' X'X
X'D-1/? (I _DY2x (X'DX) ! X’D1/2) DX,
Note that I — DY/2X (X'DX)~" X'DY? is a symmetric positive definite matrix, and consequently,
X'D'X > X'X (X'DX)” X'X.

The efficiency of the GLS is actually implied by the Gauss-Markov Theorem. Heteroskedasticity violates
one of the assumptions of the Gauss-Markov Theorem. However, consider the transformed model:

Yi/oi, = (Xifo))' B+ Uijo;
o= (X)) B+,

where Y;* =Y, /0;, X} = X;/o; and U} = U;/o;. The transformed residuals U;*’s are homoskedastic:

E(U*1x:) = oo}
= 1L

Therefore, by the Gauss-Markov Theorem, the BLUE is given by
n -1 5
(Lwa) Y
i=1 i=1
n -1 5
- (Z aiQXiX£> ZU;2XZ-Y;
i=1 i=1

~GLS

n

Large sample property of the GLS

We discuss consistency first. Write

n -1 5
BSLS =B+ (Z Ui2Xin{> ZU;2XlU,L
i=1

i=1
We will assume that the function o2 (X;) is bounded from below, i.e. with probability one, 02 (X;) > o2 > 0
This is to ensure that F (osziX{) does not "explode". For r,s = 1,...,k, we have E ‘U{QX“XZ',S <

0 2F|X; X s| < oo (using Assumption (A7)). By the WLLN and Slutsky’s Theorem,

n —1
<n—1 3 aiZXZ-X;> —, (Bo2X, X)) .
i=1

Next,
E(o7°X;U;)) = E(07°X;E (Uil X))
= 0’
and

n
n_l E O'i_?XiUi —p 0.
i=1



~GLS . ~GLS | . . 5 .
Therefore, 8,, —, 8 as n — oo. Note that, in general, 8,,  is not consistent under (A2*). Since o7 is a
function of X;, we cannot guarantee that F (O'Z-_QX,L'Ui) = 0 given only F (X;U;) = 0.

We show asymptotic normality next. Write

n -1 n
n1/2 (BSLS - B) = (nl ZU:2X1XZ/> n71/2 ZO’:QXZUl
i=1

=1
We have
Var (07?°X;U;) = E (07X, X/U?)
= B (o, 'X:X(E (U7]X))
= FE(0;°X;X]).
Hence,

N2 (BSLS _ 5) —q (Bo; X, X)) "' N (0, Eo; *X, X))

= N (0, (Bo7?x:x) ).

Feasible GLS

The GLS estimator is infeasible since o2

is unknown. A natural solution is to replace unknown o? in (1)
with their estimates, &\?. Suppose that o takes the following form:

)

o} = Zja, (2)

where Z; is some ¢ x 1 function of X;. Usually, it is assumed that Z; consists of products and cross-products
of the elements of X;, and a vector of constants (ones). Since 0? = E (U2-2|Xi) , We can write

U? = Zla+ v,

where F (v;|X;) = 0. The above model is called skedastic regression. Since U;’s are unobservable, one has to
use fitted residuals from the OLS regression U;’s instead in order to estimate «:

n -1 n
Gy = (Z ZiZ{> > z,U2.
i=1 i=1

One can show that &, —, «, and n'/? (a, —a) —4 N (0,V,), where V, is the same as if U? were observable.
The Feasible GLS estimator is defined as

SFGLS IA-1v) v -1
B, - (X D X) X'D;ly
n -1 5
- (Zafxxg) P ad
i=1 1=1
where
G50 ... 0
Ho| O G5 ... 0
0 0 o2
and
G; = Zjan



~FGLS
Further, one can show that 3, —p 3, and

nl/2 (gf“s — 5) —4 N (o, (EU{QXin{)_l) , (3)

the same as GLS, provided that (2) is correctly specified. The following are the steps for constructing a
FGLS estimator:

1. Obtain Bn, the OLS estimator of 5.
2. Construct U; = Y; — X{Bn
3. Regress (7,2 on Z; to obtain a,.
4. Construct 65 = Z!an,.
~FGLS

5. Compute 3,

One of the problems with the above approach is that 3? = Z!a, can be very close to zero or even negative.
There is a number of possible solution. First is truncation. Choose g2 > 0 and set 8? = max {Z{an, gQ} .
Alternatively, one can consider a nonlinear skedastic regression

o} =exp (Zla).
Then, in the 3-rd step one should regress log ﬁf on Z;, and, in step 4, generate 6; = exp (Z!ay) .

The FGLS procedure relies on two very strong assumptions. First is that the skedastic regression is
correctly specified. If it is misspecified, 8? provides only an approximation to 7. In this case, the asymptotic
variance in (3) will be of a sandwich form:

(E ((Z{a)% XiXZ{>)71 5 ((Z;oz)72 U?}QXZ{) (E ((Zga)*l XiX,L{))*l ;

and the FGLS will perform worse than OLS. Furthermore, if the assumption E (U;|X;) = 0 is violated, the
GLS and FGLS estimators are inconsistent. While the OLS estimator is less efficient under certain conditions
than FGLS, it provides more robust estimates.

Testing for heteroskedasticity

In this section, we discuss a test for Hy : 02 = o2 with probability one for all i’s against the heteroskedas-

tic alternative. If the errors are heteroskedastic, the variance of the OLS estimator is Var (Bn|X ) =

(O, X X)) T Y o2X, X! (X, X, X)) ™. Under Hy we have that, Y1 02X, X! = 023" | X, X}. The

K3
matrix X; X/ is k x k and symmetric. The number of unique elements off the main diagonal is given by

(k2 — k) /2, and the total number of unique elements is, therefore, k (k + 1) /2. Hence, the null hypothesis
imposes k (k + 1) /2 restrictions. White (1980) shows that, one can test the null by following the steps below:

1. Obtain the OLS estimator of 3, ﬁn
2. Construct fitted OLS residuals as Tj’l =Y, — XZ’B,L

3. Run the artificial skedastic regression ﬁf against all products (X3,..., X?) and the cross-products

(X1iXoi, .o, X1i X, ., Xg—1,:Xki) of the regressors. (Note that the number of regressorsis k (k + 1) /2).

For example, if the model contains an intercept, say, X1; = 1, then the artificial skedastic regression is
given by

U? = ar+asXoi+ ..+ o Xpi + a1 X5+ g1 X2 + o Xo Xai 4.+ Qk(kt1)/2Xk—1,i X ki + Vi
4. Obtain R? from the skedastic regression in step 3.

5. Reject the null of homoskedastic errors if nR? > Xi-( k41)/2° Note that the number of degrees of freedom
is given by the number of regressors in the skedastic regression including the constant.



