
DECEMBER 8, 2008

LECTURE 9
HETEROSKEDASTICITY AND GENERALIZED LS

Generalized LS

In this lecture, we consider the same model as in Lecture 8, de�ned by Assumptions (A1), (A6) - (A9).
However, we will assume that

(A2**) E (UijXi) = 0:

The assumption is stronger than the one we needed for consistency and asymptotic normality of the OLS.
The stronger assumption allows us to investigate the issue of e¢ ciency in the case of heteroskedastic errors:
E
�
U2i jXi

�
= �2i ; where �

2
i is a function of Xi: �

2
i = �

2 (Xi) :

Example: suppose that Yi;j = X 0
i;j� + Ui;j for i = 1; : : : ; n (n industries) and j = 1; : : : ;mi (mi �rms in

the i-th industry). Assume that the observations are iid across i�s and j�s. Suppose that the econometrician
observes only the average values for the n industries: Y i =

Pmi

j=1 Yi;j=mi and Xi =
Pmi

j=1Xi;j=mi: Assume
that the errors Ui;j are homoskedastic, i.e. E

�
U2i;j jXi;j

�
= �2 for all i = 1; : : : ; n and j = 1; : : : ;mi. However,

U i =
Pmi

j=1 Ui;j=mi; and E
�
U
2

i jXi

�
= �2=mi:

Under heteroskedasticity, the OLS estimator is consistent and asymptotically normal, however, not e¢ -

cient. There exists an estimator with a smaller (asymptotic) variance. Under (A2**) and (A6), E
�b�njX� =

� (unbiased); and

V ar
�b�njX� = (X 0X)

�1
X 0DX (X 0X)

�1
; where

D =

0BB@
�21 0 : : : 0
0 �22 : : : 0
: : : : : : : : : : : :
0 : : : 0 �2n

1CCA :
Suppose further that �2i = �

2 (Xi) is known for all i�s. The Generalized LS estimator (GLS) is de�ned asb�GLSn =
�
X 0D�1X

��1
X 0D�1Y

=

 
nX
i=1

��2i XiX
0
i

!�1 nX
i=1

��2i XiYi: (1)

In the case of diagonal matrixD, the GLS estimator is also called theWeighted LS estimator, since it involves
the weighted averages of XiX 0

i and XiYi with the weights equal to �
�2
i : Under the assumption E (UijXi) = 0

and (A6); we have that b�GLSn is unbiased:

E
�b�GLSn jX

�
= � +

�
X 0D�1X

��1
X 0D�1E (U jX)

= �:

Its variance is given by

V ar
�b�GLSn jX

�
=

�
X 0D�1X

��1
X 0D�1E (UU 0jX)D�1X

�
X 0D�1X

��1
=

�
X 0D�1X

��1
:

We will show next that V ar
�b�GLSn jX

�
� V ar

�b�njX� : First,
V ar

�b�GLSn jX
�
� V ar

�b�njX�, �
V ar

�b�GLSn jX
���1

�
�
V ar

�b�njX���1 :
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Next,

X 0D�1X �X 0X (X 0DX)
�1
X 0X

= X 0D�1=2
�
I �D1=2X (X 0DX)

�1
X 0D1=2

�
D�1=2X:

Note that I �D1=2X (X 0DX)
�1
X 0D1=2 is a symmetric positive de�nite matrix, and consequently,

X 0D�1X � X 0X (X 0DX)
�1
X 0X:

The e¢ ciency of the GLS is actually implied by the Gauss-Markov Theorem. Heteroskedasticity violates
one of the assumptions of the Gauss-Markov Theorem. However, consider the transformed model:

Yi=�i = (Xi=�i)
0
� + Ui=�i

Y �i = (X�
i )
0
� + U�i ;

where Y �i = Yi=�i; X
�
i = Xi=�i and U

�
i = Ui=�i: The transformed residuals U

�
i �s are homoskedastic:

E
�
(U�i )

2 jXi
�

= �2i =�
2
i

= 1:

Therefore, by the Gauss-Markov Theorem, the BLUE is given by 
nX
i=1

X�
i (X

�
i )
0
!�1 nX

i=1

X�
i Y

�
i

=

 
nX
i=1

��2i XiX
0
i

!�1 nX
i=1

��2i XiYi

= b�GLSn :

Large sample property of the GLS

We discuss consistency �rst. Write

b�GLSn = � +

 
nX
i=1

��2i XiX
0
i

!�1 nX
i=1

��2i XiUi:

We will assume that the function �2 (Xi) is bounded from below, i.e. with probability one, �2 (Xi) � �2 > 0:
This is to ensure that E

�
��2i XiX

0
i

�
does not "explode". For r; s = 1; : : : ; k, we have E

����2i Xi;rXi;s
�� �

��2E jXi;rXi;sj <1 (using Assumption (A7)). By the WLLN and Slutsky�s Theorem, 
n�1

nX
i=1

��2i XiX
0
i

!�1
!p

�
E��2i XiX

0
i

��1
:

Next,

E
�
��2i XiUi

�
= E

�
��2i XiE (UijXi)

�
= 0;

and

n�1
nX
i=1

��2i XiUi !p 0:
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Therefore, b�GLSn !p � as n !1: Note that, in general, b�GLSn is not consistent under (A2*). Since �2i is a
function of Xi; we cannot guarantee that E

�
��2i XiUi

�
= 0 given only E (XiUi) = 0.

We show asymptotic normality next. Write

n1=2
�b�GLSn � �

�
=

 
n�1

nX
i=1

��2i XiX
0
i

!�1
n�1=2

nX
i=1

��2i XiUi:

We have

V ar
�
��2i XiUi

�
= E

�
��4i XiX

0
iU

2
i

�
= E

�
��4i XiX

0
iE
�
U2i jXi

��
= E

�
��2i XiX

0
i

�
:

Hence,

n1=2
�b�GLSn � �

�
!d

�
E��2i XiX

0
i

��1
N
�
0; E��2i XiX

0
i

�
= N

�
0;
�
E��2i XiX

0
i

��1�
:

Feasible GLS

The GLS estimator is infeasible since �2i is unknown. A natural solution is to replace unknown �2i in (1)
with their estimates, b�2i : Suppose that �2i takes the following form:

�2i = Z
0
i�; (2)

where Zi is some q� 1 function of Xi: Usually, it is assumed that Zi consists of products and cross-products
of the elements of Xi; and a vector of constants (ones): Since �2i = E

�
U2i jXi

�
; we can write

U2i = Z
0
i�+ �i;

where E (�ijXi) = 0: The above model is called skedastic regression. Since Ui�s are unobservable, one has to
use �tted residuals from the OLS regression bUi�s instead in order to estimate �:

b�n =  nX
i=1

ZiZ
0
i

!�1 nX
i=1

Zi bU2i :
One can show that b�n !p �; and n1=2 (b�n � �)!d N (0; V�) ; where V� is the same as if U2i were observable.
The Feasible GLS estimator is de�ned as

b�FGLSn =
�
X 0 bD�1

n X
��1

X 0 bD�1
n Y

=

 
nX
i=1

b��2i XiX
0
i

!�1 nX
i=1

b��2i XiYi;

where

D̂ =

0BB@
b�21 0 : : : 0

0 b�22 : : : 0
: : : : : : : : : : : :

0 : : : 0 b�2n

1CCA ;
and b�2i = Z 0ib�n:
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Further, one can show that b�FGLSn !p �; and

n1=2
�b�FGLSn � �

�
!d N

�
0;
�
E��2i XiX

0
i

��1�
; (3)

the same as GLS, provided that (2) is correctly speci�ed. The following are the steps for constructing a
FGLS estimator:

1. Obtain b�n; the OLS estimator of �:
2. Construct bUi = Yi �X 0

i
b�n:

3. Regress bU2i on Zi to obtain b�n:
4. Construct b�2i = Z 0ib�n:
5. Compute b�FGLSn :

One of the problems with the above approach is that b�2i = Z 0ib�n can be very close to zero or even negative.
There is a number of possible solution. First is truncation. Choose �2 > 0 and set b�2i = max�Z 0ib�n; �2	 :
Alternatively, one can consider a nonlinear skedastic regression

�2i = exp (Z
0
i�) :

Then, in the 3-rd step one should regress log bU2i on Zi; and, in step 4, generate b�2i = exp (Z 0ib�n) :
The FGLS procedure relies on two very strong assumptions. First is that the skedastic regression is

correctly speci�ed. If it is misspeci�ed, b�2i provides only an approximation to �2i : In this case, the asymptotic
variance in (3) will be of a sandwich form:�

E
�
(Z 0i�)

�1
XiX

0
i

���1
E
�
(Z 0i�)

�2
�2iXiX

0
i

��
E
�
(Z 0i�)

�1
XiX

0
i

���1
;

and the FGLS will perform worse than OLS. Furthermore, if the assumption E (UijXi) = 0 is violated, the
GLS and FGLS estimators are inconsistent. While the OLS estimator is less e¢ cient under certain conditions
than FGLS, it provides more robust estimates.

Testing for heteroskedasticity

In this section, we discuss a test for H0 : �2i = �
2 with probability one for all i�s against the heteroskedas-

tic alternative. If the errors are heteroskedastic, the variance of the OLS estimator is V ar
�b�njX� =

(
Pn

i=1XiX
0
i)
�1Pn

i=1 �
2
iXiX

0
i (
Pn

i=1XiX
0
i)
�1
: Under H0 we have that;

Pn
i=1 �

2
iXiX

0
i = �

2
Pn

i=1XiX
0
i: The

matrix XiX 0
i is k � k and symmetric: The number of unique elements o¤ the main diagonal is given by�

k2 � k
�
=2; and the total number of unique elements is, therefore, k (k + 1) =2: Hence, the null hypothesis

imposes k (k + 1) =2 restrictions. White (1980) shows that, one can test the null by following the steps below:

1. Obtain the OLS estimator of �; b�n:
2. Construct �tted OLS residuals as bUi = Yi �X 0

i
b�n:

3. Run the arti�cial skedastic regression bU2i against all products (X2
1i; : : : ; X

2
ki) and the cross-products

(X1iX2i; : : : ; X1iXki; : : : ; Xk�1;iXki) of the regressors. (Note that the number of regressors is k (k + 1) =2).
For example, if the model contains an intercept, say, X1i = 1; then the arti�cial skedastic regression is
given bybU2i = �1+�2X2i+ : : :+�kXki+�k+1X2

2i+ : : : �2k�1X
2
ki+�2kX2iX3i+ : : :+�k(k+1)=2Xk�1;iXki+�i:

4. Obtain R2 from the skedastic regression in step 3.

5. Reject the null of homoskedastic errors if nR2 > �2k(k+1)=2: Note that the number of degrees of freedom
is given by the number of regressors in the skedastic regression including the constant.
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