
DECEMBER 21, 2010

LECTURE 8

LARGE SAMPLE PROPERTIES OF OLS, ASYMPTOTIC CONFIDENCE INTERVALS
AND HYPOTHESIS TESTING

In this lecture, we discuss large sample properties of the OLS estimator for the linear regression model
defined by the following assumptions:

(A1) Yi = X ′iβ + Ui.

(A2*) E (UiXi) = 0.

(A6) {(Yi, Xi) : i = 1, . . . , n} iid.

In addition, the large sample properties will be derived under one or more of the following assumptions:

(A7) E (XiX
′
i) is a finite positive definite matrix.

(A8) EX4
i,j <∞ for all j = 1, . . . , k.

(A9) EU4
i <∞.

(A10) EU2
i XiX

′
i is positive definite.

Consistency

The estimator β̂n is consistent for β if β̂n →p β as n→∞. Write the OLS estimator of β as

β̂n =

(
n∑
i=1

XiX
′
i

)−1 n∑
i=1

XiYi.

The following theorem gives the consistency of the OLS.

Theorem 1 Under Assumptions (A1), (A2*), (A6) and (A7), β̂n →p β as n→∞.

Proof. First, note that Ui’s and XiUi’s are iid. Write

β̂n = β +

(
n−1

n∑
i=1

XiX
′
i

)−1
n−1

n∑
i=1

XiUi. (1)

By the WLLN,1

n−1
n∑
i=1

XiUi →p E (X1U1)

= 0.
1Let X be a random variable and define

X+ = max(0, X),

X− = max(0,−X),

so that
X = X+ −X−.

Note that both X+ and X− are nonnegative random variables. When at least one of the following conditions holds: EX+ <∞
or EX− <∞, the expected value of X is given by

EX = EX+ − EX−.

The expectation EX is not defined when EX+=∞ and EX− =∞ (thus, we prohibit ∞−∞). Since

|X| = X+ +X−,

we have that E |X| <∞ if and only if EX+ <∞ and EX− <∞. When we say that EX = µ for some µ, we therefore assume
that either EX+ < ∞ or EX− < ∞ in order for EX to be defined. If µ is finite, it has to be the case that EX+ < ∞ and
EX− <∞ and, consequently, E |X| <∞.
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Since E (X1X
′
1) is finite, the WLLN implies that

n−1
n∑
i=1

XiX
′
i →p E (X1X

′
1) .

Since E (X1X
′
1) is positive definite, it follows from the Slutsky’s Theorem that(

n−1
n∑
i=1

XiX
′
i

)−1
→p (E (X1X

′
1))
−1
. (2)

Hence, (
n−1

n∑
i=1

XiX
′
i

)−1
n−1

n∑
i=1

XiUi →p 0,

and, therefore, β̂n →p β. �

Asymptotic normality

In this section, we describe the asymptotic distribution of β̂n.

Theorem 2 Under Assumptions (A1), (A2*), (A6) - (A10), n1/2
(
β̂n − β

)
→d N (0, V ) , where

V = Q−1ΩQ−1,

Q = E (X1X
′
1) ,

Ω = E
(
U2
1X1X

′
1

)
.

Proof. Re-write (1) as

n1/2
(
β̂n − β

)
=

(
n−1

n∑
i=1

XiX
′
i

)−1
n−1/2

n∑
i=1

XiUi.

Consider n−1/2
∑n
i=1XiUi. By Assumption (A2*), E (X1U1) = 0.Next, consider V ar (X1U1) = E

(
U2
1X1X

′
1

)
.

The (r, s) element of V ar (X1U1) is E
(
U2
1X1,rX1,s

)
. By the Cauchy-Schwartz inequality, and due to As-

sumptions (A8) and (A9)

E
∣∣U2

1X1,rX1,s

∣∣ ≤ (
EU4

1E
(
X2

1,rX
2
1,s

))1/2
≤

(
EU4

1

)1/2 (
EX4

1,rEX
4
1,s

)1/4
< ∞.

By the CLT

n−1/2
n∑
i=1

XiUi →d N
(
0, E

(
U2
1X1X

′
1

))
= N (0,Ω) . (3)

Finally, it follows from (2), (3) and the Cramer Convergence Theorem (multivariate extension), that(
n−1

n∑
i=1

XiX
′
i

)−1
n−1/2

n∑
i=1

XiUi →d Q
−1N (0,Ω)

= N
(
0, Q−1ΩQ−1

)
.

�
Remarks:
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1. The assumptions of the theorem allow for the conditional variance of Ui’s to depend on Xi, i.e. it is
possible that the errors Ui’s are heteroskedastic: E

(
U2
i |Xi

)
= σ2 (Xi) for some function σ2 : Rk → R.

2. The asymptotic variance-covariance matrix of β̂n is given by the "sandwich" formula

V = (E (X1X
′
1))
−1
E
(
U2
1X1X

′
1

)
(E (X1X

′
1))
−1
.

If Assumption (A3), E
(
U2
1 |X1

)
= σ2, holds, then, V simplifies to the homoskedastic variance given by

σ2 (E (X1X
′
1))
−1. First, by the LIE

E
(
U2
1X1X

′
1

)
= EE

(
U2
1X1X

′
1|X

)
= E

(
X1X

′
1E
(
U2
1 |X

))
= σ2E (X1X

′
1) .

Therefore, in this case,
Ω = σ2Q,

and

V = Q−1ΩQ−1

= σ2Q−1.

Variance-covariance matrix estimation
Given the estimator of β, construct the fitted residuals as Ûi = Yi −X ′iβ̂n.Consider the following estimator
of V implied by the MM principle:

V̂n = Q̂−1n Ω̂nQ̂
−1
n , where

Q̂n = n−1
n∑
i=1

XiX
′
i,

Ω̂n = n−1
n∑
i=1

Û2
i XiX

′
i.

We have shown above that Q̂−1n →p Q
−1. Next, consider Ω̂n and note that Ûi depends on all Ui’s, i = 1, . . . , n,

through β̂n, and, consequently, the WLLN cannot be applied directly to the averages containing Ûi. Further,
for Ω̂n, one cannot rely on properties (ii) and (iii) of the probability limits from Lecture 7, since Ω̂n has n
elements Û2

i XiX
′
i in the sum. Write

Ûi = Yi −X ′iβ̂n
= Ui −X ′i

(
β̂n − β

)
.

Therefore,

n−1
n∑
i=1

Û2
i XiX

′
i = n−1

n∑
i=1

U2
i XiX

′
i − 2R1,n +R2,n, where (4)

R1,n = n−1
n∑
i=1

((
β̂n − β

)′
XiUi

)
XiX

′
i

R2,n = n−1
n∑
i=1

((
β̂n − β

)′
Xi

)2

XiX
′
i.
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Under the Assumptions specified in Theorem 2, E
(
U2
i XiX

′
i

)
is finite, as was shown in its proof. Conse-

quently, by the WLLN,

n−1
n∑
i=1

U2
i XiX

′
i →p E

(
U2
1X1X

′
1

)
.

One can show that R1,n and R2,n converge in probability to zero (see the Appendix), and, consequently,

V̂n →p V.

The variance-covariance matrix estimator V̂n = Q̂−1n Ω̂nQ̂
−1
n relies on the sandwich formula, and, there-

fore, gives consistent estimates of the asymptotic variance of the OLS in the cases of homoskedastic or
heteroskedastic errors. It is often called robust, heteroskedasticity consistent or the White’s estimator (it
was suggested by White (1980), Econometrica). Many statistical software packages (Eviews, SAS, Stata)
can compute standard errors using the White’s estimator, however, by default they usually produce stan-
dard errors for the homoskedastic case using s2

(
n−1

∑n
i=1XiX

′
i

)−1 as an estimator (note that s2 is now a
sequence indexed by n; it is easy to show that s2 →p σ

2 = EU2
1 ).

Asymptotic confidence intervals
In this section we discuss asymptotic confidence intervals for the elements of β. Consider the following
confidence interval for the j-th element of β:

CIn,j,1−α =

[
β̂n,j − z1−α/2

√[
V̂n

]
jj
/n, β̂n,j + z1−α/2

√[
V̂n

]
jj
/n

]
,

where z1−α/2 is the (1− α/2) quantile of the standard normal distribution, and
[
V̂n

]
jj

denotes the (j, j)

element of the matrix V̂n. We will show that P (βj ∈ CIn,j,1−α)→ 1−α as n→∞. Since n1/2
(
β̂n − β

)
→d

N(0, V ), and V̂n →p V, it follows from the Slutsky’s and Cramer Convergence Theorems that

V̂ −1/2n n1/2
(
β̂n − β

)
→d V

−1/2N (0, V )

= N (0, Ik) ,

and, consequently,
√
n
(
β̂n,j − βj

)
√[

V̂n

]
jj

→d N (0, 1) ,

which can be also written as

P


√
n
(
β̂n,j − βj

)
√[

V̂n

]
jj

≤ z

→ P (Z ≤ z) for all z ∈ R,

where Z is a N(0, 1) random variable. Now,

P (βj ∈ CIn,j,1−α) = P


∣∣∣∣∣∣∣∣
√
n
(
β̂n,j − βj

)
√[

V̂n

]
jj

∣∣∣∣∣∣∣∣ ≤ z1−α/2


→ P
(
|Z| ≤ z1−α/2

)
= 1− α.
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Consider, for example, the case of homoskedastic errors. We saw that in, this case,
√
n
(
β̂n − β

)
→d

N
(

0, σ2 (E (XiX
′
i))
−1
)
. Since s2 →p σ

2, we can estimate the asymptotic variance by s2
(
n−1

∑n
i=1XiX

′
i

)−1
.

Then, the confidence interval for βj is given byβ̂n,j ± z1−α/2
√√√√√
s2(n−1 n∑

i=1

XiX ′i

)−1
jj

/n

 =

[
β̂n,j ± z1−α/2

√[
s2 (X ′X)

−1
]
jj

]
,

which is the same as the finite sample confidence interval, except for the fact that we using the standard
normal quantiles instead of the quantiles of the t-distribution.

Hypothesis testing
In this section we discuss asymptotic tests of the null hypothesis H0 : h (β) = 0 against the alternative
H1 : h (β) 6= 0, where h : Rk → Rq is a continuously differentiable function in the neighborhood of β. The
restriction under H0 includes the linear restrictions discussed in Lecture 5 as a special case (set h (β) =
Rβ − r). We consider a Wald test statistic:

Wn = nh
(
β̂n

)′ (
ÂsyV ar

(
h
(
β̂n

)))−1
h
(
β̂n

)

= nh
(
β̂n

)′∂h
(
β̂n

)
∂β′

V̂n
∂h
(
β̂n

)′
∂β


−1

h
(
β̂n

)
,

where AsyV ar denotes the asymptotic variance. The asymptotic α-size test of H0 : h (β) = 0 is given by

Reject H0 if Wn > χ2
q,1−α,

where χ2
q,1−α is the (1 − α) quantile of the χ2

q distribution. A test based on Wn is called consistent if
P
(
Wn > χ2

q,1−α|H1

)
→ 1.

Theorem 3 Under Assumptions (A1), (A2*), (A6) - (A9),

(a) P
(
Wn > χ2

q,1−α|H0

)
→ α.

(b) P
(
Wn > χ2

q,1−α|H1

)
→ 1.

Proof. (a) Since n1/2
(
β̂n − β

)
→d N (0, V ) and h is continuous at β, under H0, and by the delta method,

n1/2h
(
β̂n

)
→d N

(
0,
∂h (β)

∂β′
V
∂h (β)

′

∂β

)
.

Furthermore, we have that

∂h
(
β̂n

)
∂β′

→p
∂h (β)

∂β′
,

V̂n →p V.

By the Cramer Convergence Theorem, under H0,∂h
(
β̂n

)
∂β′

V̂n
∂h
(
β̂n

)′
∂β


−1/2

n1/2h
(
β̂n

)
→d

(
∂h (β)

∂β′
V
∂h (β)

′

∂β

)−1/2
N

(
0,
∂h (β)

∂β′
V
∂h (β)

′

∂β

)
= N (0, Iq) .
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Then, by the CMT, under H0,
Wn →d χ

2
q,

which completes the proof of part (a).
(b) Under the alternative, h(β) 6= 0. Hence, by the Slutsky’s Theorem,

h
(
β̂n

)
→p h(β)

6= 0.

Therefore,

Wn/n→p h(β)′
(
∂h (β)

∂β′
V
∂h (β)

′

∂β

)−1
h(β),

and, therefore, under H1

Wn →∞.
�

Note that in the case of a linear restriction h (β) = Rβ − r, we have that:

Wn = n
(
Rβ̂n − r

)′ (
RV̂nR

′
)−1 (

Rβ̂n − r
)
.

Further, in the homoskedastic case, one can replace V̂n by s2 (X ′X/n)
−1
. Then, the Wald statistic becomes

Wn =
(
Rβ̂n − r

)′ (
s2R (X ′X)

−1
R′
)−1 (

Rβ̂n − r
)
,

which is a similar expression to that of the F statistic, except for adjustment to the number of degrees of
freedom q in the numerator.

Appendix
In this section we show that R1,n and R2,n in equation (4) converge in probability to zero. The proof requires
the use of the Holder’s inequality.

Holder’s Inequality. Let X and Y be two random variables. If p > 1, q > 1 and 1/p + 1/q = 1, then
E |XY | ≤ (E |X|p)1/p (E |Y |q)1/q . For p = q = 2 one obtains the Cauchy-Schwartz inequality.

Element-by-element convergence in probability to zero is equivalent to convergence of norms to zero in
probability. The norm of a matrix A is given by

‖A‖ = (tr (A′A))
1/2

=

∑
i

∑
j

a2ij

1/2

,

where aij is the (i, j) element of A. For R1,n,∥∥∥∥∥n−1
n∑
i=1

((
β̂n − β

)′
XiUi

)
XiX

′
i

∥∥∥∥∥ ≤ n−1
n∑
i=1

∥∥∥∥((β̂n − β)′XiUi

)
XiX

′
i

∥∥∥∥
= n−1

n∑
i=1

tr

(
U2
i

((
β̂n − β

)′
Xi

)2

XiX
′
iXiX

′
i

)1/2

= n−1
n∑
i=1

|Ui|
∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ ‖Xi‖ tr (XiX
′
i)

1/2

= n−1
n∑
i=1

|Ui|
∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ ‖Xi‖2 .
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By the Cauchy-Schwartz inequality, ∣∣∣∣(β̂n − β)′Xi

∣∣∣∣ ≤ ∥∥∥β̂n − β∥∥∥ ‖Xi‖ .

Therefore,

‖R1,n‖ ≤
∥∥∥β̂n − β∥∥∥n−1 n∑

i=1

|Ui| ‖Xi‖3 .

By the Holder’s inequality with p = 4 and q = 4/3,

E
(
|U1| ‖X1‖3

)
≤

(
E |U1|4

)1/4 (
E ‖X1‖4

)3/4
< ∞,

since by Assumption (A9) we have that E |U1|4 <∞, and

E ‖X1‖4 = E

(
k∑
r=1

X2
1,r

)2

(5)

=

k∑
r=1

k∑
s=1

E
(
X2

1,rX
2
1,s

)
,

where E
(
X2

1,rX
2
1,s

)
< ∞ due to Assumption (A8), as it was shown in the proof of Theorem 2. Hence, by

the WLLN,

n−1
n∑
i=1

|Ui| ‖Xi‖3 →p E
(
|U1| ‖X1‖3

)
,

and since
∥∥∥β̂n − β∥∥∥→p 0, we have that R1,n →p 0.

Next, consider R2,n. By the similar argument to the one before, we can bound R2,n by∥∥∥∥∥n−1
n∑
i=1

((
β̂n − β

)′
Xi

)2

XiX
′
i

∥∥∥∥∥ ≤ n−1
n∑
i=1

((
β̂n − β

)′
Xi

)2

‖Xi‖ tr (XiX
′
i)

1/2

=
∥∥∥(β̂n − β)∥∥∥2 n−1 n∑

i=1

‖Xi‖4 .

From (5) and by the WLLN,

n−1
n∑
i=1

‖Xi‖4 →p E ‖X1‖4 ,

and, therefore, R2,n →p 0.
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