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PROPERTIES OF R
2
, MODEL MISSPECIFICATION, TEST OF STRUCTURAL

CHANGE, DUMMY VARIABLES, FORECASTS

Properties of R2

In this section, we will show that, when adding new regressors, R
2
will rise/fall if the F -statistic associated

with the added regressors is greater/less than 1, regardless of the number of the regressors added. Consider
the unrestricted (k + q) regression model and restricted model with only k regressors:

Unrestricted: Yi = β1Xi1 + . . .+ βkXik + βk+1Xi,k+1 . . .+ βk+qXi,k+q + Ui,

Restricted: Yi = β1Xi1 + . . .+ βkXik + Ui.

where q ≥ 1. Let RSS and RSSr denote unrestricted and restricted Residual Sum-of-Squares respectively.
The corresponding adjusted coefficients of determination are given by
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The desired results follows because
(RSSr −RSS) /q
RSS/(n− k − q)

is the F -statistic associated with the null

H0 : βk+1 = . . . = βk+q = 0.

For comparison, the critical values of F -distribution exceed 1. Consequently, model selection based on the
adjusted coefficient determination can lead to inclusion of irrelevant regressors.

Model misspecification

Exclusion of relevant regressors
Suppose that the true model is given by

Y = X1β1 +X2β2 + U, (1)
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where X1 is n×k1, X2 is n×k2, β2 6= 0, and the Assumptions (A1)-(A5) are satisfied with X =
(
X1 X2

)
.

Suppose that the econometrician runs a regression of Y on X1 alone, either because X2 is unavailable, or
because he does not know that it should be included.

First, we study properties of the LS estimator of β1:

β̃1 = (X ′1X1)
−1
X ′1Y

= (X ′1X1)
−1
X ′1 (X1β1 +X2β2 + U)

= β1 + (X ′1X1)
−1
X ′1X2β2 + (X ′1X1)

−1
X ′1U.

By Assumption (A2),
E
(
β̃1|X

)
= β1 + (X ′1X1)

−1
X ′1X2β2. (2)

In this case, the LS estimator of β1 is biased, with the bias given by (X ′1X1)
−1
X ′1X2β2. The bias term

disappears if X1 and X2 are orthogonal with probability 1, i.e.

P (X ′1X2 = 0) = 1.

Next, consider the conditional variance of β̃1. Due to (2) and Assumption (A3),

V ar
(
β̃1|X

)
= (X ′1X1)

−1
X ′1E (UU ′|X)X1 (X

′
1X1)

−1

= σ2 (X ′1X1)
−1
.

Compare that to the variance of β̂1, the LS estimator of β1 from the regression that includes both X1 and
X2 :

V ar
(
β̂1|X

)
= σ2 (X ′1M2X1)

−1
,

where M2 = In − P2, and P2 = X2 (X
′
2X2)

−1
X ′2. Consider first the difference

X ′1X1 −X ′1M2X1 = X ′1P2X1

≥ 0.

The inequality follows because P2 is symmetric and idempotent and therefore positive semi-definite. Conse-
quently,

(X ′1X1)
−1 − (X ′1M2X1)

−1 ≤ 0,

and
V ar

(
β̃1|X

)
− V ar

(
β̂1|X

)
≤ 0.

Thus, the variance increases with the number of regressors.
Under Assumption (A5), we obtain that

β̃1|X ∼ N
(
β1 + (X ′1X1)

−1
X ′1X2β2, σ

2 (X ′1X1)
−1
)
.

Next, we study the effect of misspecification on s2, the estimator of σ2. In this case,

s2 =
Y ′M1Y

n− k1
,

where k1 is the number of columns in X1, and M1 = In −X1 (X
′
1X1)

−1
X ′1. Since the true model is (1),

s2 =
(X1β1 +X2β2 + U)

′
M1 (X1β1 +X2β2 + U)

n− k1
,
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and

E
(
s2|X

)
= E

(
U ′M1U

n− k1
|X
)
+ 2E

(
U ′M1X2β2
n− k1

|X
)
+
β′2X

′
2M1X2β2
n− k1

= σ2 +
β′2X

′
2M1X2β2
n− k1

≥ σ2.

The bias remains, even if X1 and X2 are orthogonal, since in this case M1X2 = X2.
One of the consequences of exclusion of relevant variables is that tests and confidence intervals are invalid.

Inclusion of irrelevant variables
Suppose that the true model is given by

Y = X1β1 + U,

however, the econometrician includes X2 as well, and estimates β1 by

β̃1 = (X ′1M2X1)
−1
X ′1M2Y.

In this case, the LS estimator is unbiased under Assumption (A2):

E
(
β̃1|X

)
= E

(
(X ′1M2X1)

−1
X ′1M2 (X1β1 + U) |X

)
= β1 + (X ′1M2X1)

−1
X ′1M2E (U |X)

= β1.

Under Assumption (A3), its variance is given by the usual formula

V ar
(
β̃1|X

)
= σ2 (X ′1M2X1)

−1
.

However, β̃1 is inefficient, due to the Gauss-Markov Theorem. As we have seen in the previous section, the
variance increases with the number of regressors. Under Assumption (A5), we have

β̃1|X ∼ N
(
β1, σ

2 (X ′1M2X1)
−1
)
.

Next, consider s2. In this case,

s2 =
Y ′MXY

n− k1 − k2
,

where MX = In −X (X ′X)
−1
X ′. Since MXX1 = 0, it follows that

s2 =
U ′MXU

n− k1 − k2
,

and
E
(
s2|X

)
= σ2.

Naturally, the usual tests and confidence intervals remain valid in the case of inclusion of irrelevant
variables. However, the confidence regions for β1 will be larger and tests less powerful comparing to the
correctly specified equation. The discussion in the last two section that for model selection purpose, one
should start with the most general model, and eliminate irrelevant regressors by applying F -tests.
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Test of structural change
Suppose that there are two regression models representing, for example, observations in two countries or in
two different time periods:

Y1 = X1β1 + U1,

Y2 = X2β2 + U2,

where X1 is n1 × k, X2 is n2 × k and n1 + n2 = n. In this case, (Y1, X1) and (Y2, X2) composed of
observations for the same dependent variable and regressors for two different sub-samples. One can ask
whether the response of the dependent variable to changes in the regressor differs in the two sub-samples by
testing

H0 : β1 = β2. (3)

In order to combine two equations into a single equation, it is convenient to define

Y =

(
Y1
Y2

)
,

U =

(
U1

U2

)
,

X =

(
X1 0
0 X2

)
,

β =

(
β1
β2

)
.

Using the above definitions, the unrestricted model can be written as

Y = Xβ + U, (4)

which is a usual linear regression model. We assume that (4) satisfies Assumptions (A1)-(A5). In this
framework, the restrictions given in (3) can be written as

Rβ =
(
Ik −Ik

)( β1
β2

)
= 0.

Note that in this case,

(X ′X)
−1

=

(
X ′1X1 0

0 X ′2X2

)−1
=

(
(X ′1X1)

−1
0

0 (X ′2X2)
−1

)
.

Consequently,

MX = In −
(
X1 0
0 X2

)(
(X ′1X1)

−1
0

0 (X ′2X2)
−1

)(
X ′1 0
0 X ′2

)
= In −

(
X1 (X

′
1X1)

−1
X ′1 0

0 X2 (X
′
2X2)

−1
X ′2

)
=

(
In1
−X1 (X

′
1X1)

−1
X ′1 0

0 In2
−X2 (X

′
2X2)

−1
X ′2

)
=

(
M1 0
0 M2

)
.
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Now, the unrestricted RSS are given by the sum of RSS’s from two separate regressions:

Û ′Û = Y ′MXY

=

(
Y1
Y2

)′(
M1 0
0 M2

)(
Y1
Y2

)
= Y ′1M1Y1 + Y ′2M2Y2

= RSS1 +RSS2.

Note that there are 2k regression slope coefficients in the unrestricted model.
Next, the restricted model can be written as(

Y1
Y2

)
=

(
X1

X2

)
β1 +

(
U1

U2

)
. (5)

Therefore, the restricted RSS must be obtained by pulling together the two sub-samples. Define

Xr =

(
X1

X2

)
,

and
Mr = In −Xr (X

′
rXr)

−1
X ′r.

The restricted RSS are given by
RSSr = Y ′MrY.

Therefore, the test of no structural changed is based on the following statistic:

F =
(RSSr −RSS1 −RSS2) /k

(RSS1 +RSS2) / (n− 2k)
.

One rejects the null of no structural change when

F > Fk,n−2k,1−α.

Dummy variables
Frequently in regression analysis the econometrician is interested in the effect of the variables that are
qualitive and cannot be quantified in a usual way. For example, one may be interested in studying the effects
of sex, marital status, race, religion on other economic variables such as income or education. A common
approach to quantifying such variables is to introduce artificial variables that indicate if a particular quality
is present. Supposed that a qualitive has m categories. For observations i = 1, . . . , n, define the dummy
variables dij , j = 1, . . . ,m such that

dij =

{
1, if observation i belongs to the category j,
0, otherwise.

For example, let Yi be the salary of individual i, and

di1 =

{
1, if male,
0, if female,

di2 =

{
1, if female,
0, if male.

Consider the regression
Yi = α1di1 + α2di2 +X ′iβ + Ui,
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where Xi is the vector of other regressors such as years of schooling, experience and etc. In this case, α1 and
α2 give the starting salary for men and women respectively. Alternatively, one may consider the following
specification:

Yi = α0 + α1di1 +X ′iβ + Ui.

In this case, the starting salary for women is α0, and the starting salary for men is α0 + α1. The coefficient
α1 gives the difference in starting salaries between male and female workers. One can test whether their
starting salaries differ by testing the hypothesis α1 = 0.

Note that in the above example one cannot include the intercept and both dummy variables, since for all
i’s

di1 + di2 = 1,

which violates Assumption (A4). The general rule is that if a categorical variable has m categories, include
m dummy and no intercept, or m− 1 variables with an intercept.

One may also allow for the effect of other regressors Xi to be different across categories. In the above
example, this can be modelled by including the interaction term of Xi with the dummy variable di1:

Yi = α0 + α1di1 +X ′iβ + (di1X)
′
δ + Ui.

Now the marginal effect of Xi is β for women and β+ δ for men. One can test whether the model is different
for men and women by testing H0 : α1 = 0, δ = 0.

Consider the test for structural change discussed in the previous section. Define

di =

{
0 for i = 1, . . . n1,
1 for i = n1 + 1, . . . , n,

One can write the model for i = 1, . . . , n as

Yi = X ′iβ1 + (diXi)
′
δ + Ui,

or equivalently, (
Y1
Y2

)
=

(
X1

X2

)
β1 +

(
0
X2

)
δ +

(
U1

U2

)
. (6)

In this case, β2 = β1 + δ, and the test of no structural change is equivalent to testing H0 : δ = 0. In order
to show that the two approaches, with and without dummy variables, are equivalent, it is sufficient to show
that the matrix of regressors in (4), (

X1 0
0 X2

)
,

spans the same linear space as that in (6) (
X1 0
X2 X2

)
.

Forecasts
Consider again the classical normal linear regression model defined by Assumptions (A1)-(A5):

Yi = X ′iβ + Ui.

In this section, we discuss forecasting the dependent variable Yi given some fixed k-vector of values for the
regressors xf , and construction of confidence intervals for such forecasts. Let β̂ be the LS estimator of β
based on the data {(Yi, Xi) : i = 1, . . . , n} . Note that xf may or may not be one of the realized values for
the regressors in the observed sample. Since

E (Yi|Xi = xf ) = x′fβ,
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it is natural to estimate the conditional expectation of the dependent variable, E (Yi|Xi = xf ) , by

Ŷf = x′f β̂. (7)

Note that Ŷf is the predicted value of a point on the regression line. Since xf is fixed, Ŷf random only due
to the randomness in β̂. Using the results for β̂, we obtain

Ŷf |X ∼ N
(
x′fβ, σ

2x′f (X
′X)
−1
xf

)
.

The a-level confidence interval for the point on the regression line that corresponds to xf is given by

x′f β̂ ± tn−k,1−α/2
√
s2x′f (X

′X)
−1
xf .

Next, consider predicting a point off the regression line. Define

Yf = x′fβ + Uf ,

where (n+ 1)-vector (U ′, Uf )
′ satisfies (

U
Uf

)
|X ∼ N

(
0, σ2In+1

)
. (8)

Since Uf is not predictable from X, the predicted value of Yf is given by (7). Next, the forecasting error is
given by

Ûf = Yf − x′f β̂

= Uf − x′f
(
β̂ − β

)
.

The result in (8) implies that
Ûf |X ∼ N

(
0, σ2 + σ2x′f (X

′X)
−1
xf

)
.

Therefore, the α-level confidence interval for the predicted value of Yf is given by

x′f β̂ ± tn−k,1−α/2
√
s2
(
1 + x′f (X

′X)
−1
xf

)
.
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