
November 23, 2020

LECTURE 5

HYPOTHESIS TESTING

Basic concepts
In this lecture we continue to discuss the normal classical linear regression defined by Assumptions (A1)-(A5).
Let θ ∈ Θ ⊂ Rd be a parameter of interest. Some examples of θ include:

• The coefficient of one of the regressors: θ = β1, d = 1, Θ = R

• A vector of coefficients: θ = (β1, . . . , βl)
′, d = l, Θ = Rl.

• The variance of errors: θ = σ2, d = 1, Θ = R++.

A statistical hypothesis is an assertion about θ. Usually, we have two competing hypotheses, and we want
to draw a conclusion, based on the data, as to which of the hypotheses is true. Let Θ0 ⊂ Θ and Θ1 ⊂ Θ
such that Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 = Θ. The two competing hypotheses are:

• Null hypothesis H0 : θ ∈ Θ0. This is a hypothesis that is held as true, unless data provides sufficient
evidence against it.

• Alternative hypothesis H1 : θ ∈ Θ1. This is a hypothesis against which the null is tested. It is held to
be true if the null is found false.

The subsets Θ0 and Θ1 are chosen by the econometrician and therefore are known. Usually, the econometri-
cian has to carry the "burden of proof," and the case that he is interested in is stated as H1.

Note that the two hypotheses, H0 and H1 must be disjoint. Their union defines the maintained hypoth-
esis, i.e. the space of values that θ can take. For example, when Θ = R, one may consider Θ0 = {0}, and
Θ1 = R \ {0}. Another example is Θ0 = (−∞, 0] and Θ1 = (0,∞).

When Θ0 has exactly one element (Θ0 is a singleton), we say that H0 : θ ∈ Θ0 is a simple hypothesis.
Otherwise, we say that H0 is a composite hypothesis. Similarly, H1 : θ ∈ Θ1 can be simple or composite
depending on whether Θ1 is a singleton or not.

The econometrician has to choose between H0 and H1. The decision rule that leads the econometrician
to accept or reject H0 is based on a test statistic, which is a function of data (X and Y in the case of a
regression model). Let S ∈ S denote a statistic and the range of its values. A decision rule is defined by
a partition of S into acceptance region A and rejection (critical) region R. Note that the acceptance and
rejection regions must be disjoint (A∩R = ∅), and their union must be equal to the range of possible values
for S (A∪R = S). One rejects H0 when the test statistic falls into the rejection region: S ∈ R. Thus, tests
can be described by their decision rules: Reject H0 when S ∈ R.

There are two types of errors that the econometrician can make:

• Type I error is the error of rejecting H0 when H0 is true.

• Type II error is the error of accepting H0 when H1 is true.

The probabilities of Type I and II errors can be described using the so-called power function. Consider a
test based on S that rejects H0 when S ∈ R. The power function of this test is defined as:

π(θ) = Pθ(S ∈ R),

where Pθ(·) denotes that the probability must be calculated under the assumption that the true value of the
parameter is θ. Thus, a power function of a test gives the probability of rejecting H0 for every possible value
of θ. The largest probability of Type I error (rejecting H0 when it is true) is

sup
θ∈Θ0

π(θ) = sup
θ∈Θ0

Pθ(S ∈ R). (1)
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The expression above is also called the size of a test. When H0 is simple, i.e. Θ0 = {θ0}, the size can be
computed simply as π(θ0) = Pθ0(S ∈ R).

The probability of Type II error (accepting H0 when it is false) is:

1− π(θ) = 1− Pθ(S ∈ R) for θ ∈ Θ1. (2)

Typically, Θ1 has many elements, and therefore the probability of Type II error depends on the true value θ.
One would like to have the probabilities of Type I and II errors to be as small as possible, but unfortunately,
they are inversely related as is apparent from (1) and (2). To reduce the probability of Type I error (falsely
rejecting H0), one should make R smaller. This, however, will increase the probability of Type II error.

By convention, a valid test must control the size (probability of Type I error). This is consistent with
the idea that the econometrician must carry the burden of proof (recall that the econometrician must state
his preferred hypothesis as H1).

Definition. A test with power function π(θ) is said to be a level α test if supθ∈Θ0
π(θ) ≤ α. We say it is a

size α test if supθ∈Θ0
π(θ) = α.

Note that size α tests are level α tests. We consider a test to be valid if it is a level α test for some
pre-chosen α ∈ (0, 1), where α is called the significance level of a test. Typically, the significance level is
chosen to be a small number close to zero: for example, α = 0.01, 0.05, 0.10.

The following are the steps of hypothesis testing:

1. Specify H0 and H1.

2. Choose the significance level α.

3. Define a decision rule (a test statistic and a rejection region) so that the resulting test is a level α test.

4. Perform the test.

The decision depends on significance levels. It is easier to reject the null for larger values of α, since they
correspond to larger rejection regions. Given data, the smallest significance level at which the null can be
rejected a test is called the p-value. Instead of reporting test outcomes (accept or reject) for some specific
α, it is also common to report p-values:

1. Specify H0 and H1.

2. Define a test.

3. Compute the p-value.

4. H0 is rejected for all values of α that greater than the p-value.

The power of a test with power function π(θ) is defined as

π(θ) for θ ∈ Θ1.

Given two level α tests, we should prefer a more powerful test. We say that a level α test with power
function π1(θ) is uniformly more powerful than a level α test with power function π2(θ) if π1(θ) ≥ π2(θ) for
all θ ∈ Θ1. As we will be apparent from the next section, tests that are based on estimators with smaller
variances are typically result in uniformly more powerful tests.
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Testing a hypothesis about a single coefficient
Consider the partitioned regression discussed in Lecture 4:

Y = β1X1 +X2β2 + U,

where X1 is the n × 1 vector of the observations of the first regressor. Assume that the variance of the
disturbances σ2 is known. Let β̂1 be the LS estimator of β1. Suppose, we want to test

H0 : β1 = β1,0,

H1 : β1 6= β1,0. (3)

Confidence intervals and hypothesis testing are closely related. In fact, a decision rule for a α-level test
can be based on the CI1−α. The 1− α level confidence interval for β1 is

CI1−α =

[
β̂1 − z1−α/2

√
σ2/ (X ′1M2X1), β̂1 + z1−α/2

√
σ2/ (X ′1M2X1)

]
.

Consider the following test:
Reject H0 if β1,0 /∈ CI1−α.

The critical region in this case is given by the complement of the CI1−α. Thus, we reject if

β1,0 < β̂1 − z1−α/2

√
σ2/ (X ′1M2X1), or

β1,0 > β̂1 + z1−α/2

√
σ2/ (X ′1M2X1).

Equivalently, we reject if ∣∣∣∣∣ β̂1 − β1,0√
σ2/ (X ′1M2X1)

∣∣∣∣∣ > z1−a/2. (4)

Such a test is called two-sided since, under the alternative, the true value of β1 may be smaller or larger
than β1,0.

The expression on the left-hand side is a test statistic. In order to compute the probability to reject the
null, let’s assume that the true value is given by β1. Write

β̂1 − β1√
σ2/ (X ′1M2X1)

+
β1 − β1,0√

σ2/ (X ′1M2X1)
. (5)

We have that
β̂1 − β1,0√

σ2/ (X ′1M2X1)
|X ∼ N

(
β1 − β1,0√

σ2/ (X ′1M2X1)
, 1

)
If the null hypothesis is true then β1 − β1,0 = 0, and the test statistic has a standard normal distribution.
In this case, by the definition of z1−a/2,

P (Reject H0|X,H0 is true) = P

(∣∣∣∣∣ β̂1 − β1√
σ2/ (X ′1M2X1)

∣∣∣∣∣ > z1−a/2 | X

)
= α.

Thus, the suggested test has the correct size α. If the null hypothesis is false, the distribution of the test
statistic is not centered around zero, and we will see rejection rates higher than α.
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The probability to reject is a function of the true value β1 and depends on the magnitude of the second
term in (5), |β1 − β1,0| /

√
σ2/ (X ′1M2X1). For example, suppose that

β1,0 = 0,√
σ2/ (X ′1M2X1) = 1,

α = 0.05, (and z1−α/2 = 1.96).

Let Z ∼ N (0, 1) . In this case, the power function of the test is

π (β1) = P

(∣∣∣∣∣ β̂1 − β1,0√
σ2/ (X ′1M2X1)

∣∣∣∣∣ > z1−a/2 | X

)

= P

(∣∣∣∣∣ β̂1 − β1 + β1 − β1,0√
σ2/ (X ′1M2X1)

∣∣∣∣∣ > 1.96 | X

)
= P (|Z + β1| > 1.96)

= P (Z < −1.96− β1) + P (Z > 1.96− β1) .

For example,

π (β1) =


0.52 for β1 = −2,
0.17 for β1 = −1,
0.05 for β1 = 0,
0.17 for β1 = 1,
0.52 for β1 = 2.

In this case, the power function is minimized at β1 = β1,0, where π (β1) = α.
For p-value calculation, consider the following example. Suppose that given the data, the test statistic

in (4) is equal 1.88. For the standard normal distribution, P (Z > 1.88) = 0.03. Therefore, the p-value for a
two-sided test is 0.06. One would reject the null for all tests with significance level higher than 0.06.

In the case of unknown σ2, one can test (3) by considering the t-statistic:

T =
β̂1 − β1,0√

s2/ (X ′1M2X1)
(6)

=
β̂1 − β1,0√
V̂ ar

(
β̂1|X

) .
The test is given by the following decision rule:

Reject H0 if |T | > tn−k,1−α/2.

Equation (4) in Lecture 4 implies then that, under H0, P
(
|T | > tn−k,1−α/2|X,H0 is true

)
= α.

One can also consider one-sided tests. In the case of one-sided tests, the null and alternative hypotheses
may be specified as

H0 : β1 ≤ β1,0,

H1 : β1 > β1,0.

Note that in this case, both H0 and H1 are composite, and the probability of rejection varies not only across
the values of β1 specified under H1 but also across H0. In this case, a valid test should satisfy the following
condition:

sup
β1≤β1,0

P (reject H0|X,β1) ≤ α, (7)
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i.e. the maximum probability to reject H0 when it is true should not exceed α. Let T be as defined in (6)
and consider the following test (decision rule):

Reject H0 when T > tn−k,1−α.

Under H0, we have:

P (reject H0|β1 ≤ β1,0) = P (T > tn−k,1−α|X,β1 ≤ β1,0)

= P

(
β̂1 − β1,0√

s2/ (X ′1M2X1)
> tn−k,1−α|X,β1 ≤ β1,0

)

≤ P

(
β̂1 − β1√

s2/ (X ′1M2X1)
> tn−k,1−α|X,β1 ≤ β1,0

)
(since β1 ≤ β1,0)

= α (since
β̂1 − β1√

s2/ (X ′1M2X1)
|X ∼ tn−k).

Thus, the size control condition (7) is satisfied. Note, since this is a one-sided test, the probability of type I
error is assigned only to the right tail of the distribution.

Testing a single linear restriction
Consider the normal Gaussian regression model defined by Assumptions (A1)-(A5)

Y = Xβ + U.

Suppose we want to test

H0 : c′β = r,

H1 : c′β 6= r.

In this case, c is a k-vector, r is a scalar, and under the null hypothesis

c1β1 + . . .+ ckβk − r = 0.

For example, by setting c1 = 1, c2 = −1, c3 = . . . = ck = 0, and r = 0 one can test the hypothesis that
β1 = β2.

We have that the OLS estimator of β

β̂|X ∼ N
(
β, σ2 (X ′X)

−1
)
. (8)

Then,
c′β̂ − c′β√

σ2c′ (X ′X)
−1
c
|X ∼ N (0, 1) .

Therefore, under H0,

c′β̂ − r√
σ2c′ (X ′X)

−1
c
|X ∼ N (0, 1) . (9)

Consider the t-statistic

T =
c′β̂ − r√

s2c′ (X ′X)
−1
c

=

 c′β̂ − r√
σ2c′ (X ′X)

−1
c

 /

√
U ′MXU

σ2
/(n− k).
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Under H0, the result in (9) holds. Further, conditional on X,

U ′MXU/σ
2|X ∼ χ2

n−k and independent of β̂. (10)

Therefore, under H0,
T |X ∼ tn−k.

Thus, the significance level α two-sided test of H0 : c′β = r is given by

Reject H0 if |T | > tn−k,1−α/2.

By setting the j-th element of c, cj = 1 and the rest of the elements of equal c to zero, one obtains the
test discussed in the previous section:

H0 : βj = r,
H1 : βj 6= r.

One rejects H0 if

|T | =

∣∣∣∣∣∣∣∣
β̂j − r√

s2
[
(X ′X)

−1
]
jj

∣∣∣∣∣∣∣∣
> tn−k,1−α/2,

Where
[
(X ′X)

−1
]
jj

denotes the element (j, j) of the matrix (X ′X)
−1
.

Testing multiple linear restrictions
Suppose we want to test

H0 : Rβ = r,

H1 : Rβ 6= r,

where R is a q × k matrix and r is a q-vector. For example,

• R = Ik, r = 0. In this case, we test that β1 = . . . = βk = 0.

• R =

(
1 1 0 0 . . . 0
0 0 1 0 . . . 0

)
, r =

(
1
0

)
. In this case, H0 : β1 + β2 = 1, β3 = 0.

Consider the F -statistic
F =

(
Rβ̂ − r

)′ (
s2R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
/q.

We show next that under H0,
F |X ∼ Fq,n−k. (11)

First, it follows from (8),
Rβ̂|X ∼ N

(
Rβ, σ2R (X ′X)

−1
R′
)
.

Then, under H0,

Rβ̂ − r|X ∼ N
(

0, σ2R (X ′X)
−1
R′
)
.

Further, by Lemma 2 in Lecture 4,(
Rβ̂ − r

)′ (
σ2R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
∼ χ2

q.
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The result in (11) follows because of (10) and the definition of F -distribution. Therefore, the test is given
by

Reject H0 if F =
(
Rβ̂ − r

)′ (
s2R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
/q

> Fq,n−k,1−α.

Restricted OLS
An alternative approach to hypothesis testing is based on restricted estimation. One might consider the loss
of fit resulting choosing some other than β̂ values for the regression coefficients. Consider the restricted LS
problem

min
b

(Y −Xb)′ (Y −Xb) s.t. Rb = r.

A Lagrangian function for this problem is

L(b, λ) = (Y −Xb)′ (Y −Xb) + 2λ′ (Rb− r) ,

where λ is a q-vector. Let β̃, λ̃ be the solution, where β̃ is the restricted LS estimator. It has to satisfy the
first-order conditions

∂L
(
β̃, λ̃

)
∂b

= 2X ′Xβ̃ − 2X ′Y + 2R′λ̃ = 0, (12)

∂L
(
β̃, λ̃

)
∂λ

= Rβ̃ − r = 0. (13)

From (12),

β̃ = (X ′X)
−1
(
X ′Y −R′λ̃

)
= β̂ − (X ′X)

−1
R′λ̃.

Combining the last equation with (13),

r = Rβ̃

= Rβ̂ −R (X ′X)
−1
R′λ̃,

and
λ̃ =

(
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
.

Therefore, the restricted LS estimator is given by

β̃ = β̂ − (X ′X)
−1
R′
(
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
.

Let’s define the restricted residuals

Ũ = Y −Xβ̃

=
(
Y −Xβ̂

)
+X (X ′X)

−1
R′
(
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)

= Û +X (X ′X)
−1
R′
(
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
,
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where Û is the vector of unrestricted residuals. Consider the restricted Residual Sum of Squares:

RSSr = Ũ ′Ũ

= Û ′Û +
(
Rβ̂ − r

)′ (
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)

+2Û ′X (X ′X)
−1
R′
(
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)

= RSS +
(
Rβ̂ − r

)′ (
R (X ′X)

−1
R′
)−1 (

Rβ̂ − r
)
,

where RSS = Û ′Û denotes the unrestricted Residual Sum of Squares. Since s2 = Û ′Û/(n−k), the F -statistic
discussed in the previous section can be written as

F =
(RSSr −RSS) /q

RSS/(n− k)
. (14)

Examples:

1. Model significance. Consider a model with the intercept

Yi = β1 + β2Xi2 + . . .+ βkXik + Ui,

Consider the null hypothesis H0 : β2 = . . . = βk = 0. The restricted model is given by

Yi = β1 + Ui.

In this case, the restricted LS estimator is β̃1 = n−1
∑n
i=1 Yi = Y , andRSSr = TSS =

∑n
i=1

(
Yi − Y

)2
.

In this case,

F =
(TSS −RSS) /(k − 1)

RSS/(n− k)

=
ESS/(k − 1)

RSS/(n− k)

=
R2/(k − 1)

(1−R2) /(n− k)

∼ Fk−1,n−k.

2. Consider the model
Yi = β1 + β2Xi2 + β3Xi3 + Ui,

and the null hypothesis H0 : β2 = β3. The restricted model is given by

Yi = β1 + β2 (Xi2 +Xi3) + Ui.

Thus, in order to test whether β2 = β3, one may construct the new variable Wi = (Xi2 +Xi3) ,
compute RSSr by taking the RSS from the regression of Yi on a constant and Wi, compute RSS from
the unrestricted regression, and construct the F -statistic according to (14).
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