LECTURE 4

CONFIDENCE INTERVALS

In this lecture we consider the normal regression model defined by Assumptions (A1)-(A5).

The point estimator $\hat{\beta}$ of the vector of parameters β is not very informative, since $P(\hat{\beta} = \beta) = 0$. In this lecture, we consider construction of *random* intervals or regions with the property that they include the true parameter with some specified probability $1 - \alpha$, where α is a small number $(1 - \alpha)$ is called *confidence level*). Usually, the following values of α are considered: 0.01, 0.05, 0.10. A confidence interval with *coverage* probability $1 - \alpha$ is denoted by CI_{1-a} .

Scalar case

Suppose that we are interested in constructing a confidence interval for β_1 , the first element of β . The partitioned regression is given by

$$
Y = \beta_1 X_1 + X_2 \beta_2 + U,
$$

where, in this case, X_1 is a $n \times 1$ vector that contains all n observations for the first regressor. The OLS estimator of β_1 is

$$
\widehat{\beta}_1=\frac{X_1'M_2Y}{X_1'M_2X_1},
$$

where $M_2 = I - X_2 (X_2' X_2)^{-1} X_2'$.

One method of constructing confidence intervals is to consider symmetric intervals around the point estimator:

$$
CI_{1-\alpha} = \left[\hat{\beta}_1 - c, \hat{\beta}_1 + c\right].
$$
\n(1)

Since $\hat{\beta}_1$ is a function of the random sample, the confidence interval $CI_{1-\alpha}$ as defined in (1) is random as well. The problem is to choose c so that

$$
P\left(\beta_1 \in CI_{1-\alpha} | X\right) = 1 - \alpha,
$$

where $X = \begin{pmatrix} X_1 & X_2 \end{pmatrix}$. In order to find c, one has to know the conditional distribution of $\hat{\beta}_1$ given X. Under Assumptions (A1)-(A5),

$$
\widehat{\beta}_1 | X \sim N\left(\beta_1, \sigma^2 / (X_1' M_2 X_1)\right), \text{ and, consequently,}
$$

$$
\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\sigma^2 / (X_1' M_2 X_1)}} | X \sim N(0, 1).
$$
 (2)

In order to show that, note that $\hat{\beta}_1$ is a linear estimator, and write $\hat{\beta}_1 = \beta_1 + (X_1'M_2U)/(X_1'M_2X_1)$.

Let z_{τ} be the τ -quantile of the standard normal distribution; that is, if $Z \sim N(0, 1)$, then

$$
P(Z \leq z_{\tau}) = \tau.
$$

For example, for $\tau = 0.5$ we have the *median*:

$$
P(Z \le z_{0.5}) = 0.5.
$$

Note that, since the standard normal distribution is symmetric around zero, we have that

$$
z_{\alpha} = -z_{1-\alpha}, \text{ and, therefore,}
$$

$$
P(-z_{1-\alpha/2} \le Z \le z_{1-\alpha/2}) = 1 - \alpha.
$$

For example, for $\alpha = 0.05$, $z_{1-0.05/2} = z_{0.975} = 1.96$, and $z_{0.025} = -1.96$.

σ^2 is known

Suppose for a moment that σ^2 is known and that we can actually compute the variance of $\hat{\beta}_1$. We set

$$
c = z_{1-\alpha/2} \sqrt{Var\left(\widehat{\beta}_1 | X\right)}
$$

= $z_{1-\alpha/2} \sqrt{\sigma^2 / (X_1' M_2 X_1)}$.

We will show that

$$
P\left(\beta_1 \in \left[\widehat{\beta}_1 - z_{1-\alpha/2}\sqrt{\sigma^2/(X_1'M_2X_1)}, \widehat{\beta}_1 + z_{1-\alpha/2}\sqrt{\sigma^2/(X_1'M_2X_1)}\right]|X\right) = 1 - \alpha.
$$

Indeed,

$$
P\left(\hat{\beta}_{1} - z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)} \leq \beta_{1} \leq \hat{\beta}_{1} + z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)}|X\right)
$$

\n
$$
= P\left(-z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)} \leq \beta_{1} - \hat{\beta}_{1} \leq z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)}|X\right)
$$

\n
$$
= P\left(-z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)} \leq \hat{\beta}_{1} - \beta_{1} \leq z_{1-\alpha/2}\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)}|X\right)
$$

\n
$$
= P\left(-z_{1-\alpha/2} \leq \frac{\hat{\beta}_{1} - \beta_{1}}{\sqrt{\sigma^{2}/\left(X_{1}^{\prime}M_{2}X_{1}\right)}} \leq z_{1-\alpha/2}|X\right).
$$
\n(3)

The desired result follows immediately from (2), (3) and the definition of $z_{1-\alpha/2}$.

σ^2 is unknown

Construction of the $CI_{1-\alpha}$ above relies on the fact that σ^2 is known. In the case of the unknown σ^2 , one can take a similar approach, first replacing σ^2 with its estimator, for example:

$$
s^2 = \widehat{U}'\widehat{U}/(n-k).
$$

However, $(\hat{\beta}_1 - \beta_1)/\sqrt{s^2/(X_1'M_2X_1)}$ is not normally distributed, since it is a nonlinear function of the random $\hat{\beta}_1$ and s^2 . Therefore, one cannot use the quantiles of the standard normal distribution for construction of confidence intervals.

It turns out that

$$
\frac{\left(\widehat{\beta}_1 - \beta_1\right)}{\sqrt{s^2/(X_1'M_2X_1)}} | X \sim t_{n-k}.\tag{4}
$$

Recall that t_{n-k} distribution is defined as follows:

$$
Z/\sqrt{V/(n-k)},
$$

where Z is a standard normal random variable, V is a χ^2_{n-k} random variable, and Z and V are independent. Write

$$
\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{s^2/(X'_1 M_2 X_1)}} = \left(\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\sigma^2/(X'_1 M_2 X_1)}}\right) / \sqrt{\frac{s^2}{\sigma^2}}
$$

$$
= \left(\frac{\widehat{\beta}_1 - \beta_1}{\sqrt{\sigma^2/(X'_1 M_2 X_1)}}\right) / \sqrt{\frac{\widehat{U}' \widehat{U}}{\sigma^2} / (n - k)}.
$$
(5)

We already know that, in the above expression, $(\hat{\beta}_1 - \beta_1)/\sqrt{\sigma^2/(X_1'M_2X_1)}|X \sim N(0, 1)$. We show next that conditional on X,

$$
\frac{\widehat{U}'\widehat{U}}{\sigma^2}|X \sim \chi^2_{n-k}.\tag{6}
$$

In order to show that we need the following result:

Lemma 1 Suppose that the n-vector $U \sim N(0, I_n)$. Let A be a non-random $n \times n$ symmetric and idempotent matrix with $rank(A) = r \leq n$. Then, $U'AU \sim \chi_r^2$.

Proof. It is sufficient to show that $U'AU = \sum_i^r Z_i^2$, where Z_i are iid $N(0, 1)$.

Since A is symmetric matrix, one can write

$$
A = C\Lambda C',
$$

where Λ is a $n \times n$ diagonal matrix consisting of the eigenvalues of A, and $C'C = I_n$. Since A is idempotent,

$$
A = AA, \text{ and}
$$

$$
C\Lambda C' = (C\Lambda C') (C\Lambda C')
$$

$$
= C\Lambda^2 C'.
$$

Therefore,

which implies that all eigenvalues of A are either zeros or ones. Since the rank of a matrix equals the number of its non-zero eigenvalues, there are r non-zero eigenvalues λ_i in

 $\Lambda = \Lambda^2$,

$$
\Lambda = \left(\begin{array}{cccc} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{array} \right).
$$

Define

Since $U \sim N(0, I_n)$, we have that

$$
Z \sim N(0, C'C)
$$

$$
\sim N(0, I_n).
$$

 $Z = C'U$.

Lastly,

$$
U'AU = Z'\Lambda Z
$$

$$
= \sum_{i=1}^{n} \lambda_i Z_i^2.
$$

The result follows because Z_i are iid $N(0,1)$ and there are r eigenvalues equal to one, and $n-r$ zero eigenvalues. \square

Now, to show (6), write

$$
\frac{\widehat{U}'\widehat{U}}{\sigma^2} = \left(\frac{U}{\sigma}\right)' M_X \left(\frac{U}{\sigma}\right),
$$

$$
M_X = I_n - X \left(X'X\right)^{-1} X'.
$$
 (7)

where

3

By Assumption (A5),

$$
\frac{U}{\sigma}|X \sim N(0, I_n). \tag{8}
$$

Since M_X is symmetric and idempotent, its eigenvalues are either zeros or ones. Therefore,

$$
rank(M_X) = tr(M_X)
$$

= n - k. (9)

The result in (6) follows, from (7) , (8) , (9) and Lemma 1.

Finally, we show that $\hat{\beta}_1 - \beta_1$ and $\hat{U}'\hat{U}$ in (5) are independent given X. Write

$$
\widehat{\beta}_1 - \beta_1 = (X_1' M_2 U) / (X_1' M_2 X_1),
$$

$$
\widehat{U}' \widehat{U} = U' M_X U.
$$

It is sufficient to show independence of $X_1'M_2U$ and M_XU . Since $\hat{\beta}_1$ is a function of $X_1'M_2U$, and $\hat{U}'\hat{U}$ is a function of M_XU , independence of $X_1'M_2U$ and M_XU implies independence of $\hat{\beta}_1$ and $\hat{U}'\hat{U}$. First, we show that they are uncorrelated:

$$
Cov(X'_1M_2U, M_XU|X) = E(X'_1M_2UU'M_X|X)
$$

= $X'_1M_2E(UU'|X) M_X$
= $X'_1M_2(\sigma^2I_n) M_X$
= $\sigma^2X'_1M_2M_X$
= $\sigma^2X'_1M_X$ (see Lecture 3, page 8)
= 0.

Since $X_1'M_2U$ and M_XU are linear functions of U, they are normal conditional on X. Since they are uncorrelated, normality implies that they are independent. Consequently, $\hat{\beta}_1 - \beta_1$, a function of $X_1'M_2U$, and $\hat{U}'\hat{U}$ are independent as well.

We have shown (4). Consequently, when constructing confidence intervals, if one replaces the unknown σ^2 with s^2 , he must replace $z_{1-\alpha/2}$ with quantiles of the t distribution, $t_{n-k,1-\alpha/2}$:

$$
CI_{1-\alpha} = \left[\hat{\beta}_1 - t_{n-k, 1-\alpha/2} \sqrt{s^2/(X_1'M_2X_1)}, \hat{\beta}_1 + t_{n-k, 1-\alpha/2} \sqrt{s^2/(X_1'M_2X_1)} \right].
$$

The expression $s^2/(X_1'M_2X_1)$ that appears in the above equation is the *estimated* variance of $\hat{\beta}_1$:

$$
Var\left(\widehat{\beta_1}|X\right) = s^2/\left(X_1'M_2X_1\right).
$$

Thus, one constructs a level α confidence interval for β_j , $j = 1, \ldots, k$ as follows

$$
CI_{1-\alpha}^{j} = \left[\widehat{\beta}_{j} - t_{n-k, 1-\alpha/2} \sqrt{Var\left(\widehat{\beta}_{j}|X\right)}, \widehat{\beta}_{j} + t_{n-k, 1-\alpha/2} \sqrt{Var\left(\widehat{\beta}_{j}|X\right)} \right].
$$
 (10)

Vector case

Suppose that we are concerned with the vector of parameters $\beta = (\beta_1, \beta_2, \dots, \beta_k)$. Equation (10) describes how to construct individual confidence intervals for the elements of β . These are concerned with marginal distributions of the elements of β , and their simple combination does not produce a set that includes the whole vector β with a desired probability. In this section, we consider construction of random regions that

include β with some specified probability $1 - \alpha$. We keep the notation $CI_{1-\alpha}$, despite the fact that in this case $CI_{1-\alpha}$ is now subset of R^k .

The following is a simple and conventional approach to constructing confidence regions. We are looking for a random region $CI_{1-\alpha} = \{b \in R^k\}$ such that $P(\beta \in CI_{1-\alpha}|X) = 1-\alpha$. Consider a quadratic form in $(\widehat{\beta}-\beta)$:

$$
\begin{split}\n&\left(\widehat{\beta} - \beta\right)' \left(\widehat{Var}(\widehat{\beta}|X)\right)^{-1} \left(\widehat{\beta} - \beta\right) / k \\
&= \left(\widehat{\beta} - \beta\right)' \left(s^2 \left(X'X\right)^{-1}\right)^{-1} \left(\widehat{\beta} - \beta\right) / k \\
&= \frac{\left(\widehat{\beta} - \beta\right)' \left(\sigma^2 \left(X'X\right)^{-1}\right)^{-1} \left(\widehat{\beta} - \beta\right) / k}{s^2/\sigma^2} \\
&= \frac{\left(\widehat{\beta} - \beta\right)' \left(\sigma^2 \left(X'X\right)^{-1}\right)^{-1} \left(\widehat{\beta} - \beta\right) / k}{\left(\frac{\widehat{U}'\widehat{U}}{\sigma^2}\right) / (n - k)}.\n\end{split} \tag{11}
$$

Next, we show that the expression in (11) has the $F_{k,n-k}$ distribution given X.

The $F_{k,n-k}$ distribution is defined as the distribution of

$$
\frac{V/k}{W/(n-k)}
$$

,

where $V \sim \chi^2_{k}$, $W \sim \chi^2_{n-k}$ and independent. From the discussion in the previous section we know that $\hat{U}'\hat{U}/\sigma^2 |X \sim \chi^2_{n-k}$ and independent from the numerator in (11). Thus, we need to show that

$$
\left(\widehat{\beta} - \beta\right)' \left(\sigma^2 \left(X'X\right)^{-1}\right)^{-1} \left(\widehat{\beta} - \beta\right) |X \sim \chi_k^2. \tag{12}
$$

.

We need the following lemma.

Lemma 2 Suppose that the k-vector $U \sim N(0, \Sigma)$, where Σ is a positive definite variance-covariance matrix. Then, $U'\Sigma^{-1}U \sim \chi_k^2$.

Proof. Since Σ is symmetric, $\Sigma = C\Lambda C'$, where Λ is a diagonal matrix of the eigenvalues of Σ on its main diagonal, and $C'C = CC' = I_k$. Since Σ is positive definite, its eigenvalues are positive, and therefore, $\Lambda^{1/2}$ can be defined as

$$
\Lambda^{1/2} = \begin{pmatrix} \lambda_1^{1/2} & 0 \\ \cdot & \cdot \\ 0 & \lambda_k^{1/2} \end{pmatrix},
$$

and $\Lambda^{-1/2}$ can be defined as

$$
\Lambda^{-1/2} = \begin{pmatrix} \lambda_1^{-1/2} & 0 \\ & \ddots & \\ 0 & \lambda_k^{-1/2} \end{pmatrix}.
$$

Next, since $C\Lambda^{-1}C'C\Lambda C' = I_k$, we have that

$$
\Sigma^{-1} = C\Lambda^{-1}C'.
$$

Now, define

$$
\Sigma^{1/2} = C\Lambda^{1/2}C'
$$
 and $\Sigma^{-1/2} = C\Lambda^{-1/2}C'$

We have that $(\Sigma^{1/2})' = \Sigma^{1/2}$ and $(\Sigma^{-1/2})' = \Sigma^{-1/2}$ (symmetric). Furthermore,

$$
\Sigma^{1/2}\Sigma^{1/2} = C\Lambda^{1/2}C'C\Lambda^{1/2}C' = C\Lambda^{1/2}\Lambda^{1/2}C' = C\Lambda C' = \Sigma,
$$

$$
\Sigma^{-1/2}\Sigma\Sigma^{-1/2} = C\Lambda^{-1/2}C'C\Lambda C'C\Lambda^{-1/2}C' = C\Lambda^{-1/2}\Lambda\Lambda^{-1/2}C' = CC' = I_k.
$$

The matrix $\Sigma^{1/2}$ is called the symmetric square root of a matrix, and $\Sigma^{-1/2}$ is the negative symmetric square root. Define a k-vector

$$
V = \Sigma^{-1/2} U,
$$

so that

$$
U'\Sigma^{-1}U = V'V.\tag{13}
$$

Since $U \sim N(0, \Sigma)$, and V is a linear transformation of U, we have that

$$
V \sim N\left(0, \Sigma^{-1/2}Var(U)\Sigma^{-1/2}\right)
$$

= $N\left(0, \Sigma^{-1/2}\Sigma\Sigma^{-1/2}\right)$
= $N(0, I_k)$.

Thus, from (13) and by the definition of the χ^2_k ,

$$
U'\Sigma^{-1}U = V'V = \sum_{j=1}^k V_j^2 \sim \chi_k^2. \ \Box
$$

Now, the result in (12) follows from Lemma 2. Consequently,

$$
\frac{(\widehat{\beta}-\beta)^{'}\left(s^2(X'X)^{-1}\right)^{-1}(\widehat{\beta}-\beta)}{k}|X \sim F_{k,n-k}.
$$

Let $F_{k,n-k,\tau}$ be the τ -quantile of the F distribution. We construct the α -level confidence region as follows

$$
CI_{1-\alpha} = \left\{ b \in R^k : \left(\widehat{\beta} - b \right)^\prime \left(s^2 \left(X^\prime X \right)^{-1} \right)^{-1} \left(\widehat{\beta} - b \right) / k \leq F_{k,n-k,1-\alpha} \right\}.
$$

From the above discussion it follows that

$$
P(\beta \in CI_{1-\alpha}|X)
$$

= $P\left(\left(\widehat{\beta} - \beta\right)' \left(s^2 \left(X'X\right)^{-1}\right)^{-1} \left(\widehat{\beta} - \beta\right) / k \le F_{k,n-k,1-\alpha}|X\right)$
= $1 - \alpha$.

Remark

The confidence interval/region $CI_{1-\alpha}$ is a function of the sample $\{(Y_i, X_i) : i = 1, \ldots, n\}$, and therefore random, which allows us to talk about probability of $CI_{1-\alpha}$ containing the true value of β . On the other hand, the realization of $CI_{1-\alpha}$ is not random. Once the confidence interval is computed given the data, it does not make sense anymore to talk about the probability that it includes β . It is either zero or one.