
OCTOBER 7, 2016

LECTURE 3
GEOMETRY OF LS, PROPERTIES OF σ̂2, PARTITIONED REGRESSION, GOODNESS

OF FIT

Geometry of LS
We can think of y and the columns of X as members of the n-dimensional Euclidean space Rn. One can
define a subspace of Rn called the column space of a n× k matrix X, that is a collection of all vectors in Rn

that can be written as linear combinations of the columns of X:

S(X) =
{
z ∈ Rn : z = Xb, b = (b1, b2, . . . , bk)

′ ∈ Rk
}
.

For two vectors a, b in Rn, the distance between a and b is given by the Euclidean norm1 of their dif-

ference ‖a− b‖ =
√
(a− b)′ (a− b). Thus, the LS problem, minimization of the sum-of-squared errors

(y −Xb)′ (y −Xb) , is to find, out of all elements of S(X), the one closest to y:

min
ỹ∈S(X)

‖y − ỹ‖2 .

The closest point is found by "dropping a perpendicular". That is, a solution to the LS problem, ŷ = Xβ̂
must be chosen so that the residual vector û = y − ŷ is orthogonal (perpendicular) to each column of X:

û′X = 0.

As a result, û is orthogonal to every element of S(X). Indeed, if z ∈ S(X), then there exists b ∈ Rk such
that z = Xb, and

û′z = û′Xb

= 0.

The collection of the elements of Rn orthogonal to S(X) is called the orthogonal complement of S(X):

S⊥(X) = {z ∈ Rn : z′X = 0} .

Every element of S⊥(X) is orthogonal to every element in S(X).
As we have seen in Lecture 2, the solution to the LS problem is given by

ŷ = Xβ̂

= X (X ′X)
−1
X ′y

= PXy,

where
PX = X (X ′X)

−1
X ′

is called the orthogonal projection matrix. For any vector y ∈ Rn,

PXy ∈ S(X).

Furthermore, the residual vector will be in S⊥(X):

y − PXy ∈ S⊥(X). (1)

1For a vector x = (x1, x2, . . . , xn)
′ , its Euclidean norm is defined as ‖x‖ =

√
x′x =

√∑n
i=1 x

2
i .
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To show (1), first note, that, since the columns of X are in S(X),

PXX = X (X ′X)
−1
X ′X

= X,

and, since PX is a symmetric matrix,
X ′PX = X ′.

Now,

X ′ (y − PXy) = X ′y −X ′PXy

= X ′y −X ′y
= 0.

Thus, by the definition, the residuals y − PXy ∈ S⊥(X). The residuals can be written as

û = y − PXy

= (In − PX) y

=MXy,

where

MX = In − PX

= In −X (X ′X)
−1
X ′,

is a projection matrix onto S⊥(X).
The projection matrices PX and MX have the following properties:

• PX +MX = I. This implies, that for any y ∈ Rn,

y = PXy +MXy.

• Symmetric:

P ′X = PX ,

M ′X =MX .

• Idempotent: PXPX = PX , and MXMX =MX .

PXPX = X (X ′X)
−1
X ′X (X ′X)

−1
X ′

= X (X ′X)
−1
X ′

= PX

MXMX = (In − PX) (In − PX)

= In − 2PX + PXPX

= In − PX

=MX .

• Orthogonal:

PXMX = PX (In − PX)

= PX − PXPX

= PX − PX

= 0.
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This property implies that MXX = 0. Indeed,

MXX = (In − PX)X

= X − PXX

= X −X
= 0.

Note that, in the above discussion, none of the regression assumptions have been used. Given data, y and
X, one can always perform least squares, regardless of what data generating process stands behind the data.
However, one needs a model to discuss the statistical properties of an estimator (such as unbiasedness and
etc).

Properties of σ̂2

The following estimator for σ2 was suggested in Lecture 2:

σ̂2 = n−1
n∑

i=1

(
Yi −X ′iβ̂

)2
= n−1Û ′Û .

It turns out that, under the usual regression assumptions (A1)-(A4), σ̂2 is a biased estimator. First, write

Û =MXY

=MX (Xβ + U)

=MXU.

The last equality follows because MXX = 0. Next,

nσ̂2 = Û ′Û

= U ′MXMXU

= U ′MXU.

Now, since U ′MXU is a scalar,
U ′MXU = tr (U ′MXU) ,

where tr(A) denotes the trace of a matrix A.

E (U ′MXU |X) = E (tr (U ′MXU) |X)

= E (tr (MXUU
′) |X) (because tr(ABC) = tr(BCA))

= tr (MXE (UU ′|X)) (because tr and expectation are linear operators)

= σ2tr (MX) .

The last equality follows, because by Assumption (A3), E (UU ′|X) = σ2In. Next,

tr (MX) = tr
(
In −X (X ′X)

−1
X ′
)

= tr (In)− tr
(
X (X ′X)

−1
X ′
)

= tr (In)− tr
(
(X ′X)

−1
X ′X

)
= tr (In)− tr (Ik)
= n− k.
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Thus,

Eσ̂2 =
n− k
n

σ2. (2)

The estimator σ̂2 is biased, but it is easy to modify σ̂2 to obtain unbiasedness. Define

s2 = σ̂2 n

n− k

= (n− k)−1
n∑

i=1

(
Yi −X ′iβ̂

)2
.

It follows from (2) that
Es2 = σ2.

Partitioned regression
We can partition the matrix of regressors X as follows:

X = (X1 X2) ,

and write the model as
Y = X1β1 +X2β2 + U,

where X1 is a n× k1 matrix, X2 is n× k2, k1 + k2 = k, and

β =

(
β1
β2

)
,

where β1 and β2 are k1 and k2-vectors respectively. Such a decomposition allows one to focus on a group of
variables and their corresponding parameters, say X1 and β1. If

β̂ =

(
β̂1
β̂2

)
,

then one can write the following version of the normal equations:

(X ′X) β̂ = X ′Y

as (
X ′1X1 X ′1X2

X ′2X1 X ′2X2

)(
β̂1
β̂2

)
=

(
X ′1Y
X ′2Y

)
.

One can obtain the expressions for β̂1 and β̂2 by inverting the partitioned matrix on the left-hand side of
the equation above.

Alternatively, let’s define M2 to be the projection matrix on the space orthogonal to the space S (X2):

M2 = In −X2 (X
′
2X2)

−1
X ′2.

Then,
β̂1 = (X ′1M2X1)

−1
X ′1M2Y. (3)

In order to show that, first write
Y = X1β̂1 +X2β̂2 + Û . (4)
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Note that by the construction,

M2Û = Û (Û is orthogonal to X2),
M2X2 = 0,

X ′1Û = 0,

X ′2Û = 0.

Substitute equation (4) into the right-hand side of equation (3):

(X ′1M2X1)
−1
X ′1M2Y

= (X ′1M2X1)
−1
X ′1M2

(
X1β̂1 +X2β̂2 + Û

)
= (X ′1M2X1)

−1
X ′1M2X1β̂1

+ (X ′1M2X1)
−1
X ′1Û

(
M2X2 = 0 and M2Û = Û

)
= β̂1.

Since M2 is symmetric and idempotent, one can write

β̂1 =
(
(M2X1)

′
(M2X1)

)−1
(M2X1)

′
(M2Y )

=
(
X̃ ′1X̃1

)−1
X̃ ′1Ỹ ,

where

X̃1 =M2X1

= X1 −X2 (X
′
2X2)

−1
X ′2X1 residuals from the regression of X1 on X2,

Ỹ =M2Y

= Y −X2 (X
′
2X2)

−1
X ′2Y residuals from the regression of Y on X2.

Thus, to obtain coefficients for the first k1 regressors, instead of running the full regression with k1 + k2
regressors, one can regress Y on X2 to obtain the residuals Ỹ , regress X1 on X2 to obtain the residuals X̃1,
and then regress Ỹ on X̃1 to obtain β̂1. In other words, β̂1 shows the effect of X1 after controlling for X2.

Similarly to β̂1, one can write:

β̂2 = (X ′2M1X2)
−1
X ′2M1Y, where

M1 = In −X1 (X
′
1X1)

−1
X ′1.

For example, consider a simple regression

Yi = β1 + β2Xi + Ui,

for i = 1, . . . , n.
Let’s define a n-vector of ones:

` =


1
1
...
1

 .

In this case, the matrix of regressors is given by
1 X1

1 X2

...
...

1 Xn

 =
(
` X

)
.
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Consider
M1 = In − ` (`′`)

−1
`′,

and
β̂2 =

X ′M1Y

X ′M1X
.

Now, `′` = n. Therefore,

M1 = In −
1

n
``′, and

M1X = X − ``
′X

n

= X −X`

=


X1 −X
X2 −X

...
Xn −X

 ,

where

X =
`′X

n

= n−1
n∑

i=1

Xi.

Thus, the matrix M1 transforms the vector X into the vector of deviations from the average. We can write

β̂2 =

∑n
i=1

(
Xi −X

)
Yi∑n

i=1

(
Xi −X

)2
=

∑n
i=1

(
Xi −X

) (
Yi − Y

)∑n
i=1

(
Xi −X

)2 .

Goodness of fit
Write

Y = PXY +MXY

= Ŷ + Û ,

where, by the contruction,

Ŷ ′Û = (PXY )
′
(MXY )

= Y ′PXMXY

= 0.

Suppose that the model contains an intercept, i.e. the first column of X is the vector of ones `. The total
variation in Y is

n∑
i=1

(
Yi − Y

)2
= Y ′M1Y

=
(
Ŷ + Û

)′
M1

(
Ŷ + Û

)
= Ŷ ′M1Ŷ + Û ′M1Û + 2Ŷ ′M1Û .
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Since the model contains an intercept,

`′Û = 0, and

M1Û = Û .

However, Ŷ ′Û = 0, and, therefore,

Y ′M1Y = Ŷ ′M1Ŷ + Û ′Û , or
n∑

i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Ŷ

)2
+

n∑
i=1

Û2
i .

Note that

Y =
`′Y

n

=
`′Ŷ

n
+
`′Û

n

=
`′Ŷ

n

= Ŷ .

Hence, the averages of Y and its predicted values Ŷ are equal, and we can write:
n∑

i=1

(
Yi − Y

)2
=

n∑
i=1

(
Ŷi − Y

)2
+

n∑
i=1

Û2
i , or (5)

TSS = ESS +RSS,

where

TSS =

n∑
i=1

(
Yi − Y

)2
total sum-of-squares,

ESS =

n∑
i=1

(
Ŷi − Y

)2
explained sum-of-squares,

RSS =

n∑
i=1

Û2
i residual sum-of-squares.

The ratio of the ESS to the TSS is called the coefficient of determination or R2:

R2 =

∑n
i=1

(
Ŷi − Y

)2
∑n

i=1

(
Yi − Y

)2
= 1−

∑n
i=1 Û

2
i∑n

i=1

(
Yi − Y

)2
= 1− Û ′Û

Y ′M1Y
.

Properties of R2:

• Bounded between 0 and 1 as implied by decomposition (5). This property does not hold if the model
does not have an intercept, and one should not use the above definition of R2 in this case. If R2 = 1
then Û ′Û = 0, which can happen only if Y ∈ S(X), i.e. Y is exactly a linear combination of the
columns of X.
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• Increases by adding more regressors.
Proof. Consider a partitioned matrix X = (Z W ) . Let’s study the effect of adding W on R2. Let

PX = X (X ′X)
−1
X ′ projection matrix corresponding to the full regression,

PZ = Z (Z ′Z)
−1
Z ′ projection matrix corresponding to the regression without W.

Define also

MX = In − PX ,

MZ = In − PZ .

Note that since Z is a part of X,
PXZ = Z,

and

PXPZ = PXZ (Z ′Z)
−1
Z ′

= Z (Z ′Z)
−1
Z ′

= PZ .

Consequently,

MXMZ = (In − PX) (In − PZ)

= In − PX − PZ + PXPZ

= In − PX − PZ + PZ

=MX .

Assume that Z contains a column of ones, so both short and long regressions have intercepts. Define

ÛX =MXY,

ÛZ =MZY.

Write:

0 ≤
(
ÛX − ÛZ

)′ (
ÛX − ÛZ

)
= Û ′X ÛX + Û ′ZÛZ − 2Û ′X ÛZ .

Next,

Û ′X ÛZ = Y ′MXMZY

= Y ′MXY

= Û ′X ÛX .

Hence,
Û ′ZÛZ ≥ Û ′X ÛX .

• R2 shows how much of the sample variation in y was explained by X. However, our objective is to
estimate population relationships and not to explain the sample variation. High R2 is not necessary
an indicator of the good regression model, and a low R2 is not an evidence against it.

• One can always find an X that makes R2 = 1, just take any n linearly independent vectors. Because
such a set spans the whole Rn space, any y ∈ Rn can be written as an exact linear combination of the
columns of that X.
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Since R2 increases with inclusion of additional regressors, instead researchers often report the adjusted
coefficient of determination R

2
:

R
2
= 1− n− 1

n− k
(
1−R2

)
= 1− Û ′Û/ (n− k)

Y ′M1Y/ (n− 1)
.

The adjusted coefficient of determination discounts the fit when the number of the regressors k is large
relative to the number of observations n. R

2
may decrease with k. However, there is no strong argument for

using such an adjustment.
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