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LECTURE 2
LINEAR REGRESSION MODEL AND OLS

Definitions
A common question in econometrics is to study the effect of one group of variables Xi, usually called the
regressors, on another Yi, the dependent variables. An econometrician observes the random data:

(Y1, X1) , (Y2, X2) , . . . (Yn, Xn) , (1)

where for i = 1, . . . , n, Yi is a random variable and Xi is a random k-vector:

Xi =


Xi1

Xi2

...
Xik

 .

A pair (Yi, Xi) is called the observation, and the collection of observations in (1) is called the sample. The
vector Xi collects the values of k variables for observation i.

The joint distribution of (1) is called the population. The population does not correspond to any physical
population, but to a probability space. In a cross-sectional framework (each observation is a different
individual or a firm etc.), it is often natural to assume that all observations are independently drawn from
the same distribution. In this case, the population is described by the distribution of a single observation
(Y1, X1) , which can be stated as well as (Yi, Xi) are iid for i = 1, . . . , n. Note that the iid assumption does
not imply that Yi and Xi are independent, but rather that the random vector (Yi, Xi) is independent from
(Yj , Xj) for i 6= j. At the same time, Yi and Xi are still can be related.

In cross-sections, the relationship between the regressors and the dependent variable is modelled through
the conditional expectation E (Yi|Xi) . The deviation of Yi from its conditional expectation is called the error
or residual :

Ui = Yi − E (Yi|Xi) . (2)

Contrary to Xi and Yi, the residual Ui is not observable, since the conditional expectation function is
unknown to the econometrician.

In the parametric framework, it is assumed that the conditional expectation function depends on a
number of unknown constants or parameters, and that the functional form of E (Yi|Xi) is known. In the
linear regression model, it is assumed that E (Yi|Xi) is linear in the parameters:

E (Yi|Xi) = β1Xi1 + β2Xi2 + . . .+ βkXik

= X ′iβ, (3)

where

β =


β1
β2
...
βk


is a k-vector of unknown constants. The linearity of E (Yi|Xi) can be justified, for example, by saying that
(Yi, Xi) jointly has a multivariate normal distribution. Since βj = ∂E(Yi|Xi)

∂Xij
, the vector β is a vector of

marginal effects of Xi, i.e. βj gives the change in the conditional mean of Yi per unit change in Xij , while
holding the values of other variables (Xil for l 6= j) fixed. One of the objectives is estimation of unknown β
from the sample (1).

Note that combining together equations (2) and (3), one can write:

Yi = X ′iβ + Ui. (4)
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By definition (2),
E (Ui|Xi) = 0.

This implies, that the regressors contain no information on the deviation of Yi from its conditional expecta-
tion. Further, the Law of Iterated Expectation (LIE) implies that the residuals have zero mean: EUi = 0.
If (Yi, Xi) are iid, then the residuals {Ui : i = 1, . . . , n} are iid as well.

In the classical regression model, it is assumed that the variance of the errors Ui is independent of the
regressors and the same for all observations:

V ar (Ui|Xi) = σ2,

for some constant σ2 > 0. This property is called homoskedasticity.

Assumptions
In this section, we formally define the linear regression model. Let’s define

X =


X ′1
X ′2
...
X ′n



=


X11 X12 . . . X1k

X21 X22 . . . X2k

. . . . . . . . . . . .
Xn1 Xn2 . . . Xnk

 ,

Y =


Y1
Y2
...
Yn

 , and

U =


U1

U2

...
Un

 .

The following are the four classical regression assumptions:

(A1) Y = Xβ + U.

(A2) E (U |X) = 0 a.s.

(A3) V ar (U |X) = σ2In a.s.

(A4) rank(X) = k a.s.1

1The column (row) rank of a matrix is the maximum number of linearly independent columns (rows). One can show that,
for any matrix, the column and row ranks are equal. If A is an n × k matrix, then rank(A) ≤ min (n, k). If rank(A) = n (or
rank(A) = k), we say that A has full row (column) rank. Properties:

rank (A) = rank
(
A′) = rank

(
A′A

)
= rank

(
AA′) ,

rank (AB) ≤ min (rank (A) , rank (B)) ,

rank (AB) = rank (A) if B is square and of full rank.
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Instead of conditioning on the observed values of the regressors, in the classical regression model, one can
assume that X is not random, i.e. the value of X are fixed in repeated samples. In this case, (A2) is replaced
by E(U) = 0 and (A3) is replaced by V ar(U) = σ2In. Since conditioning on X is basically equivalent to
treating them as fixed, two sets of assumptions lead to the same results.

For inference purposes, sometimes it is assumed that:

(A5) U |X ∼ N
(
0, σ2In

)
.

In the case of fixed regressors, it is assumed instead that the unconditional distribution of the errors is
normal. Assumptions (A1)-(A5) define the classical normal regression model. In this case,

Y |X ∼ N
(
Xβ, σ2In

)
.

Note that since all covariance elements in (A5) are zeros, (A5) implies independence of the residuals.
Assumptions (A1)-(A4) alone do not imply independence across observations. Actually, for many important
results, independence across observations is not required. Nevertheless, sometimes we would like to assume
independence without normality:

(A6) {(Yi, Xi) : i = 1, . . . , n} are iid.

In the case of fixed regressors, (A6) can be replaced with the assumption that {Ui : i = 1, . . . , n} are iid.
Assumption (A2) says that U is mean independent of X. This is actually a very strong assumption. As we

have mentioned above, it is equivalent to assuming that X are not random. In many economic applications,
it is hard to justify. However, many important results may be obtained with a weaker assumption of
uncorrelatedness:

(A2*) For i = 1, . . . , n, E (UiXi) = 0 and E (Ui) = 0.

Note that under (A2*), the expression X ′iβ does not have the interpretation of the conditional expectation.
In this case, one can treat (4) as a data generating process.

Assumption (A3) implies that, the residuals Ui have the same variance for all i, and uncorrelated with
each other: E (UiUj |X) = 0 for i 6= j. If desired, independence of the residuals may be achieved through
(A5) or Assumptions (A1) and (A6).

Assumption (A4) says that the columns of X are not linearly dependent. If it is violated, then one or
more regressors simply duplicate the information contained in other regressors, and thus should be omitted.

Often, the first column of the matrix X is a column of ones. In this case, its coefficient β1 is called the
intercept. The intercept gives the average value of the dependent variable when all regressors are equal to
zero.

Estimation by the method of moments
One of the objectives of econometric analysis is estimation of unknown parameters β and σ2. An estimator
is any function of the sample {(Yi, Xi) : i = 1, . . . , n}. An estimator can depend on the unknown residuals
Ui or unknown parameters like β only through the observed variables Y and X. An estimator usually is not
unique, i.e. there exists a number of alternative estimators for the same parameter.

One of the oldest methods of finding estimators is called the method of moments (MM). The MM says to
replace population moments (expectations) with the corresponding sample moments (averages). Assumptions
(A2) or (A2*) imply that at the true value of β,

0 = E (UiXi)

= E ((Yi −X ′iβ)Xi) . (5)

3



Let β̂ be an estimator of β. According to the MM, we replace expectation in (5) with the sample average:

0 = n−1
n∑
i=1

(
Yi −X ′iβ̂

)
Xi

= n−1
n∑
i=1

XiYi − n−1
n∑
i=1

XiX
′
iβ̂.

(Note that Yi −X ′iβ̂ is a scalar). Solving for β̂, one obtains:

β̂ =

(
n−1

n∑
i=1

XiX
′
i

)−1
n−1

n∑
i=1

XiYi

=

(
n∑
i=1

XiX
′
i

)−1 n∑
i=1

XiYi

= (X ′X)
−1
X ′Y. (6)

The matrix
∑n
i=1XiX

′
i = X ′X is invertible due to Assumption (A4). To show that X ′X =

∑n
i=1XiX

′
i,

note that

X ′X =


X ′1
X ′2
...
X ′n


′

X ′1
X ′2
...
X ′n



=
(
X1 X2 . . . Xn

)


X ′1
X ′2
...
X ′n


= X1X

′
1 +X2X

′
2 + . . .+XnX

′
n

=

n∑
i=1

XiX
′
i.

The expression X ′iβ̂ gives the estimated regression line, with Ŷi = X ′iβ̂ being the predicted value of Yi,
and Ûi = Yi −X ′iβ̂ being the sample residual,

Û = Y −Xβ̂.

The vector Û is a function of the estimator of β. In the case of the MM estimator, the sample residuals have
to satisfy the sample normal equation:

0 = X ′Û (7)

=

n∑
i=1

ÛiXi

=


∑n
i=1 ÛiXi1∑n
i=1 ÛiXi2

...∑n
i=1 ÛiXik

 .

If the model contains an intercept, i.e. Xi1 = 1 for all i, then the normal equation implies that
∑n
i=1 Ûi = 0.
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In order to estimate σ2, write:

σ2 = EU2
i

= E (Yi −X ′iβ)
2
.

Since β is unknown, we must replace it by its MM estimator:

σ̂2 = n−1
n∑
i=1

(
Yi −X ′iβ̂

)2
.

Least Squares
Let b be an estimator of β. The the ordinary least squares (OLS) estimator is an estimator of β that minimizes
the sum-of-squared errors function:

S(b) =

n∑
i=1

(Yi −X ′ib)
2

= (Y −Xb)′ (Y −Xb) .

It turns out that β̂, the MM estimator presented in the previous section, is the OLS estimator as well.
In order to show that, write

S(b) = (Y −Xb)′ (Y −Xb)

=
(
Y −Xβ̂ +Xβ̂ −Xb

)′ (
Y −Xβ̂ +Xβ̂ −Xb

)
=

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
Xβ̂ −Xb

)′ (
Xβ̂ −Xb

)
+2
(
Y −Xβ̂

)′ (
Xβ̂ −Xb

)
=

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
β̂ − b

)′
X ′X

(
β̂ − b

)
+2Û ′X

(
β̂ − b

)
(equals zero because of the normal equations)

=
(
Y −Xβ̂

)′ (
Y −Xβ̂

)
+
(
β̂ − b

)′
X ′X

(
β̂ − b

)
.

Minimization of S(b) is equivalent to minimization of
(
β̂ − b

)′
X ′X

(
β̂ − b

)
, because

(
Y −Xβ̂

)′ (
Y −Xβ̂

)
is not a function of b. If X is of full column rank, as assumed in (A4), X ′X is a positive definite matrix, and
therefore (

β̂ − b
)′
X ′X

(
β̂ − b

)
≥ 0,

where
(
β̂ − b

)′
X ′X

(
β̂ − b

)
= 0 if and only if β̂ − b = 0.

Alternatively, one can show that β̂ as defined in (6) is the OLS estimator, by taking the derivative of

S(b) with respect to b, and solving the first order condition
dS(β̂)
db = 0. Write

S(b) = Y ′Y − 2b′X ′Y + b′X ′Xb.
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Using the fact that for a symmetric matrix A we have that

∂x′Ax

∂x
= 2Ax,

the first order condition is
∂S
(
β̂
)

∂b
= −2X ′Y + 2X ′Xβ̂ = 0. (8)

Solving for β̂, one obtains:
β̂ = (X ′X)

−1
X ′Y. (9)

Note also that the first order condition (8) can be written as X ′
(
Y −Xβ̂

)
= 0, which gives us normal

equation (7).

Properties of β̂

1. β̂ is a linear estimator. An estimator b is linear if it can be written as b = AY, where A is some matrix,
which depends X alone, and does not depend on Y. In the case of the OLS, A = (X ′X)

−1
X ′.

2. Under Assumptions (A1), (A2) and (A4), β̂ is an unbiased estimator, i.e.

Eβ̂ = β.

In order to show unbiasedness, first, plug-in the expression for Y in Assumption (A1) into equation
(9):

β̂ = (X ′X)
−1
X ′ (Xβ + U)

= β + (X ′X)
−1
X ′U. (10)

Next, consider the conditional expectation of β̂ given X:

E
(
β̂|X

)
= E

(
β + (X ′X)

−1
X ′U |X

)
= β + E

(
(X ′X)

−1
X ′U |X

)
.

Now,

E
(
(X ′X)

−1
X ′U |X

)
= (X ′X)

−1
X ′E (U |X)

= 0,

since, by Assumption (A2), E (U |X) = 0. Therefore,

E
(
β̂|X

)
= β. (11)

Finally, the LIE implies that

Eβ̂ = EE
(
β̂|X

)
= β.

Equation (11) shows that β̂ is conditionally unbiased given X. Note that unbiasedness cannot be
obtained under Assumption (A2*).
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3. Under Assumptions (A1), (A2) and (A4),

V ar
(
β̂|X

)
= (X ′X)

−1
X ′E (UU ′|X)X (X ′X)

−1
.

Under the homoskedastic errors, Assumption (A3), the expression for the conditional variance simplifies
to

V ar
(
β̂|X

)
= σ2 (X ′X)

−1
.

To show that, first by the definition of the variance we have:

V ar
(
β̂|X

)
= E

((
β̂ − E

(
β̂|X

))(
β̂ − E

(
β̂|X

))′
|X
)

= E

((
β̂ − β

)(
β̂ − β

)′
|X
)

= E
(
(X ′X)

−1
X ′UU ′X (X ′X)

−1 |X
)

(follows from (10))

= (X ′X)
−1
X ′E (UU ′|X)X (X ′X)

−1
.

Under homoskedasticity, E (UU ′|X) = σ2In, and

(X ′X)
−1
X ′E (UU ′|X)X (X ′X)

−1
= (X ′X)

−1
X ′
(
σ2In

)
X (X ′X)

−1

= σ2 (X ′X)
−1
X ′X (X ′X)

−1

= σ2 (X ′X)
−1
.

In the case of fixed regressors, V ar
(
β̂
)
= σ2 (X ′X)

−1
.

4. If we add normality of the errors, i.e. under Assumptions (A1)-(A5), we obtain the following result:

β̂|X ∼ N
(
β, σ2 (X ′X)

−1
)
.

It is sufficient to show that, conditional on X, the distribution of β̂ is normal. Then, β̂|X ∼
N
(
E
(
β̂|X

)
, V ar

(
β̂|X

))
. However, normality of β̂|X follows from the facts that β̂ is a linear func-

tion of Y , and that Y |X is normal by Assumption (A5) (see Normal distribution Section in Lecture
1). Again, in the case of fixed regressors, we simply omit conditioning on X,

β̂ ∼ N
(
β, σ2 (X ′X)

−1
)
.

5. Efficiency or the Gauss-Markov Theorem: Under Assumptions (A1)-(A4), the OLS estimator is the
Best Linear Unbiased Estimator of β (BLUE), where "best" means having the smallest variance, i.e.
for any linear and unbiased estimator b, we have that V ar (b|X)−V ar

(
β̂|X

)
is a positive semi-definite

matrix:
V ar (b|X)− V ar

(
β̂|X

)
≥ 0.

Furthermore, if β̃ is a linear unbiased estimator and V ar(β̃|X) = V ar
(
β̂|X

)
, then β̃ = β̂ with

probability one.
Note that since the theorem discusses the conditional variance of the OLS estimator, unbiasedness in
the statement of the theorem actually refers to unbiasedness conditional on X, i.e. E (b|X) = β.

Proof: Let b be a linear and unbiased estimator of β :

b = AY,

E (b|X) = β.
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These conditions imply that AX = I with probability 1. Indeed,

E(b|X) = E (A (Xβ + U) |X)

= AXβ +AE(U |X).

By Assumption (A2), E(U |X) = 0, and thus, in order to obtain unbiasedness we need that AX = Ik.

Next, we show that Cov
(
β̂, b|X

)
= V ar

(
β̂|X

)
:

Cov
(
β̂, b|X

)
= E

((
β̂ − β

)
(b− β)′ |X

)
= E

(
(X ′X)

−1
X ′UU ′A′|X

)
= (X ′X)

−1
X ′E (UU ′|X)A′

= σ2 (X ′X)
−1
X ′A′ (since, by Assumption (A3), E (UU ′|X) = σ2In)

= σ2 (X ′X)
−1 (since X ′A′ = Ik)

= V ar
(
β̂|X

)
.

Finally,

V ar
(
β̂ − b|X

)
= V ar

(
β̂|X

)
− Cov

(
β̂, b|X

)
− Cov

(
b, β̂|X

)
+ V ar (b|X)

= V ar (b|X)− V ar
(
β̂|X

)
. (12)

Now, since any variance-covariance matrix is positive semi-definite, we have that

V ar (b|X)− V ar
(
β̂|X

)
≥ 0.

To show uniqueness, suppose that there is a linear unbiased estimator β̃ such that V ar(β̃|X) =

V ar
(
β̂|X

)
. Then, by (12), V ar

(
β̂ − β̃|X

)
= 0, and therefore β̃ = β̂ + c(X) for some k-vector-

valued function c(X) that can depend only on X. However, since both β̂ and β̃ are conditionally
unbiased given X, it follows that c(X) = 0 with probability one. 2

Note that Assumption (A3), E (UU ′|X) = σ2In, plays a crucial rule in the proof of the result. We
could not draw conclusion about efficiency of OLS without it.
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