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LECTURE 1
BASICS OF PROBABILITY

Randomness, sample space and probability
Probability is concerned with random experiments. That is, an experiment, the outcome of which cannot be
predicted with certainty, even if the experiment is repeated under the same conditions. Such an experiment
may arise because of lack of information, or an extremely large number of factors determining the outcome.
It is assumed that a collection of possible outcomes can be described prior to its performance. The set of
all possible outcomes is called a sample space, denoted by Ω. A simple example is tossing a coin. There
are two outcomes, heads and tails, so we can write Ω = {H,T} . Another simple example is rolling a dice:
Ω = {1, 2, 3, 4, 5, 6} . A sample space may contain finite or infinite number of outcomes. A collection (subset1)
of elements of Ω is called an event. In the rolling a dice example, the event A = {2, 4, 6} occurs if the outcome
of the experiment is an even number.

The following are basic operations on events (sets):

• Union: A ∪B = {ω ∈ Ω : ω ∈ A or ω ∈ B} .

• Intersection: A ∩B = {ω ∈ Ω : ω ∈ A and ω ∈ B} .

• Complement: Ac = {ω ∈ Ω : ω /∈ A} .

The following are some useful properties of set operations:

• Commutativity: A ∪B = B ∪A, A ∩B = B ∩A.

• Associativity: A ∪ (B ∪ C) = (A ∪B) ∪ C, A ∩ (B ∩ C) = (A ∩B) ∩ C.

• Distributive Laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) , A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) .

• DeMorgan’s Laws: (A ∪B)
c

= Ac ∩Bc, (A ∩B)
c

= Ac ∪Bc.

The crucial concept is that of probability or probability function. Probability function assigns probabilities
(numbers between 0 and 1) to the events. There exist a number of interpretations of probability. According
to the frequentist or objective approach, the probability of an event is the relative frequency of occurrence
of the event when the experiment is repeated a “large” number of times. The problem with this approach
is that often experiments to which we want to ascribe probabilities cannot be repeated for various reasons.
Alternatively, the subjective approach interprets probability of an event as being ascribed by one’s knowledge
or beliefs, general agreement and etc.

A probability function has to satisfy the following axioms of probability :

1. P (Ω) = 1.

2. For any event A, P (A) ≥ 0.

3. If A1, A2, . . . is a countable sequence of mutually exclusive2 events, then P (A1 ∪A2 ∪ . . .) = P (A1) +
P (A2) + . . . .

Some important properties of probability include:

• If A ⊂ B then P (A) ≤ P (B).

• P (A) ≤ 1.

• P (A) = 1− P (Ac) .

1A is a subset of B (A ⊂ B) if ω ∈ A implies that ω ∈ B as well.
2Events A and B are mutually exclusive if A ∩B = ∅ (empty set).
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• P (∅) = 0.

• P (A ∪B) = P (A) + P (B)− P (A ∩B) .

A sample space, its collection of events and a probability function together define a probability space (a
formal definition of the probability space is omitted, since it requires some concepts beyond the scope of this
course).

Theorem 1. (Continuity of probability) (a) Let {Ai : i = 1, 2, . . .} be a monotone increasing sequence
of events that increases to A: A1 ⊂ A2 ⊂ . . . ⊂ A, where A = limi→∞Ai ≡ ∪∞i=1Ai. Then limn→∞ P (An) =
P (A).

(b) Let {Ai : i = 1, 2, . . .} be a monotone decreasing sequence of events that decreases to A: A1 ⊃ A2 ⊃
. . . ⊃ A, where A = limi→∞Ai ≡ ∩∞i=1Ai. Then limn→∞ P (An) = P (A).

Proof. Suppose that G ⊂ F . Define F−G = F∩Gc. Note that, since F = (F∩G)∪(F∩Gc) = G∪(F∩Gc) =
G ∪ (F −G), we have that by the third axiom of probability, P (F ) = P (G) + P (F −G), or

P (F −G) = P (F )− P (G).

Now, to prove part (a), let’s define

B1 = A1,

B2 = A2 −A1,

B3 = A3 −A2,

and etc. Note that the events B’s are mutually exclusive, and

A2 = B1 ∪B2,

A3 = B1 ∪B2 ∪B3,

. . .

An = B1 ∪B2 ∪B3 ∪ . . . ∪Bn,
A = B1 ∪B2 ∪B3 ∪ . . . ∪Bn ∪ . . . .

Thus, by the third axiom of probability,

P (A) = P (B1) + P (B2) + . . .

= lim
n→∞

n∑
i=1

P (Bi)

= lim
n→∞

P (∪ni=1Bi)

= lim
n→∞

P (An),

where the equality in the third line is also by the third axiom of probability.
To prove part (b), define

Bn = A1 −An,
B = A1 −A.

Since {Ai} is monotone decreasing to A, the sequence {Bi} is monotone increasing to B. By the result in
part (a)

P (B) = lim
n→∞

P (Bn)

= lim
n→∞

P (A1 −An)

= lim
n→∞

(P (A1)− P (An))

= P (A1)− lim
n→∞

P (An).

On the other hand, P (B) = P (A1 −A) = P (A1)− P (A). The result follows.
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Conditional probability and independence
If P (B) > 0, the conditional probability of an event A, conditional on B is defined as follows:

P (A|B) =
P (A ∩B)

P (B)
.

Conditional probability gives the probability of A knowing that B has occurred. For a given B, the con-
ditional probability function P (·|B) is a proper probability function. It satisfies the axioms of probability
and the same properties as the individual or marginal probability function. While marginal probabilities
are ascribed based on the whole sample space Ω, conditioning can be seen as updating of the sample space
based on new information.

Probability of events A and B occurring jointly is given by the probability of their intersection P (A ∩B) .
The events A and B are called independent if the probability of their occurring together is equal to the
product of their individual probabilities: P (A ∩B) = P (A)P (B). If A and B are independent, then the fact
that B has occurred provides us with no information regarding occurrence of A : P (A|B) = P (A).

If A and B are independent, then so are Ac and B, A and Bc, Ac and Bc. Intuitively this means that,
if B cannot provide information about occurrence of A, then it also cannot tell us whether A did not occur
(Ac).

Random variables
Random experiments generally require a verbal description; thus it is more convenient to work with random
variables - numerical representations to random experiments. A random variable is a function from a sample
space to the real line. For every ω ∈ Ω, a random variable X(ω) assigns a number x ∈ R. For example, in
the tossing a coin experiment, we can define a random variable that takes on the value 0 if the outcome of
the experiment is heads, and 1 if the outcome is tails: X(H) = 0, X(T ) = 1. Naturally, one can define many
different random variables on the same sample space.

For notation simplicity, X(ω) is usually replaced simply by X, however, it is important to distinguish
between random variables (functions) and realized values. A common convention is to denote random
variables by capital letters, and to denote realized values by small letters.

One can speak about the probability of a random variable taking on a particular value P (X = x), where
x ∈ R, or more generally, a probability of X taking a value in some subset of the real line P (X ∈ S),
where S ⊂ R, for example S = (−∞, 2). The probability of such an event is defined by the probability of
the corresponding subset of the original sample space Ω : P (X ∈ S) = P {ω ∈ Ω : X(ω) ∈ S} . For example,
suppose that in the flipping a coin example X is defined as above. Then P (X < 2) is given by the probability
of the event {H,T} , P (X ∈ (0.3, 5)) = P ({T}) , and P (X > 1.2) = P (∅) = 0.

For a random variable X, its cumulative distribution function (CDF) is defined as

FX (x) = P (X ≤ x) .

Sometimes, the subscript X can be omitted if there is no ambiguity concerning the random variable being
described. A CDF must be defined for all u ∈ R, and satisfy the following conditions:

1. limu→−∞ F (u) = 0, limu→∞ F (u) = 1.

2. F (x) ≤ F (y) if x ≤ y (nondecreasing).

3. limu↓x F (u) = F (x) (right-continuous).

A CDF gives a complete description of the distribution of a random variable: i.e. for any subset S of the
real line for which P (X ∈ S) is defined, P (X ∈ S) can be computed using the knowledge of the CDF.

Two random variables are equal in distribution, denoted by "=d", if they have the same CDF, i.e.
FX(u) = FY (u) for all u ∈ R. Note that equality in distribution does not imply equality in the usual sense.
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It is possible, that X =d Y, but P (X = Y ) = 0. Furthermore, the CDFs may be equal even if X and Y are
defined on different probability spaces. In this case, the statement P (X = Y ) is meaningless.

A random variable is called discrete if its CDF is a step function. In this case, there exists a countable set
of real number X = {x1, x2, . . .} such that P (X = xi) = pX (xi) > 0 for all xi ∈ X and

∑
i pX (xi) = 1. This

set is called the support of a distribution, it contains all the values that X can take with probability different
from zero. The values pX (xi) give a probability mass function (PMF). In this case, FX(u) =

∑
xi≤u pX (xi) .

A random variable is continuous if its CDF is a continuous function. In this case, P (X = x) = 0 for
all x ∈ R, so it is impossible to describe the distribution of X by specifying probabilities at various points
on the real line. Instead, the distribution of a continuous random variable can be described by a probability
density function (PDF), which is defined as

fX(x) =
dFX(u)

du

∣∣∣∣∣
u=x

.

Thus, FX(x) =
´ x
−∞ fX(u)du, and P (X ∈ (a, b)) =

´ b
a
fX(u)du. Since the CDF is nondecreasing, f(x) ≥ 0

for all x ∈ R. Further,
´∞
−∞ fX(u)du = 1.

Random vectors, multivariate and conditional distributions
In economics we are usually concerned with relationships between a number of variables. Thus, we need to
consider joint behavior of several random variables defined on the same probability space. A random vector
is a function from the sample space Ω to Rn. For example, select randomly an individual and measure his
height (H), weight (W ) and shoe size (S):

X =

 H
W
S

 .

Another example is tossing a coin n times. In this experiment, the sample space consists of all possible
sequences of n H’s and T ’s. Let Xj be a random variable equal 1 if the j-th toss is H and zero otherwise.
Then, the random vector X is given by

X =


X1

X2

...
Xn

 .

By convention, a random vector is usually a column vector.
Let x ∈ Rn, i.e. x = (x1, x2, . . . , xn)

′
. The CDF of a vector or a joint CDF of its elements is defined as

follows:
F (x1, x2, . . . , xn) = P (X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn) for all x ∈ Rn.

If the joint CDF is a continuous function, then the corresponding joint PDF is given by

f (x1, x2, . . . , xn) =
∂nF (u1, u2, . . . , un)

∂u1∂u2 . . . ∂un

∣∣∣∣∣
u1=x1,u2=x2,...,un=xn

,

and thus,

F (x1, x2, . . . , xn) =

ˆ x1

−∞

ˆ x2

−∞
. . .

ˆ xn

−∞
f (u1, u2, . . . , un) dun . . . du2du1.

Since the joint distribution describes the behavior of all random variables jointly, it is possible from the
joint distribution to obtain the individual distribution of a single element of the random vector (marginal
distribution), or the joint distribution of a number of its elements. One can obtain the marginal distribution
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of, for example, X1 by integrating out variables x2 through xn. Consider, a bivariate case. Let X and Y be
two random variables with the CDF and PDF given by FX,Y and fX,Y respectively. The marginal CDF of
X is

FX(x) = P (X ≤ x)

= P (X ≤ x,−∞ < Y <∞) (Y can take any value)

=

ˆ x

−∞

ˆ ∞
−∞

fX,Y (u, v) dvdu.

Now, the marginal PDF of X is

dFX(x)

dx
=

d

dx

ˆ x

−∞

ˆ ∞
−∞

fX,Y (u, v) dvdu

=

ˆ ∞
−∞

fX,Y (x, v) dv.

In a discrete case, one can obtain a marginal PMF from the joint in a similar way, by using sums instead of
integrals:

pY (yj) =

n∑
i=1

pX,Y (xi, yj) .

Note that a join distribution provides more information than the marginal distributions of the elements
of a random vector together. Two different join distributions may have the same set of marginal distribution
functions. In general, it is impossible to obtain a joint distribution from the marginal distributions.

Conditional distribution describes the distribution of one random variable (vector) conditional on another
random variable (vector). In the continuous case, conditional PDF and CDF of X given Y is defined as

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

FX|Y (x|y) =

ˆ x

−∞
fX|Y (u|y) du,

respectively, for fY (y) > 0. In the discrete case, suppose that with a probability greater than zero X takes
values in {x1, x2, . . . , xn} , and Y takes values in {y1, y2, . . . , yk} . Let pX,Y (xi, yj) be the joint PMF. Then
the conditional PMF of X conditional on Y is given by

pX|Y (x|yj) =
pX,Y (x, yj)

pY (yj)
for j = 1, 2, . . . , k.

It is important to distinguish between fX|Y (x|y) and fX|Y (x|Y ) . The first means that Y is fixed at some
realized value y, and fX|Y (x|y) is not a random function. On the other hand, notation fX|Y (x|Y ) means
that uncertainty about Y remains, and, consequently, fX|Y (x|Y ) is a random function.

Conditional CDFs and PDFs satisfy all the properties of the unconditional CDF and PDF respectively.
The concept of independent random variables is related to that of the events. Suppose that for all pairs

of subsets of the real line, S1 and S2, we have that the events X ∈ S1 and Y ∈ S2 are independent, i.e.

P (X ∈ S1, Y ∈ S2) = P (X ∈ S1)P (Y ∈ S2) .

In this case, we say that X and Y are independent. In particular, the above condition implies that

FX,Y (x, y) = FX(x)FY (y) for all x ∈ R, y ∈ R

The last equation can be used as a definition of independence as well, since the CDF provides a complete
description of the distribution. In the continuous case, random variables are independent if and only if there
joint PDF can be expressed as a product of their marginal PDFs:

fX,Y (x, y) = fX(x)fY (y) for all x ∈ R, y ∈ R.
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Consequently, independence implies that for all x ∈ R, y ∈ R such that fY (y) > 0, we have that

fX|Y (x|y) = fX(x).

An important property of independence is that, for any functions g and h, if X and Y are independent,
then so are g(X) and h(Y ).

Expectation and moments of a distribution
Given a random variable X its mean, or expectation, or expected value defined as

E (X) =
∑
i

xipX (xi) in the discrete case,

E(X) =

ˆ ∞
−∞

xfX(x)dx in the continuous case.

Note that
´ 0

−∞ xfX(x)dx or
´∞

0
xfX(x)dx can be infinite. In such cases, we say that expectation does

not exist, and assign E (X) = −∞ if
´ 0

−∞ xfX(x)dx = −∞ and
´∞

0
xfX(x)dx < ∞, and E (X) = ∞ if´ 0

−∞ xfX(x)dx > −∞ and
´∞

0
xfX(x)dx = ∞. When

´ 0

−∞ xfX(x)dx = −∞ and
´∞

0
xfX(x)dx = ∞, the

expectation is not defined. The necessary and sufficient condition for E (X) to be defined and finite is that
E |X| <∞ (try to prove it), in which case we say that X is integrable.

Similarly to the continuous case, E (X) can be infinite or undefined in the discrete case if X can take on
countably infinite number of values.

Mean is a number (not random), the weighted average of all values that X can take. It is a characteristic
of the distribution and not of a random variable, i.e. if X =d Y then E(X) = E(Y ). However, equality of
means does not imply equality of distributions.

Let g be a function. The expected value of g(X) is defined as

Eg(X) =

ˆ ∞
−∞

g(x)fX(x)dx.

The k-th moment of a random variable X is defined as E
(
Xk
)
. The first moment if simply the mean.

The k-th central moment X is E(X − EX)k. The second central moment is called the variance:

V ar(X) = E(X − EX)2

=

ˆ ∞
−∞

(x− EX)
2
fX(x)dx.

While the mean measures the center of the distribution, the variance is a measure of the spread of the
distribution.

If E |X|n = ∞, we say that the n-th moment does not exist. If the n-th moment exists, then all
lower-order moments exist as well as can be seen from the following result.

Lemma 2. Let X be a random variable, and let n > 0 be an integer. If E |X|n < ∞ and m is an integer
such that m ≤ n, then E |X|m <∞.
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Proof. We consider the continuous case. In the discrete case, the proof is similar.

E |X|m =

ˆ ∞
−∞
|x|m fX (x) dx

=

ˆ
|x|≤1

|x|m fX (x) dx+

ˆ
|x|>1

|x|m fX (x) dx

≤
ˆ
|x|≤1

fX (x) dx+

ˆ
|x|>1

|x|m fX (x) dx (because |x|m ≤ 1 under the first integral)

≤
ˆ ∞
−∞

fX (x) dx+

ˆ
|x|>1

|x|n fX (x) dx (because |x|m ≤ |x|n under the second integral)

≤ 1 +

ˆ ∞
−∞
|x|n fX (x) dx

= 1 + E |X|n

<∞

For a function of two random variables, h (X,Y ) , its expectation is defined as

Eh(X,Y ) =

ˆ ∞
−∞

ˆ ∞
−∞

h(x, y)fX,Y (x, y)dxdy

(with a similar definition in the discrete case, with the integral and joint PDF replaced by the sum and joint
PMF). Covariance of two random variable X and Y is defined as

Cov(X,Y ) = E (X − EX) (Y − EY )

=

ˆ ∞
−∞

ˆ ∞
−∞

(x− EX) (y − EY ) fX,Y (x, y)dxdy.

Let a, b and c be some constants. Some useful properties include:

• Linearity of expectation: E (aX + bY + c) = aE(X) + bE(Y ) + c.

• V ar(aX + bY + c) = a2V ar(X) + b2V ar(Y ) + 2abCov(X,Y ).

• Cov(aX + bY, cZ) = acCov(X,Z) + bcCov(Y, Z).

• Cov(X,Y ) = Cov(Y,X).

• Cov(X, a) = 0.

• Cov(X,X) = V ar(X).

• E(X − EX) = 0.

• Cov(X,Y ) = E(XY )− E(X)E(Y ).

• V ar(X) = E
(
X2
)
− (EX)

2
.

The correlation coefficient of X and Y is defined as

ρX,Y =
Cov(X,Y )√
V ar(X)V ar(Y )

.

The correlation coefficient is bounded between -1 and 1. It is equal to -1 or 1 if and only if, with probability
equal 1, one random variable is a linear function of another: Y = a+ bX.
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If X and Y are independent, then E(XY ) = E(X)E(Y ) and Cov(X,Y ) = 0. However, zero correlation
(uncorrelatedness) does not imply independence.

For a random vector (matrix), the expectation is defined as a vector (matrix) composed of expected
values of its corresponding elements:

E(X) = E


X1

X2

...
Xn



=


E (X1)
E (X2)

...
E (Xn)

 .

The variance-covariance matrix of a random n-vector is a n× n matrix defined as

V ar(X) = E (X − EX) (X − EX)′

= E


X1 − EX1

X2 − EX2

...
Xn − EXn

( X1 − EX1 X2 − EX2 . . . Xn − EXn

)

=


E (X1 − EX1) (X1 − EX1) E (X1 − EX1) (X2 − EX2) . . . E (X1 − EX1) (Xn − EXn)
E (X2 − EX2) (X1 − EX1) E (X2 − EX2) (X2 − EX2) . . . E (X2 − EX2) (Xn − EXn)

. . . . . . . . . . . .
E (Xn − EXn) (X1 − EX1) E (Xn − EXn) (X2 − EX2) . . . E (Xn − EXn) (Xn − EXn)



=


V ar (X1) Cov (X1, X2) . . . Cov (X1, Xn)

Cov (X2, X1) V ar (X2) . . . Cov (X2, Xn)
. . . . . . . . . . . .

Cov (Xn, X1) Cov (Xn, X2) . . . V ar (Xn)

 .

It is a symmetric, positive semi-definite matrix, with variances on the main diagonal and covariances off the
main diagonal. The variance-covariance matrix is positive semi-definite (denoted by V ar(X) ≥ 0), since for
any n-vector of constants a, we have that a′V ar(X)a ≥ 0 :

a′V ar(X)a = a′E (X − EX) (X − EX)′a

= Ea′ (X − EX) (X − EX)′a

= E ((X − EX)′a)
2

≥ 0.

Let X ∈ Rn and Y ∈ Rk be two random vectors. Their covariance of X with Y is a n× k matrix defined
as

Cov(X,Y ) = E (X − EX) (Y − EY )′

=


Cov (X1, Y1) Cov (X1, Y2) . . . Cov (X1, Yk)
Cov (X2, Y1) Cov (X2, Y2) . . . Cov (X2, Yk)

. . . . . . . . . . . .
Cov (Xn, Y1) Cov (Xn, Y2) . . . Cov (Xn, Yk)

 .

Some useful properties:

• V ar(X) = E (XX ′)− E (X)E (X)
′
.
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• Cov(X,Y ) = (Cov(Y,X))
′
.

• V ar(X + Y ) = V ar(X) + V ar(Y ) + Cov(X,Y ) + Cov(Y,X).

• If Y = α + ΓX, where α ∈ Rk is a fixed (non-random) vector and Γ is a k × n fixed matrix, then
V ar(Y ) = Γ(V ar(X))Γ′.

• For random vectorsX, Y , Z and non-randommatricesA, B, C: Cov(AX+BY,CZ) = A(Cov(X,Z))C ′+
B(Cov(Y,Z))C ′.

Conditional expectation
Conditional expectation is defined similarly to unconditional, but with respect to a conditional distribution.
For example, in the continuous case,

E (X|Y ) =

ˆ
xfX|Y (x|Y ) dx.

In the discrete case, the condition is defined similarly, by using summation and the conditional PMF. Contrary
to the unconditional expectation, the conditional expectation is a random variable, since fX|Y (x|Y ) is a
random function. The conditional expectation of X conditional on Y gives the average value of X conditional
on Y , and can be seen as a function of Y : E (X|Y ) = g(Y ) for some function g, which is determined by the
joint distribution of X and Y.

Conditional expectation satisfies all the properties of unconditional. Other properties include:

• Law of Iterated Expectation (LIE): EE (X|Y ) = E(X). Proof for the bivariate continuous case:

EE (X|Y ) =

ˆ
E (X|y) fY (y)dy

=

ˆ (ˆ
xfX|Y (x|y)dx

)
fY (y)dy

=

ˆ ˆ
xfX|Y (x|y)fY (y)dydx

=

ˆ ˆ
xfX,Y (x, y)dydx

=

ˆ
x

(ˆ
fX,Y (x, y)dy

)
dx

=

ˆ
xfX(x)dx

= E(X).

• For any functions g and h, E (g(X)h(Y )|Y ) = h(Y )E (g(X)|Y ) .

• If X and Y are independent, then E(X|Y ) = E(X), a constant.

• Suppose that E(X|Y ) = E(X), then Cov(X,Y ) = 0.

The second property is, basically, linearity of expectation, since, once we condition on Y , h(Y ) can be seen
as a constant. Also, note that E(X|Y ) = E(X) does not imply that X and Y are independent, because,
it is simply says that the first conditional moment is not a function of Y. Still, it is possible, that higher
conditional moments of X and its conditional distribution depend on Y. The property E(X|Y ) = E(X) is
called mean independence.
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Moment generating function
The material discussed here is adopted from Hogg, McKean, and Craig (2005): Introduction to Mathematical
Statistics. Let X be random variable such that E(etX) < ∞ for −h < t < h for some h > 0. The moment
generating function (MGF) of X is defined as M(t) = E(etX) for −h < t < h.

Let M (s)(t) denote the s-th order derivative of M(t) at t. Suppose that X is continuously distributed
with density f(x). We have:

M (1)(t) =
dM(t)

dt

=
d

dt

ˆ
etxf(x)dx

=

ˆ
d

dt
etxf(x)dx

=

ˆ
xetxf(x)dx.

Since e0·x = 1, for the first derivative of the MGF evaluated at t = 0, we have:

M (1)(0) =

ˆ
xf(x)dx = EX.

Next, for the second derivative of the the MGF we have:

M (2)(t) =
d2M(t)

dt2

=
d

dt

ˆ
xetxf(x)dx

=

ˆ
x2etxf(x)dx,

and therefore
M (2)(0) = EX2.

More generally,

M (s)(t) =

ˆ
xsetxf(x)dx,

and, when it exists,
M (s)(0) = EXs.

Thus, using the MGF one can recover all existing moments of the distribution of X. In fact, a stronger
result holds, and one can show that if two random variables have the same MGFs then they have the same
distribution.

Lemma 3. LetMX(t) andMY (t) be the two MGFs corresponding to the CDFs FX(u) and FY (u) respectively,
and assume that MX(t) and MY (t) exist on −h < t < h for some h > 0. Then FX(u) = FY (u) for all u ∈ R
if and only if MX(t) = MY (t) for all t in −h < t < h.

Normal distribution
For x ∈ R, the density function (PDF) of a normal distribution is given by

f(x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)

2

2σ2

)
,
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where µ and σ2 are the two parameters determining the distribution. The common notation for a normally
distributed random variable is X ∼ N(µ, σ2). The normal distribution with µ = 0 and σ = 1 is called the
standard normal distribution.

Next, we derive the MGF of a normal distribution. Let Z ∼ N(0, 1). The MGF is given by

MZ(t) = EetZ

=

ˆ
etz

1√
2π
e−z

2/2dz

=

ˆ
1√
2π
e−z

2/2+tz−t2/2et
2/2dz

= et
2/2

ˆ
1√
2π
e−(z−t)2/2dz

= et
2/2,

where the last equality follows because (2π)−1/2e−(z−t)2/2 is a normal PDF function, and therefore it inte-
grates to 1. Further, for σ 6= 0, define X = µ+ σZ, then the MGF of X is given by

MX(t) = EetX

= Eetµ+tσZ

= etµEetσZ

= etµMZ(tσ)

= etµ+t2σ2/2.

Note also that X ∼ N(µ, σ2). To show this, write z = (x− µ)/σ, and plug this into f(z; 0, 1)dz to obtain:

1√
2π
e−(x−µ)2/(2σ2)d

(
x− µ
σ

)
=

1√
2π
e−(x−µ)2/(2σ2) 1

σ
dx =

1√
2πσ2

e−(x−µ)2/(2σ2)dx = f(x;µ, σ2)dx.

(If σ < 0, replace it with |σ|). It follows now that the MGF of N(µ, σ2) distribution is given by

MX(t) = etµ+t2σ2/2.

We can use MX(t) to compute the moments of a normal distribution. We have

d

dt
MX(t) =

(
µ+ tσ2

)
etµ+t2σ2/2,

d2

dt2
MX(t) =

(
µ+ tσ2

)2
etµ+t2σ2/2 + σ2etµ+t2σ2/2,

and therefore

EX =
d

dt
MX(0) = µ,

EX2 =
d2

dt2
MX(0) = µ2 + σ2, or

V ar(X) = EX2 − (EX)2 = σ2.

Let Z1, . . . , Zn be independent N(0, 1) random variables. We say Z = (Z1, . . . , Zn)′ is a standard normal
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random vector. For t ∈ Rn, the MGF of Z is

MZ(t) = Eet
′Z

= Eet1Z1+...+tnZn

=

n∏
i=1

EetiZi

=

n∏
i=1

et
2
i /2

= et
′t/2, (1)

where the equality in the third line follows by independence.
Let Σ be an n×n symmetric positive semidefinite matrix. Since Σ is symmetric, it admits an eigenvalue

decomposition:
Σ = CΛC ′,

where Λ is a diagonal matrix with the eigenvalues of Σ on the main diagonal:

Λ =


λ1 0

λ2

. . .
0 λn

 ,

and C is a matrix of eigenvectors such that C ′C = CC ′ = In. Since Σ is positive semidefinite, λi ≥ 0 for all
i = 1, . . . , n, and we can define a square-root matrix of Λ as

Λ1/2 =


λ

1/2
1 0

λ
1/2
2

. . .
0 λ

1/2
n

 .

The symmetric square-root matrix of Σ is defined as

Σ1/2 = CΛ1/2C ′.

Note that Σ1/2Σ1/2 = CΛ1/2C ′CΛ1/2C ′ = CΛ1/2Λ1/2C ′ = CΛC ′ = Σ.
Now let µ ∈ Rn, and define

X = µ+ Σ1/2Z, (2)

where Z is a standard normal random n-vector. The MGF of X is

MX(t) = Eet
′X

= Eet
′(µ+Σ1/2Z)

= et
′µEet

′Σ1/2Z

= et
′µEe(Σ1/2t)′Z

= et
′µe(Σ1/2t)′(Σ1/2t)/2 (by (1))

= et
′µ+t′Σt/2.

We say that X is a normal random vector if its MGF is given by exp(t′µ + t′Σt/2). We denote this as
X ∼ N(µ,Σ). One can show that the joint PDF of X is given by

f(x;µ,Σ) = (2π)
−n/2

(det Σ)
−1/2

exp
(
−(x− µ)′Σ−1(x− µ)/2

)
, for x ∈ Rn.
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One can also show that for X ∼ N(µ,Σ),

EX = µ,

V ar(X) = Σ.

The last two results can be easily shown using the definition of X in (2). They can also be derived using the
MGF of X. Since ∂(t′µ)/∂t = µ, ∂(t′Σt)/∂t = (Σ + Σ′)t = 2Σt, and ∂(Σt)/∂t = Σ, we obtain:

∂

∂t
MX(t) = (µ+ Σt) et

′µ+t′Σt/2,

EX =
∂

∂t
MX(0) = µ;

∂2

∂t∂t′
MX(t) = Σet

′µ+t′Σt/2 + (µ+ Σt) (µ+ Σt)
′
et

′µ+t′Σt/2,

EXX ′ =
∂2

∂t∂t′
MX(0) = Σ + µµ′,

V ar(X) = EXX ′ − EXEX ′ = Σ.

Lemma 4. Let X = (X1, . . . , Xn) ∼ N(µ,Σ), and suppose that Cov(Xi, Xj) = 0 for i 6= j, i.e. Σ is a
diagonal matrix:

Σ =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . . . . . . . . . . .
0 0 . . . σ2

n

 .

Then X1, . . . , Xn are independent.

Proof. First, for t ∈ Rn,
t′Σt = t21σ

2
1 + . . .+ t2nσ

2
n.

Hence, the MGF of X becomes

MX(t) = exp(t′µ+ t′Σt/2)

= exp(t1µ1 + . . .+ tnµn + (t21σ
2
1 + . . .+ t2nσ

2
n)/2)

=

n∏
i=1

exp(tiµi + t2iσ
2
i /2),

which is the MGF of n independent normal random variables with mean µi and variance σ2
i , i = 1, . . . , n.

Note that for a standard normal random vector, µ = 0 and Σ = In.

Lemma 5. Let X ∼ N(µ,Σ), and define Y = α+ ΓX. Then Y ∼ N (α+ Γµ,ΓΣΓ′).

Proof. It suffices to show that the MGF of Y is exp(t′(α+ Γµ) + t′ΓΣΓ′t/2). We have:

E exp(t′Y ) = E exp(t′(α+ ΓX))

= exp(t′α)E exp(t′ΓX)

= exp(t′α)E exp((Γ′t)′X)

= exp(t′α) exp((Γ′t)′µ+ (Γ′t)′Σ(Γ′t)/2)

= exp(t′(α+ Γµ) + t′ΓΣΓ′t/2).

The next result shows that if X is a normal random vector, then the marginal distributions of its elements
are also normal.
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Corollary 6. Let X ∼ N(µ,Σ), partition it as X = (X ′1, X
′
2)′, where X1 ∈ Rn1 and X2 ∈ Rn2 (i.e. X1 and

X2 are jointly normal), and partition µ and Σ accordingly:

X =

(
X1

X2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
.

Then X1 ∼ N(µ1,Σ11).

Proof. Take A =
(
In1 0n1×n2

)
, so that X1 = AX. By Lemma 5,

X1 ∼ N (Aµ,AΣA′) ,

however,

Aµ =
(
In1

0n1×n2

)( µ1

µ2

)
= µ1,

AΣA′ =
(
In1 0n1×n2

)( Σ11 Σ12

Σ21 Σ22

)(
In1

0n2×n1

)
= Σ11.

We will show next that if X and Y are jointly normal, then the conditional distribution of Y given X is
also normal.

Lemma 7. Let (
X
Y

)
∼ N

((
µX
µY

)
,

(
ΣXX ΣXY
ΣY X ΣY Y

))
,

where ΣXX is positive definite. Then,

Y |X ∼ N
(
µY |X(X),ΣY |X

)
, where

µY |X(X) = µY + ΣY XΣ−1
XX (X − µX) (a vector-valued function of X).

ΣY |X = ΣY Y − ΣY XΣ−1
XXΣXY (a fixed matrix).

Proof. Define V = Y − ΣY XΣ−1
XXX =

(
−ΣY XΣ−1

XX I
)( X

Y

)
. We have

Cov(V,X) = Cov(Y − ΣY XΣ−1
XXX,X)

= Cov(Y,X)− Cov(ΣY XΣ−1
XXX,X)

= ΣY X − ΣY XΣ−1
XXCov(X,X)

= 0.

Hence, V and X are uncorrelated. Next, since we can write(
V
X

)
=

(
−ΣY XΣ−1

XX I
I 0

)(
X
Y

)
,

it follows that V and Xare jointly normal. Hence V and X are independent, and

V =d V |X ∼ N(EV, V ar(V )).

Next,

EV = µY − ΣY XΣ−1
XXµX ,

V ar(V ) = V ar(Y ) + ΣY XΣ−1
XXV ar(X)Σ−1

XXΣXY − ΣY XΣ−1
XXCov(X,Y )− Cov(Y,X)Σ−1

XXΣXY

= ΣY Y − ΣY XΣ−1
XXΣXY

= ΣY |X .
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Thus,
V |X ∼ N(µY − ΣY XΣ−1

XXµX ,ΣY |X).

This in turn implies that(
V + ΣY XΣ−1

XXX
)
|X ∼ N(µY + ΣY XΣ−1

XX(X − µX),ΣY |X) =d N(µY |X(X),ΣY |X).

The desired result follows because, by construction, Y = V + ΣY XΣ−1
XXX.

Note that, while the conditional mean Y is a function of the conditioning variable X, the conditional
variance does not depend on X. Furthermore, in the multivariate normal case, the conditional expectation
is a linear function of X, i.e. we can write

E (Y |X) = α+BX,

where α = µY − ΣY XΣ−1
XXµX , and B = ΣY XΣ−1

XX . In particular, when Y is a random variable (scalar), we
can write

E(Y |X) = α+X ′β,

where β =
(
ΣY XΣ−1

XX

)′
= (V ar(X))

−1
Cov(X,Y ).

The following distributions are related to normal and used extensively in statistical inference:

• Chi-square distribution. Suppose that Z ∼ N (0, In), so the elements of Z, Z1, Z2, . . . , Zn are
independent identically distributed (iid) standard normal random variables. Then X = Z ′Z =

∑n
i=1 Z

2
i

has a chi-square distribution with n degrees of freedom. It is conventional to write X ∼ χ2
n. The mean

of the χ2
n distribution is n and the variance is 2n. If X1 ∼ χ2

n1
, X2 ∼ χ2

n2
and independent, then

X1 +X2 ∼ χ2
n1+n2

.

• t distribution. Let Z ∼ N(0, 1) and X ∼ χ2
n be independent , then Y = Z/

√
X/n has a t distribution

with n degrees of freedom (Y ∼ tn). For large n, the density of tn approaches that of N(0, 1). The
mean of tn does not exists for n = 1, and zero for n > 1. The variance of the tn distribution is n/(n−2)
for n > 2.

• F distribution. Let X1 ∼ χ2
n1

and X2 ∼ χ2
n2

be independent, then Y = X1/n1

X2/n2
has an F distribution

with n1, n2 degrees of freedom (Y ∼ Fn1,n2
). F1,n = (tn)

2
.
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