
DECEMBER 14, 2015

LECTURE 16
INTRODUCTION TO STATISTICS: INFERENCE

Recall the Normal location-scale model discussed in Lecture 15. The econometrician is interested
in learning about the mean µ of the distribution N(µ, σ2) using n iid draws from that distribution:
Y1, . . . , Yn. We proposed to estimate µ using the average of Yi’s:

µ̂ = Ȳ =
1

n

n∑
i=1

Yi.

We showed that the estimator µ̂ is a random variable with the following properties:

µ̂ ∼ N
(
µ,
σ2

n

)
.

One of the implications of the above result is µ̂ will be different from the true parameter µ with
probability equal to one:

P (µ̂ = µ) = 0.

Thus, with finite amount of data, one can never learn the true population value of the parameter.
Nevertheless, we expect µ̂ to be close to/informative about the true value µ, especially when n is large.
At the inference stage, the econometrician must decide whether certain values of µ are supported or
not by the observed data.

1 Hypotheses testing

Definition 1. A statistical hypothesis is an assertion about the value of an unknown parameter.

For example, in the Normal location-scale model, hypotheses about µ can be:

µ = 0,

µ = 100,

µ > 0,

µ ≥ 0,

µ 6= 0,

and etc. In a typical hypotheses testing problem, we will see two competing hypotheses, denoted H0

and H1. In the simplest case, H0 and H1 will take the following form:

H0 : µ = µ0, H1 : µ = µ1,

where µ0 and µ1 are two numbers such that µ0 6= µ1. For example,

H0 : µ = 0, H1 : µ = 1.
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In that example, the econometrician must decide whether the data Y1, . . . , Yn is drawn from the normal
distribution with mean zero or mean one. Note that this problem is much simpler than the estimation
problem discussed in the previous lecture: the econometrician does not have to try and guess the true
value of µ (which involves choosing among infinitely many possibilities), but rather decide between
only two values.

Definition 2. We say that a hypothesis is simple if it specifies a unique value of the unknown
parameter. If a hypothesis specifies more than one value for the parameter, it is said to be composite.

We often encounter situations where one or both hypotheses are composite:

H0 : µ = 0, H1 : µ 6= 0,

H0 : µ ≤ 0, H1 : µ > 0,

and etc. Note that H0 and H1 must be disjoint:

H0 ∩H1 = ∅,

i.e. they cannot be both true simultaneously. At the same time, we assume that either H0 or H1 must
be true, i.e. the true value µ satisfies

µ ∈ (H0 ∪H1) .

Definition 3. The union of H0 and H1 is called the maintained hypothesis.

The roles of H0 and H1 are not arbitrary. It is agreed that the null hypothesis (H0) should be
treated as true unless the data provides sufficient evidence against it. Hence, H1 is often referred to
as the alternative hypothesis. The testing problem is viewed as testing of H0 against H1. It is also
agreed that the assertion that the econometrician is interested in showing as true must be stated as
H1. Therefore, in such a setup, the econometrician must carry the burden of proof.

Definition 4. Statistical test is a decision rule for choosing between H0 and H1.

Definition 5. Test statistic is any function of the data Y1, . . . , Yn that is used in the definition of a
test.

Typically, a test statistic measures the distance between the data and the null hypothesis. When
this distance is large, one would reject the null hypothesis in favor of the alternative. The range
of possible values for the test statistic is divided into two regions: the acceptance region and the
rejection (or critical) region. The acceptance region corresponds to a small distances between the test
statistic and the null hypothesis; and the rejection region corresponds to large distances between the
test statistic and the null. A statistical test is formulated as a rejection rule: Reject H0 when the test
statistic is in the rejection region.

Thus, constructing a statistical test comes down to choosing a test statistic and selecting a decision
rule. Note that, when H0 is true, it is possible for the distance between the statistic and H0 to be large.
This can happen due to randomness of the data. For example, when data are drawn from N(0, σ2), it
is possible for finitely many draws Yi’s to be “far” from zero, even though such an event would occur
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only with a small probability. Thus, a test statistic can end up in the rejection region even though
the null hypothesis is true. Similarly, when H1 is true, a test statistic may end up in the acceptance
region. Thus, our main concern here is making a wrong decision and evaluating the probability of
making a wrong decision.

When there are two possible states of the world (H0 is true or H1 is true), and the econometrician
must choose between H0 and H1, there are four possible outcomes:

choice
H0 H1

truth
H0 X Type I error
H1 Type II error X

Definition 6. (Type I and II errors) Rejecting H0 when it is true is called Type I error. Accepting
H0 when it is false is called Type II error.

Type I error our first and foremost concern. This is because the econometrician has to carry the
burden of proof: the hypothesis he is interested in is stated as H1, and the econometrician is supposed
to find strong evidence in the data against H0. Thus, our first concern is with rejecting H0 when in
fact it is true. Hence, Type I error can be viewed as a false discovery.

Ideally, we would like to have the probabilities of both errors, Type I and II, to be as small as
possible. Unfortunately, typically there is a tradeoff between the two. Once it has been decided what
test statistic to use, a test and the probabilities of Type I and II errors would depend only on the
definition of the rejection region. To reduce the probability of Type I error, one would have to shrink
the rejection region. While this would reduce the probability of rejecting H0 when it is true (and the
probability of Type I error), it would also reduce the probability of rejecting H0 when it is false and,
therefore, will increase the probability of Type II error.

Definition 7. (Size and power) The probability of rejecting H0 when it is true (the probability of
Type I error) is called the size of a test. The probability of rejecting H0 when it is false (one minus
the probability of Type II error) is called the power of a test.

Since our first concern is with false discoveries, we therefore define the validity of a test through
size control.

Definition 8. (Validity of a test/size control) Let α ∈ (0, 1) be a pre-specified significance level.
We say that a test is valid if the probability of rejecting H0 when it is true (the probability of Type I
error) does not exceed α.

The significance level α is selected to be a small number (close to zero): the commonly used values
are: 0.05, 0.01, and 0.10. For example, when α = 0.05, we only allow tests that have the probability
of type one error under 5%. Tests that reject H0 when it is true with a higher probability would be
invalid.

Given two valid tests, we would say that one of them is more powerful if it rejects H0 with a higher
probability when it is false. Such a test would be more desirable as it has a smaller probability of Type
II error.

Below, we illustrate the discussed concepts using the Normal model.
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2 Normal location model

Suppose that Y1, . . . , Yn are iid N(µ, σ2). Assume for simplicity that σ2 is known. Thus, the only
unknown parameter is the mean µ. We are interested in testing

H0 : µ = µ0 vs H1 : µ 6= µ0.

Such an alternative hypothesis (and the corresponding test) is called two-sided, since H1 allows devi-
ations from H0 in either direction. Note that µ0 is a known number specified by the econometrician.

The information about µ in the data is summarized by the estimator

µ̂ =
1

n

n∑
i=1

Yi ∼ N
(
µ,
σ2

n

)
.

Note that, since both σ2 and n are known in this model, the variance of the distribution of µ̂ is known.
We need to decide whether the data supports µ = µ0 or µ 6= µ0.

We define the test statistic as the distance between the null hypothesis (or µ0) and the data (or µ̂):

|S(µ0)| =
∣∣∣∣ µ̂− µ0

σ/
√
n

∣∣∣∣ ,
where

S(µ0) =
µ̂− µ0

σ/
√
n
.

The distribution of µ̂ is centered around the true value µ, and the estimator µ̂ is expected to be in its
neighborhood. If in our sample µ̂ is far from µ0, it would be plausible to argue that µ0 6= µ. Thus,
a large distance between µ̂ and µ0 can be taken as evidence against H0 and in favor of H1. It is
important that we do not simply use the absolute distance between µ̂ and µ0, but re-scale it using the
standard deviation of the distribution of µ̂, which is given by σ/

√
n.1

We should reject H0 when the distance between µ0 and µ̂ is large:

Reject H0 when |S(µ0)| =
∣∣∣∣ µ̂− µ0

σ/
√
n

∣∣∣∣ > c,

where c > 0 is some constant. This constant c is called the critical value. Thus, the corresponding
rejection or critical region for S(µ0) is given by

Rejection region = (−∞,−c) ∪ (c,∞),

and the acceptance region is given by

Acceptance region = [−c, c].
1“Large distance” means different things in distributions with different variances. When the variance is equal to 1,

the absolute distance of 2 from the mean can be considered large: the probability of drawing a value that deviates from
the mean by 2 or more is under 5% (approximately). At the same time, if the variance is equal to 100, the probability
of drawing a such a value is over 84%. Hence, in statistics “large” must be defined relatively to the variance/standard
deviation of the distribution.
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The constant c has to be chosen so that the size of the test is controlled, i.e. the probability of Type
I error does not exceed some pre-specified value α. The probability of Type I error is given by the
probability of S(µ0) ∈ Rejection region. Hence, c must satisfy the following condition: when µ = µ0

P

(∣∣∣∣ µ̂− µ0

σ/
√
n

∣∣∣∣ > c |µ = µ0

)
= P

(∣∣∣∣ µ̂− µσ/
√
n

∣∣∣∣ > c

)
= α.

Since µ̂ ∼ N(µ, σ2/n), it follows by the properties of the normal distribution that

µ̂− µ
σ/
√
n
∼ N(0, 1).

Denoting

Z =
µ̂− µ
σ/
√
n
∼ N(0, 1),

we find that the critical value c is determined by

P (|Z| > c) = α,

which must be solved for c in terms of α. The solution is described in the following lemma.

Lemma 9. Let Z ∼ N(0, 1). The constant c in P (|Z| > c) = α satisfies

c = z1−α/2,

where z1−α/2 is the (1− α/2)-th quantile of N(0, 1) distribution.

Remark. When α = 0.05, the critical value c is given by z1−0.05/2 = z0.975 ≈ 1.96. When α = 0.01, the
corresponding critical value is z1−0.01/2 = z0.995 ≈ 2.58. When α = 0.10, the corresponding critical
value is z1−0.1/2 = z0.95 ≈ 1.64.

Proof. Recall that from the definition of quantiles (see Theorem 2 in Lecture 10),

P
(
Z ≤ z1−α/2

)
= 1− α/2,

and
P
(
Z > z1−α/2

)
= α/2.

Thus,

P
(
|Z| > z1−α/2

)
= P

(
Z > z1−α/2

)
+ P

(
Z < −z1−α/2

)
= α/2 + α/2

= α.

To summarize, when σ is known, our size-α test for H0 : µ = µ0 against H1 : µ 6= µ0 depends on
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the test statistic
S(µ0) =

µ̂− µ0

σ/
√
n
.

The test is given by
Reject H0 when |S(µ0)| > z1−α/2.

Lemma 9 establishes, that the probability of Type I error for our test is exactly α, and therefore the
test is a valid size α test.

3 Power

It is important also to evaluate the probability of Type II error or the power of the test, where the
latter is given by the probability of rejecting H0 when it is false. For that purpose, we need to know
the distribution of our statistic S(µ0) under H1 : µ 6= µ0. Write

S(µ0) =
µ̂− µ0

σ/
√
n

=
µ̂− µ
σ/
√
n

+
µ− µ0

σ/
√
n

= Z +
µ− µ0

σ/
√
n

∼ N

(
µ− µ0

σ/
√
n
, 1

)
.

While under H0 : µ = µ0 the distribution of S(µ0) is centered around zero, under alternative it is
shifted by

µ− µ0

σ/
√
n
.

Note that the variance of S(µ0) remains the same under H0 and H1. The shifting of the distribution of
S(µ0) puts more probability mass into the rejection region, and as a result the probability of rejection
would be greater than the null rejection probability α:

P
(
|S(µ0)| > z1−α/2

)
= P

(
S(µ0) > z1−α/2

)
+ P

(
S(µ0) < −z1−α/2

)
= P

(
Z +

µ− µ0

σ/
√
n
> z1−α/2

)
+ P

(
Z +

µ− µ0

σ/
√
n
< −z1−α/2

)
= P

(
Z > z1−α/2 −

µ− µ0

σ/
√
n

)
+ P

(
Z < −z1−α/2 −

µ− µ0

σ/
√
n

)
.

Note that the only unknown quantity in the above expression is the true value of the parameter µ.
Thus, the power of the test is a function of µ: we can compute it after substituting values for µ. Let
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π(µ) denote the power as a function of µ, i.e.

π(µ) = P
(
|S(µ0)| > z1−α/2

)
= P

(
Z > z1−α/2 −

µ− µ0

σ/
√
n

)
+ P

(
Z < −z1−α/2 −

µ− µ0

σ/
√
n

)
.

Example 10. Suppose that σ = 1, n = 100, µ0 = 0, and α = 0.05, so that z1−α/2 = 1.96. In that
case,

π(µ) = P (Z > 1.96− 10µ) + P (Z < −1.96− 10µ) .

We obtain:

π(µ) =



0.9988, µ = −0.5

0.516, µ = −0.2

0.1701, µ = −0.1

0.05, µ = 0

0.1701, µ = 0.1

0.516, µ = 0.2

0.9988, µ = 0.5

Note that the power of the test is increasing in the distance between µ and µ0: H0 is more likely to be
rejected when µ is further away from µ0. Note also that the power is symmetric around µ0 = 0. This
is a feature of two-sided tests in the case of symmetric distributions. Lastly, a test is more powerful
when there is more data: a large value of n would correspond to the shift

µ− µ0

σ/
√
n

of a larger magnitude. A bigger portion of the distribution would be in the rejection region when
µ 6= µ0,which would correspond to a higher probability of rejection. For example, suppose that
n = 400. In that case,

π(µ) = P (Z > 1.96− 20µ) + P (Z < −1.96− 20µ) ,

and

π(µ) =



0.9999, µ = −0.5

0.9793, µ = −0.2

0.516, µ = −0.1

0.05, µ = 0

0.516, µ = 0.1

0.9793, µ = 0.2

0.9999, µ = 0.5
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4 p-values

The rejection region of the test described in the previous section depends on the critical value z1−α/2,
which in turn depends on the significance level α. Larger values of α correspond to a higher probability
of Type I error, and therefore to larger rejection regions. Therefore, it is easier to reject H0 in the case
of a test with a bigger significance level α: it is possible that one rejects H0 in the case of a test with
significance level α1, but then accepts H0 in the case of a test with significance level α2 < α1.

Definition 11. Given the value of a test statistic, the p-value is the smallest significance level that
allows to reject H0.

It follows from the definition of p-values, that a statistical test with significance level α can be
alternatively stated as

Reject H0 if p-value<α.

For the two-sided test discussed in the previous section the p-value can be computed as follows.
The test is given by

Reject H0 if |S(µ0)| > c

or
Reject H0 if S(µ0) > c or S(µ0) < −c.

Our decision would switch from rejection to acceptance exactly at c = S(µ0). Hence, we need to find
the tail probabilities corresponding to the probability mass to the right of |S(µ0)| and to the left of
−|S(µ0)|. Let Φ(z) denote the standard normal CDF (recall that the null distribution of S(µ0) is
N(0, 1)). The probability mass to the right of |S(µ0)| is given by

1− Φ(|S(µ0)|).

The probability mass to the left of −|S(µ0)| is given by

Φ(−|S(µ0)|) = 1− Φ(|S(µ0)|),

where the equality holds due to the symmetry of the standard normal distribution around zero. Hence
the p-value is given by

p-value = 1− Φ(|S(µ0)|) + Φ(−|S(µ0)|)

= 2 (1− Φ(|S(µ0)|)) . (1)

Remark. Note that while p-values are between zero and one, they are not probabilities. From (1) it
is clear that the p-value is a transformation of the test statistic, which is a random variable. Hence,
p-values are random variables. Moreover, p-values are test statistics transformed to the zero-one scale.
The corresponding critical value is simply α.
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5 Confidence intervals

When testing H0 : µ = µ0 against H1 : µ 6= µ0, the null hypothesis will be rejected for certain values of
µ0 and accepted for other values of µ0. Rejected µ0’s are unlikely to be the true value of the parameter
µas they are inconsistent with the data. On the other hand, accepted µ0’s are plausible to be the
true value of the parameter. Collecting all non-rejected µ0’s would give a set of values (for the true
parameter µ) that are consistent with the data. This set is called the confidence set or confidence
interval (as we will see later, in the case of our two-sided test in Section 2), the confidence set is an
interval.

Definition 12. (Confidence Interval) Confidence interval with the confidence level 1−α is the set
of all values µ0 that where not rejected by a test of H0 : µ = µ0 against H1 : µ 6= µ0 by a size α test.

For the normal location model in Section 2, and the two-sided test which rejects H0 when |S(µ0)| >
z1−α/2, the confidence interval is given by

CI1−α =
{
µ0 : |S(µ0)| ≤ z1−α/2

}
=

{
µ0 : −z1−α/2 ≤ S(µ0) ≤ z1−α/2

}
=

{
µ0 : −z1−α/2 ≤

µ̂− µ0

σ/
√
n
≤ z1−α/2

}
=

{
µ0 : µ̂− z1−α/2 ×

σ√
n
≤ µ0 ≤ µ̂+ z1−α/2 ×

σ√
n

}
=

[
µ̂− z1−α/2 ×

σ√
n
, µ̂+ z1−α/2 ×

σ√
n

]
.

A confidence interval has a very important feature/interpretation: it is a random interval that
includes the true value µ with the probability 1− α.

Theorem 13. Suppose that µ̂ ∼ N(µ, σ2/n). Then,

P (µ ∈ CI1−α) = 1− α.

Proof. From the definition of the confidence interval,

P (µ ∈ CI1−α) = P
(
|S(µ)| ≤ z1−α/2

)
= 1− P

(
|S(µ)| > z1−α/2

)
= 1− α.

The equality in the last line holds because

S(µ) =
µ̂− µ
σ/
√
n

= Z,

and by Lemma 9.
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