
DECEMBER 14, 2015

LECTURE 15
INTRODUCTION TO STATISTICS: ESTIMATION

1 Statistics

Probability Theory is concerned with studying and describing the mathematical laws of un-
certainty. Statistics is a closely related discipline, in which uncertainty plays the central role.
The main focus of statistics is, using a finite number of measurements of variables of interest
(data), to learn about the features of the probability model that governs the relationships
between the variables.

Example 1. Suppose the investor has measured the monthly returns on a stock over a certain
period of time (say, one year). Modeling those returns as random draws from some unknown
distribution, the investor is interested in learning the properties of that distribution. For
example, the mean of the distribution will described the expected rate of return, the variance
of the distribution will describe the level of risk associated with investing in this stock. Note
that both the mean and the variance are unknown, and the investor must estimate their values
using the twelve observed monthly measurements.

Example 2. Suppose the investor has a finite number of measurements (data) of the returns
on two stocks. The investor wishes to form the optimal investment portfolio of the two stocks
that has a certain pre-determined expected level of return and the smallest variance (level of
risk). Modeling the returns on the two stocks as random draws from some unknown bivariate
distribution, the optimal portfolio (described the weights of the two stocks stocks) depends
on the following properties of that distribution: the expected returns on the two stocks,
their variances, and their covariance. Neither the expected returns nor the variances or the
covariance are known. The investor must estimate estimate their values from the data.

Example 3. Suppose the economist has data on unemployment and inflation over the period
of thirty years: for each t = 1, . . . , 30, the economist has a pair of values Ut and πt for
unemployment and inflation respectively. He is interested in checking whether there is a
trade-off between inflation and unemployment, i.e. if the Phillips Curve holds in practice.
Assuming that for every year, Ut and πt are draws from some unknown bivariate distribution,
the economist can model the relationship between the two variables as the regression Ut =

α + βπt + εt or through the conditional expectation E(Ut|πt). In the regression case, the
economist would be interested in estimating β to check whether the slope parameter is negative
or zero. Similarly, in the conditional expectation case, the economist would be interested in
estimating the conditional expectation function to check whether it is decreasing or constant
(as a function of πt).
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Some key concepts of Statistics:

Data (or sample) is a finite collection of measurements of variables of interest. We have to
distinguish between data viewed as a collection of random draws from some (multivari-
ate) distribution, and data viewed as a collection of numbers. In the former case, we
deal with a collection of random variables denoted X1, . . . , Xn In the latter case - with
realizations of the random variables denoted x1, . . . , xn (also called observations).

Population is a probability model that describes the joint distribution of random data
X1, . . . , Xn. It is a mathematical law that describes the probabilistic behavior of random
data or the relationships between the random variables in the data. Thus, population
in statistics does not correspond to any physical population.

Estimator is any function of random data: u(X1, . . . , Xn). It is used to learn or estimate
certain properties of population (the underlying statistical model). The same function
evaluated at the observed values x1, . . . , xn, u(x1, . . . , xn), is called an estimate. An
estimator is a random variable, an estimate is a realized value of the estimator.

One of the central questions in statistics is how to construct estimators with certain desir-
able properties. Methods of construction of estimators, as well as some important properties
of estimators are discussed below for two specific models: the Bernoulli model and the Normal
location-scale model.

2 Maximum Likelihood estimation and the Method of Moments

Suppose that one repeats n independent and identical Bernoulli trials that have the probability
of success equal to p ∈ [0, 1], where p is now viewed as the unknown parameter of interest.
The random data (sample) in this example is given by X1, . . . , Xn, which are n independent,
identically distributed (iid) random variables such that Xi ∼ Bernoulli(p). Our goal is to
construct an estimator

p̂ = u(X1, . . . , Xn)

for the unknown probability of success p so that the computed estimate u(x1, . . . xn) is close/
informative about the unknown parameter (p).

Recall that for xi ∈ {0, 1},

P (Xi = xi) = pxi(1− p)1−xi .

2



The probability of observing realizations x1, . . . , xn is given by

P (X1 = x1, . . . , Xn = xn) = P (X1 = x1)× . . .× P (Xn = xn)

= px1(1− p)1−x1 × . . .× pxn(1− p)1−xn

= p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi .

where the equality in the first line holds by the independence of X1, . . . , Xn. The Maximum
Likelihood Estimator (MLE) of p is the value of p that maximizes the probability P (X1 =

x1, . . . , Xn = xn). In other words, we estimate p by the value that corresponds to the largest
probability of observing the sample x1, . . . , xn.

Definition 4. (Maximum Likelihood principle) Suppose that the joint distribution of
data depends on a parameter θ. When viewed as a function of θ, the joint distribution
distribution is called the likelihood function. According to the Maximum Likelihood (ML)
principle, the estimator of θ is constructed by maximizing the likelihood function.

In the Bernoulli example, the likelihood function is given by

L(p) = p
∑n

i=1 xi(1− p)n−
∑n

i=1 xi .

Since ln(·) (natural logarithm) is a monotone increasing one-to-one transformation, instead
of maximizing L(p) one can equivalently maximize lnL(p), which is called the log-likelihood
function. As you will see below, using the log-likelihood function can substantially simplify
the problem. Here, the log-likelihood function is

lnL(p) =
n∑
i=1

xi × ln p+

(
n−

n∑
i=1

xi

)
× ln(1− p).

Taking the derivative of lnL(p) with respect to p, we obtain:∑n
i=1 xi
p̂MLE

−
n−

∑n
i=1 xi

1− p̂MLE
= 0.

Solving for p̂MLE , we obtain:

p̂MLE =
1

n

n∑
i=1

xi.

Hence, the MLE in the Bernoulli model is

p̂MLE =
1

n

n∑
i=1

Xi = X̄. (1)

Comments:
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1. One can clearly see from equation (1) that p̂MLE is a random variable. Thus, in general
it is different from the true parameter p.

2. Recall that in the Bernoulli model, p is the population probability of success. Similarly,
p̂MLE = x̄ is the sample frequency of success.

3. Recall also that in the Bernoulli model

p = EXi.

Thus, the parameter of interest can be computed as the population average of the variable
of interest. The MLE is defined analogously as the sample average of the variable of
interest:

p̂MLE =
1

n

n∑
i=1

Xi.

Definition 5. (Method of Moments) Suppose that some parameter of interest is defined
through the expectation of some random variable Xi: θ = EXi. According to the Method of
Moments (MM), one can construct an estimator for θ by replacing the expectation with the
sample average: θ̂MM = n−1

∑n
i=1Xi.

In the Bernoulli model,
p̂MM = p̂MLE .

While p̂MLE is different from p in general, it is nevertheless informative about p. First,
consider the expected value of the estimator:

Ep̂MLE = E

(
n−1

n∑
i=1

Xi

)

= n−1
n∑
i=1

EXi

= n−1
n∑
i=1

p

= p.

Hence, the distribution of p̂MLE is centered around the true value p. We call this property
unbiasedness.

Definition 6. An estimator θ̂ of a parameter θ is called unbiased if Eθ̂ = θ.
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Next, consider the variance of p̂MLE .

V ar (p̂MLE) = V ar

(
n−1

n∑
i=1

Xi

)
= n−1V ar(X1)

= p(1− p)/n.

Hence, the variance of p̂MLE is inversely related to the sample size. As the sample size increases
(n → ∞), the distribution of p̂MLE becomes more and more concentrated around the true
value p. This property is known as the Law of Large Numbers: By increasing the sample size
n, one can make the deviation of p̂MLE from the true value p arbitrarily small.

3 Normal location-scale model

3.1 The model and derivation of the estimators

The Normal location-scale model is a prototypical example in Statistics: many more compli-
cated models can be viewed as generalizations of the Normal location-scale model.

Suppose that Y1, . . . , Yn are iid N(µ, σ2). We are interested in estimating two parameters:
µ (the mean or location of the distribution) and σ2 > 0 (the variance or scale of the distri-
bution). To construct the estimators of µ and σ2, we will consider the Methods of Moments
approach first. Since

µ = EYi,

its Method of Moments estimator is

µ̂MM =
1

n

n∑
i=1

Yi = Ȳ .

Since
σ2 = V ar(Yi) = E (Yi − µ)2 ,

its Method of Moments estimator is

σ̂2
MM =

1

n

n∑
i=1

(Yi − µ̂MM )2

=
1

n

n∑
i=1

(Yi − Ȳ )2.

Next, consider the MLEs of µ and σ2. Since Yi’s are continuously distributed random
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variables, we should use the PDF instead of the PMF. The normal PDF at y is given by

f(y;µ, σ2) =
1√

2πσ2
exp

(
− 1

2σ2
(y − µ)2

)
.

Suppose we observe Y1 = y1, . . . , Yn = yn. Using the independence of Y ’s, the joint PDF
evaluated at y1, . . . , yn (or the likelihood function) is given by

Πn
i=1f(yi;µ, σ

2) = Πn
i=1

1√
2πσ2

exp

(
− 1

2σ2
(yi − µ)2

)
=

(
1

2πσ2

)n/2
exp

(
− 1

2σ2

n∑
i=1

(yi − µ)2

)
≡ L(µ, σ2).

Hence, the log-likelihood function is

lnL(µ, σ2) = −n
2

ln (2π)− n

2
lnσ2 − 1

2σ2

n∑
i=1

(yi − µ)2. (2)

Since only the last term on the right-hand side of (2) depends on µ,

µ̂MLE = arg max
µ

lnL(µ, σ2)

= arg min
µ

n∑
i=1

(yi − µ)2. (3)

Hence, in the Normal location-scale model, the MLE for the location parameter can be ob-
tained by minimizing the sum of the squared distances between the observations yi’s and the
model. This estimator is also known as the Ordinary Least Squares (OLS) or the Least Squares
(LS) estimator. The solution to the minimization problem in (3) is given by

µ̂MLE = ȳ =
1

n

n∑
i=1

yi,

which can be obtained in the same manner as the result of Theorem 4 in Lecture 5.
Thus in the Normal location-scale model, all the three approaches for deriving estimators

(Maximum Likelihood, Method of Moments, and Least Squares) produce the same estimator:

µ̂MLE = µ̂MM = µ̂LS = Ȳ =
1

n

n∑
i=1

Yi.
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Next, to obtain the MLE of σ2, we evaluate the log-likelihood function at µ = ȳ:

lnL(ȳ, σ2) = −n
2

ln(2π)− n

2
lnσ2 − 1

2σ2

n∑
i=1

(yi − ȳ)2,

and note that the MLE of σ2 is given by σ̂2
MLE = arg maxσ2 lnL(ȳ, σ2). Differentiating

lnL(ȳ, σ2) with respect to σ2, we obtain the following first-order condition:

− n

2σ̂2
MLE

+
1

2σ̂4
MLE

n∑
i=1

(yi − ȳ)2 = 0,

and therefore,

σ̂2
MLE =

1

n

n∑
i=1

(yi − ȳ)2.

Again, we find that the MLE and the Method of Moments estimators coincide:

σ̂2
MLE = σ̂2

MM =
1

n

n∑
i=1

(Yi − Ȳ )2.

Note that µ, the mean of the distribution N(µ, σ2), is estimated by the sample aver-
age Ȳ . Similarly, the variance of the distribution, σ2, is estimated by the sample variance
n−1

∑n
i=1(Yi − Ȳ )2.

3.2 Properties of the MLE of µ

Here we find that the MLE of µ is an unbiased estimator:

Eµ̂MLE = EȲ

= E

(
n−1

n∑
i=1

Yi

)
= µ.

For the variance of the MLE of µ, since the latter is given by the average of iid variables,

V ar(µ̂MLE) = V ar(Yi)/n

= σ2/n.

As in the case of the Bernoulli model, the distribution of the MLE of µ is centered at the true
value of the parameter and becomes less dispersed as the sample size increases. In this case,
it is also easy to characterize the entire distribution of µ̂MLE .
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Theorem 7. Suppose that Y1, . . . , Yn are iid N(µ, σ2). Then,

Ȳ = n−1
n∑
i=1

Yi ∼ N(µ, σ2/n).

Remark. The theorem shows that an average of iid normal random variables is also normally
distributed.

Proof. To show the result, we will use the MGF of the normal distribution: it suffices to show
that the MGF of Ȳ at t is given by

MȲ (t) = exp

(
µt+

(σ2/n)t2

2

)
,

see the derivation of the MGF of the normal distribution in Theorem 2 of Lecture 11. For
simplicity, suppose that n = 2, and recall that the MGF of Yi is

MYi(t) = exp

(
µt+

σ2t2

2

)
. (4)

Consider the MGF of Y1 + Y2:

MY1+Y2(t) = E exp (t(Y1 + Y2))

= E (exp(tY1) exp(tY2))

= E exp(tY1)E exp(tY2) (by independence of Y1 and Y2)

= exp

(
µt+

σ2t2

2

)
× exp

(
µt+

σ2t2

2

)
(by (4))

= exp

(
2µt+

2σ2t2

2

)
.

Hence,
Y1 + Y2 ∼ N(2µ, 2σ2).

It follows now from Theorem 4 in Lecture 11 that

Y1 + Y2

2
∼ N

(
µ,
σ2

2

)
.
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Following the same steps in the general case, we obtain

n∑
i=1

Yi ∼ N(nµ, nσ2), and

n−1
n∑
i=1

Yi ∼ N

(
µ,
σ2

n

)
.

3.3 Unbiased estimation of σ2

Unlike the MLE of µ, the MLE of σ2 turns out to be biased.

Theorem 8. Suppose that Y1, . . . , Yn are iid N(µ, σ2). For σ̂2
MLE = n−1

∑n
i=1(Yi − Ȳ )2,

Eσ̂2
MLE =

n− 1

n
σ2.

Proof. Using the same arguments as in Theorem 2(d) in Lecture 6, we can write

1

n

n∑
i=1

(Yi − Ȳ )2 =
1

n

n∑
i=1

Y 2
i −

(
Ȳ
)2
.

Hence

E

(
1

n

n∑
i=1

(Yi − Ȳ )2

)
=

1

n

n∑
i=1

EY 2
i − E

(
Ȳ
)2
. (5)

Also, since for any random variable W , V ar(W ) = EW 2 − (EW )2, we can write EW 2 =

V ar(W ) + (EW )2. Therefore,

EY 2
i = V ar(Yi) + (EYi)

2

= σ2 + µ2, (6)

E
(
Ȳ
)2

= V ar(Ȳ ) + (EȲ )2

=
σ2

n
+ µ2. (7)

Substituting (6) and (7) into (5), we obtain:

Eσ̂2
MLE =

(
σ2 + µ2

)
−
(
σ2

n
+ µ2

)
=

n− 1

n
σ2.
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While the estimator σ̂2
MLE is biased, its bias takes the scaling form, where the scaling

factor depends only on the known characteristics of the data: the sample size n. It is therefore
very easy to come up with bias correction and propose an alternative unbiased estimator.

Theorem 9. Let Y1, . . . , Yn be iid N(0, σ2). Define the following estimator of σ2:

s2 =
n

n− 1
σ̂2
MLE =

1

n− 1

n∑
i=1

(Yi − Ȳ )2.

Then s2 is an unbiased estimator, i.e.

Es2 = σ2.

Proof. Using the result of Theorem 8,

Es2 =
n

n− 1
Eσ̂2

MLE

=
n

n− 1
× n− 1

n
σ2

= σ2.

The following intuitive explanation is often provided for the division by n− 1 instead of n
in the definition of s2. The definition of the variance

σ2 = E(Yi − µ)2

involves µ, the mean of the distribution. If µ were known, one could construct an unbiased
estimator of σ2 as

1

n

n∑
i=1

(Yi − µ)2

(it is very easy to check that this estimator would be unbiased). When µis unknown and must
be estimated first by the average Ȳ , one must account for that by changing the denominator
in the definition of s2 from n to n− 1.

10


