
DECEMBER 7, 2014

LECTURE 14
CONDITIONAL DISTRIBUTIONS AND EXPECTATIONS

1 Conditional distributions

Recall that we previously defined the conditional probability of an event A given another event
B as

P (A|B) =
P (A ∩B)

P (B)

when P (B) > 0. The conditional probability allows us to improve our prediction about the
likeliness of event A given the information on event B. The approach can be extended to
random variables. Given two random variables X and Y , we can define

P (Y ∈ A|X ∈ B) =
P (Y ∈ A,X ∈ B)

P (X ∈ B)
(1)

provided that P (X ∈ B) > 0, where now A andB are subsets of R. The conditional probability
P (Y ∈ A|X ∈ B) is the probability of Y taking a value from the set B given that X has taken
a value from the set A. It uses the information in the joint distribution of X and Y to give a
more accurate prediction about the behavior of Y .

Suppose that X and Y are discrete random variables. Using A = {y} and B = {x}, we
immediately obtain from (1) a definition of the conditional PMF.

Definition 1. (Conditional PMF) Let X and Y be two discrete random variables with
a joint PMF pX,Y and supports SX = {x1, x2, . . .} and SY = {y1, y2, . . .} respectively. Let
x ∈ SX be such that pX(x) > 0, where pX(x) =

∑
u∈SY

pX,Y (x, u) is the marginal PMF of X.
The conditional PMF of Y given X = x is defined as

pY |X(y|x) =
pX,Y (x, y)

pX(x)
.

for y ∈ SY .

Remark. 1. The conditional PMF is a PMF. Note that

pY |X(y|x) ≥ 0,
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and ∑
y∈SY

pY |X(y|x) =
∑
y∈SY

pX,Y (x, y)

pX(x)

=

∑
y∈SY

pX,Y (x, y)

pX(x)

=
pX(x)

pX(x)

= 1.

2. We should distinguish between pY |X(y|x) and pY |X(y|X). The former is P (Y = y|X =

x), i.e. the uncertainty about X has been realized, and X has taken a specific value x. The
latter is P (Y = y|X) without specifying what value X has taken, i.e. there is still uncertainty
about X. In that case, we should think about pY |X(y|X), y ∈ SY , as a family of functions
corresponding to different realizations of X from SX , i.e. pY |X(y|X) is a random PMF, where
randomness comes from the uncertainty about X.

Example. Suppose that the joint distribution of X and Y are as in the following table:

Table 1: Joint PMF of earnings (X) and price (Y ) with marginal distributions (at the margins)

Price of a share (Y )

Earnings per share (X)

$100 $250 $400

$10 2
6

1
6 0 1

2
$20 0 2

6
1
6

1
2

2
6

3
6

1
6

The conditional distribution of the price conditional on earnings X = 10 is given by:

pY |X(100|10) =
2/6

1/2
=

2

3
,

pY |X(250|10) =
1/6

1/2
=

1

3
,

pY |X(400|10) =
0

1/2
= 0.

Hence, when earnings X = 10, the price is equal to 100 with probability 2/3 and 250 with
probability 1/3. The price cannot be 400 when X = 10. (Compare those numbers with the
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unconditional probabilities.) Similarly, we find:

pY |X(100|20) = 0,

pY |X(250|20) =
2

3
,

pY |X(400|20) =
1

3
.

Note that the conditional distribution of Y varies as we change the conditioning variable X.

In the continuous case, it is convenient to define conditional distributions using joint and
marginals PDFs

Definition 2. (Conditional PDF) Let X and Y be continuously distributed with a joint
PDF fX,Y (x, y). Let x be such that fX(x) > 0, where fX(x) =

´
fX,Y (x, y)dy is the marginal

PDF of X. The conditional PDF of Y given X = x is defined as

fY |X(y|x) =
fX,Y (y, x)

fX(x)
.

Remark. 1. Note that the conditional PDF is a PDF:

fY |X(y|x) ≥ 0 for all y ∈ R,ˆ ∞
−∞

fY |X(y|x)dx =

ˆ ∞
−∞

(fX,Y (y, x)/fX(x)) dy

=

ˆ ∞
−∞

(fX,Y (y, x)) dy/fX(x)

= fX(x)/fX(x)

= 1.

2. As in the discrete case, we should distinguish between fY |X(y|x) and fY |X(y|X). The
former is simply a PDF when viewed as a function of y. The latter is a random PDF: we will
have different PDFs depending on the realization of X.

Statistical independence has important consequences for conditional distributions.

Theorem 3. Suppose that random variables X and Y are independent. Then the conditional
distribution of Y given X is the same as the marginal (unconditional) distribution of Y .

Remark. The result implies that, when X and Y are independent, one cannot improve the
description of the behavior of Y by relying on the information in X since the two random
variables are fully unrelated.

Proof. The result follows immediately from the definition of the conditional PMF or PDF. In
the discrete case, let pY |X , pX,Y , pX and pY denote the conditional PMF of X, the joint PMF
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of Y and X, the marginal PMF of X and the marginal PMF of Y respectively. We have

pY |X(y|x) =
pX,Y (x, y)

pX(x)

=
pX(x)pY (y)

pX(x)

= pY (y),

where the second equality follows from independence of X and Y , which implies that the joint
PMF is equal to the product of marginal PMFs. In the continuous case, the proof is identical
with PMFs replaced by PDFs.

2 Conditional expectations

Conditional distributions satisfy all the properties of unconditional distributions. In partic-
ular, we can define expectations and moments in the same manner as with unconditional
distributions.

Definition 4. (Conditional expectation) (a) Let pY |X(y|x) be the conditional PMF of Y
given X = x. The conditional expectation of Y given X = x is defined as

E(Y |X = x) =
∑
y∈SY

ypY |X(y|x).

(b) Let fY |X(y|x) be the conditional PDF of Y given X = x. The conditional expectation of
Y given X = x is defined as

E(Y |X = x) =

ˆ ∞
−∞

yfY |X(y|x)dy.

Remark. 1. The conditional expectation is a property of the conditional distribution: E(Y |X =

x) determines the location of the distribution of Y when X = x. In general, it is an im-
provement over the unconditional expectation E(Y ), since E(Y |X = x) relies on additional
information contained in X and the joint distribution of Y and X.

2. We should distinguish between E(Y |X = x) and E(Y |X). The latter should be viewed
as a function of X since the uncertainty about X has not been realized:

E(Y |X) =
∑
y∈SY

ypY |X(y|X)

or
E(Y |X) =

ˆ ∞
−∞

yfY |X(y|X)dy.
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After averaging out y (or integrating out), we are left with a function of X. Hence, in general
E(Y |X) is a random variable unlike E(Y ), which is a constant.

Example. Consider the example in Table 1.

E(Y |X = 10) = 100× 2

3
+ 250× 1

3
+ 400× 0 = 150.

E(Y |X = 20) = 100× 0 + 250× 2

3
+ 400× 1

3
= 300.

Hence,
E(Y |X) = 150× 1(X = 10) + 300× 1(X = 20).

Note that E(Y |X) varies withX. This illustrates that E(Y |X) is a function ofX and therefore
a random variable.

Some of the properties of the conditional expectation are given below.

Theorem 5. (a) If X and Y are independent, E(Y |X) = E(Y ).

(b) E(Y g(X)|X) = g(X)E(Y |X).

(c) The law of Iterated Expectation: EE(Y |X) = EY .

(d) If E(Y |X) = E(Y ), then X and Y are uncorrelated.

Remark. The result in (b) has a very intuitive interpretation: after conditioning on X, we
can treat every function of X as known (fixed). Hence, g(X) can be moved outside of the
conditional expectation since for the purpose of computing that expectation we treat X as
known (fixed).

Proof. The result in (a) follows immediately from the definition of the conditional distribution
since, under independence, the conditional distribution of Y is the same as the unconditional
(marginal) distribution of Y .

To show (b), suppose that X and Y are discrete.

E(Y g(X)|X) =
∑
y∈SY

yg(X)pY |X(y|X)

= g(X)
∑
y∈SY

ypY |X(y|X)

= g(X)E(Y |X).

For (c), we will show the result for the continuous case. The proof in the discrete case is
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identical.

E(Y |X) =

ˆ
yfY |X(y|X)dy ≡ h(X),

E(h(X)) =

ˆ
h(x)fX(x)dx.

Hence,

EE(Y |X) =

ˆ (ˆ
yfY |X(y|x)dy

)
fX(x)dx

=

ˆ ˆ
yfY |X(y|x)fX(x)dydx

=

ˆ ˆ
yfX,Y (y, x)dydx (since fY |XfX = fX,Y )

=

ˆ
y

(ˆ
fX,Y (x, y)dx

)
dy

=

ˆ
yfY (y)dy (since

ˆ
fX,Y (x, y)dx = fY (y))

= EY.

Part (d) follows from the results in (b) and (c). Consider first E(XY ). By the law of
iterated expectation in (c),

E(XY ) = EE(XY |X)

= E (XE(Y |X))

= E(XE(Y ))

= (EX)(EY ).

Hence,
Cov(X,Y ) = E(XY )− (EX)(EY ) = 0.

The property in part (d) of Theorem 5 is called mean independence.

Definition 6. (Mean independence) A random variable Y is said to be mean independent
of X if

E(Y |X) = constant, (2)

i.e. not a function of X.

Remark. 1. By Theorem 5(c) (the law of iterated expectation), EE(Y |X) = E(Y ). Hence,
the constant in (2) must be equal to E(Y ). Thus, mean independence can be alternatively
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stated as
E(Y |X) = E(Y ).

2. Mean independence implies that the location of the distribution of Y cannot be explained
using X. This does not necessarily mean that X and Y are fully (statistically) independent:
it is possible that X explains some other features of the distribution of Y . Note that under
statistical independence X cannot explain any features of the distribution of Y .

3. We have three levels of “unrelatedness” of random variables. The strongest is statistical
independence (full independence) and the weakest is uncorrelatedness (absence of a linear
relationship). Mean independence is the intermediate level.

Statistical Independence
pY |X = pY or fY |X = fY

⇒
Mean Independence
E(Y |X) = E(Y )

⇒
Uncorrelatedness Cov(Y,X) = 0

Best linear fit is a line with zero slope

Conditional expectation is related to the concept of regression discussed in Lecture 13.

Theorem 7. Suppose that the conditional expectation of Y given X is a linear function:
E(Y |X) = α+ βX for some constants α and β. Then,

β =
Cov(X,Y )

V ar(X)
,

α = (EY )− β(EX).

Remark. The theorem argues that when the conditional expectation of Y given X is linear, it
coincides with the regression of Y against X.

Proof. Define

U = Y − E(Y |X)

= Y − α− βX.

Note that

E(U |X) = E(Y − E(Y |X)|X)

= E(Y |X)− E(Y |X)

= 0.

Hence, by (5)(d), X and U are uncorrelated. Furthermore, by Theorem (5)(c),

EU = EE(U |X) = 0.
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Therefore, Cov(X,U) = EXU. We have

0 = EXU = EX(Y − α− βX),

0 = EU = E(Y − α− βX).

However, these are the same equations that define the regression coefficients in Lecture 13,
Theorem 9.

We can use conditional distributions to define other properties as in the unconditional case:
conditional variances, conditional quantiles and etc. For example, the conditional variance of
Y given X is defined as

V ar(Y |X) = E
(
(Y − E(Y |X))2|X

)
= E(Y 2|X)− (E(Y |X))2.

Under mean independence, it is possible that E(Y |X) = constant while V ar(Y |X) = h(X)

(a function that varies with X). Under statistical independence, however, we would have
E(Y |X) = constant and V ar(Y |X) = constant = V ar(Y ).
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