
DECEMBER 7, 2014

LECTURE 12
JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS,

INDEPENDENCE

So far we have considered one random variable at a time. However, in economics we are
typically interested in relationships between several variables. Therefore, we need to extend
the concept of distributions in a way that will allow us to describe the joint behavior of several
random variables. Most of the ideas and methods can be illustrated using only two variables.
In this case distributions are called bivariate.

1 Joint and marginal distributions

Suppose that we have two discrete random variables X and Y defined on the same sample
space Ω, which comes with a probability function P :

X = X(ω),

Y = Y (ω).

In that case, we would be interested in describing their joint behavior:

P (X ∈ A, Y ∈ B) = P ({ω ∈ Ω : X(ω) ∈ A} ∩ {ω ∈ Ω : Y (ω) ∈ B}) ,

where A and B are some subsets of R.

Definition 1. (Joint PMF) Let X and Y be two discrete random variables defined on the
same probability space. Let SX = {x1, x2, . . .} denote the support of X and SY = {y1, y2, . . .}
denote the support of Y . The joint PMF of X and Y is defined as

pX,Y (x, y) = P (X = x, Y = y)

for x ∈ SX and y ∈ SY .

Remark. 1. The comma in P (X = x, Y = y) stands for “and”, i.e. the intersection of the
events {ω ∈ Ω : X(ω) = x} and {ω ∈ Ω : Y (ω) = y}.

2. The supports of X and Y can have different number of elements or be countably infinite.
3. The joint PMF must satisfy the following properties:

0 ≤ pX,Y (x, y) ≤ 1
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for any x ∈ SX , y ∈ SY . Also, ∑
x∈SX

∑
y∈SY

pX,Y (x, y) = 1.

4. The joint PMF can be used to compute the probabilities of events defined through
conditions relating X and Y . For example, consider the event of X being equal to Y : {ω ∈
Ω : X(ω) = Y (ω)}. We have

P (X = Y ) =
∑∑

pX,Y (x, y).
x∈SX ,y∈SY :x=y

Example. In this example, we have two random variables: earnings per share E (during the
last 12 months) and the price S of a share. The joint PMF is described in the following table:

Table 1: Example of a joint PMF

Price of a share (S)

Earnings per share (E)

$100 $250 $400

$10 2
6

1
6 0

$20 0 2
6

1
6

For example,

P (E = 10, S = 250) = pE,S(10, 250) =
1

6
,

P (E = 20, S = 250) = pE,S(20, 250) =
2

6
.

In this example, we can use the joint PMF to compute the probability that the price-earnings
ratio is under 20:

P (S/E < 20) = P (E = 10, S = 100) + P (E = 20, S = 100) + P (E = 20, S = 250)

= pE,S(10, 100) + pE,S(20, 100) + pE,S(20, 250)

=
2

6
+ 0 +

2

6

=
2

3
.

The joint PMF describes the joint behavior (distribution) of two or more random vari-
ables. In particular, it contains the information on the distribution of each random variable
individually or marginal distributions. Suppose that you are given the joint PMF of X and
Y : pX,Y (x, y), x ∈ SX = {x1, . . . , xn} and y ∈ SY = {y1, . . . , ym}. Consider the following
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question: for some x ∈ SX , what is the probability that X = x1 (regardless of the value of
Y )? To answer that question, note that Y introduces a partition on the sample space Ω:

Ω = {Y = y1} ∪ {Y = y2} ∪ . . . ∪ {Y = ym}.

Therefore, the event {X = x1} can be represented as

{X = x1} = {X = x1, Y = y1} ∪ {X = x1, Y = y2} ∪ . . . ∪ {X = x1, Y = ym}.

Since the events in a partition are mutually independent, we have:

pX(x1) = P (X = x1)

= P (X = x1, Y = y1) + P (X = x1, Y = y2}+ . . . + P (X = x1, Y = ym)

= pX,Y (x1, y1) + pX,Y (x1, y2) + . . . + pX,Y (x1, ym)

=
∑
y∈SY

pX,Y (x1, y).

This operation can be performed for every value of x ∈ SX . The resulting function is called
the marginal PMF of X.

Definition 2. (Marginal PMF) Let pX,Y (x, y) be the joint PMF of two discrete random
variables X and Y , x ∈ SX and y ∈ SY . The marginal PMF of X is given by

pX(x) =
∑
y∈SY

pX,Y (x, y).

The marginal PMF of Y is given by

pY (y) =
∑
x∈SX

pX,Y (x, y).

Remark. 1. To find the marginal PMF of X from the joint PMF of X and Y , one computes
the sums of the joint PMF values over all possible values of Y for each given x ∈ SX .

2. It is easy to see that the marginal PMF is a PMF: it is strictly positive and

∑
x∈SX

pX(x) =
∑
x∈SX

∑
y∈SY

pX,Y (x, y)


= 1,

where the equality in the second line holds by the properties of the joint PMF.

Example. Consider the example in Table 1. To obtain the marginal PMF of E, one should
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take sums across the columns of the table, i.e. compute row totals:

pE(10) = pE,S(10, 100) + pE,S(10, 250) + pE,S(10, 400)

=
2

6
+

1

6
+ 0

=
1

2
,

pE(20) =
1

2
.

To obtain the marginal PMF of S, one should take sums across the rows of the table, i.e.
compute column totals:

pS(100) = pE,S(10, 100) + pE,S(20, 100)

=
2

6
+ 0

=
1

3
pS(250) = pE,S(10, 250) + pE,S(20, 250)

=
1

6
+

2

6

=
1

2
,

pS(400) =
1

6
.

Note that marginal probabilities describe the distributions of the respective variables, and
therefore they cannot be used to find the probabilities of events defined in terms of both E and
S. For example, we cannot use pE(10) = 1/2 and pS(100) = 1/3 to find P (E = 10, S = 100).
Also, we cannot answer any questions concerning the price-earnings ratio.

The concept of the CDF can be extended to the case of two or more random variables. In
the bivariate case, we have the following definition.

Definition 3. (Joint CDF) Let X and Y be two random variables. Their joint CDF is
defined as

FX,Y (x, y) = P (X ≤ x, Y ≤ y)

for x ∈ R and y ∈ R.
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Below we show some of the properties of the joint CDF:

lim
y→−∞

FX,Y (x, y) = lim
y→−∞

P (X ≤ x, Y ≤ y)

= P (X ≤ x, Y < −∞)

≤ P (Y < −∞)

= 0,

lim
y→∞

FX,Y (x, y) = lim
y→∞

P (X ≤ x, Y ≤ y)

= P (X ≤ x, Y <∞)

= P (X ≤ x)

= FX(x). (1)

The second result shows that we can always obtain the marginal CDF from the joint CDF.
All the concepts described above can be naturally extended to the case of continuous

random variables.

Definition 4. The joint distribution of X and Y is continuous if the joint CDF FX,Y (x, y) is
continuous and differentiable in both x and y.

Definition 5. (Joint PDF) Let X and Y be two continuous random variables with a joint
CDF FX,Y . The joint PDF of X and Y is defined as

fX,Y (x, y) =
∂2FX,Y (x, y)

∂x∂y
.

Remark. The joint PDF satisfies the following properties:

1. fX,Y (x, y) ≥ 0 for all x ∈ R and y ∈ R.

2.
´∞
−∞
´∞
−∞ fX,Y (x, y)dydx = 1.

3. FX,Y (x, y) = P (X ≤ x, Y ≤ y) =
´ x
−∞
´ y
−∞ fX,Y (u, v)dvdu.

4. P ((X,Y ) ∈ A) =
´ ´
A

fX,Y (x, y)dydx, where A is a set on a plane (in R2).

Similarly to the discrete case, the marginal PDF can be computed from the joint PDF.

Theorem 6. Let X and Y be continuously distributed with the joint PDF fX,Y (x, y). The
marginal PDF of X is given by

fX(x) =

ˆ ∞
−∞

fX,Y (x, y)dy.
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Remark. To compute the marginal PDF of X, one has to “integrate out” y for every value of
x.

Proof. Let FX,Y denote the joint CDF of X and Y . From (1),

FX(x) = lim
y→∞

FX,Y (x, y)

= lim
y→∞

ˆ x

−∞

ˆ y

−∞
fX,Y (u, v)dvdu

=

ˆ x

−∞

ˆ ∞
−∞

fX,Y (u, v)dvdu.

Next,

fX(x) =
dFX(x)

dx

=
d

dx

(ˆ x

−∞

ˆ ∞
−∞

fX,Y (u, v)dvdu

)
=

ˆ ∞
−∞

fX,Y (x, v)dv,

where the result in the last line follows from the fact that

d

dx

(ˆ x

h(u)du

)
= h(x).

2 Independence

We say that two (or more) random variables are independent if changes in one random variable
are not going to affect the distribution of other random variables. Formally, we have the
following definition.

Definition 7. (Independence) (a) Let X and Y be two discrete random variables with
supports SX and SY respectively. We say that X and Y are independent if

P (X = x, Y = y) = P (X = x)P (Y = y) for all x ∈ SX , y ∈ SY ,

i.e.
pX,Y (x, y) = pX(x)pY (y) for all x ∈ SX , y ∈ SY ,

where pX,Y is the joint PMF of X and Y , pX is the marginal PMF of X, and pY is the marginal
PMF of Y .
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(b) Let X and Y be two continuous random variables distributed with a joint PDF fX,Y .
Let fX and fY be the PDFs of X and Y respectively. We say that X and Y are independent
if

fX,Y (x, y) = fX(x)fY (y) for all x ∈ R, y ∈ R.

Example. Consider the joint distribution described in Table 1. We have

pE,S(10, 100) =
1

3
,

pE(10)× pS(100) =
1

2
× 1

3
.

Hence, E and S are not independent.

Example. Consider the joint and marginal PMFs described in the following table:
support of Y

y1 y2
marginal
PMF of X

Support of X
x1

1
12

2
12

1
4

x2
3
12

6
12

3
4

marginal PMF of Y 1
3

2
3

The center of the table shows the joint PMF of X and Y . For example, P (X = x1, Y = y1) =
1
12 , P (X = x1, Y = y2) = 3

12 , and etc. On the margins of the table, we have the marginal
PMFs of X and Y : P (X = x1) = 1

4 , P (X = x2) = 3
4 , and P (Y = y1) = 1

3 , P (Y = y2) = 2
3 .

In this example, X and Y are independent: for every x ∈ {x1, x2} and every y ∈ {y1, y2},
P (X = x, Y = y) = P (X = x)P (Y = y):

P (X = x1, Y = y1) =
1

12
=

1

4
× 1

3
= P (X = x1)P (Y = y1),

P (X = x1, Y = y2) =
2

12
=

1

4
× 2

3
= P (X = x1)P (Y = y2),

. . .

Note that every entry for the joint PMF in the center of the table is equal to the product of
the corresponding marginal PMFs.

Theorem 8. Suppose that X and Y are independent. Then, for any A ⊂ R and B ⊂ R,

P (X ∈ A, Y ∈ B) = P (X ∈ A)P (Y ∈ B). (2)

Remark. The statement in (2) can actually be used as the definition of independence.

Proof. We will prove the result for continuous X and Y . Let fX,Y be the joint PDF of X and
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Y . Let fX and fY denote the marginal PDFs of X and Y respectively.

P (X ∈ A, Y ∈ B) =

ˆ
A

ˆ
B
fX,Y (x, y)dydx

=

ˆ
A

ˆ
B
fX(x)fY (y)dydx

=

ˆ
A
fX(x)

(ˆ
B
fY (y)dy

)
dx

=

(ˆ
A
fX(x)dx

)(ˆ
B
fY (y)dy

)
= P (X ∈ A)P (Y ∈ B).

The proof is analogous in the discrete case: one has to replace integrals with sums and PDFs
with PMFs.

The transformations of independent random variables are also independent.

Theorem 9. Suppose that X and Y are independent. Define U = g(X) and V = h(Y ). Then
U and V are also independent.

Proof. We will provide a proof only for the discrete case. Let SX and SY denote the supports
of X and Y respectively. Let u be a point in the support of U , and let v be a point in the
support of V . Define Cu = {x ∈ SX : g(x) = u} and Cv = {y ∈ SY : h(y) = v}. Here Cu

contains all the points in the support of X such that g(x) = u for a chosen value u. The set
Cv is defined similarly. We have

P (U = u, V = v) = P (X ∈ Cu, Y ∈ Cv)

= P (X ∈ Cu)P (Y ∈ Cv)

= P (U = u)P (V = v),

where the equality in the second line holds by Theorem 8 and the independence of X and
Y .
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