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LECTURE 10
QUANTILES (PERCENTILES), SYMMETRIC DISTRIBUTIONS, LOGISTIC

DISTRIBUTION

1 Definition and properties

Let X be a continuously distributed random variable with a CDF FX . Suppose that the CDF
function is monotone increasing everywhere. In this case, the inverse function of FX exists. If
the support of the distribution is R = (−∞,∞),

FX : R → (0, 1), and

F−1X : (0, 1) → R.

The values F−1X (τ) for τ ∈ (0, 1) are known as the quantiles of X (or of the distribution of X).

Definition 1. Suppose that FX is a continuous and monotone increasing CDF, and let F−1X

be its inverse function. For τ ∈ (0, 1), the τ -th quantile is defined as

qτ = F−1X (τ).

Remark. 1. Quantiles are also often referred to as percentiles. However, in the latter case they
are indexed by percentages 100× τ rather than fractions τ ∈ (0, 1).

2. Similarly to means, variances, and other moments, quantiles are the properties of
distributions. Their interpretation will be discussed below.

Construction of quantiles for strictly increasing continuous CDFs is shown graphically in
Figure 1.

Figure 1: Construction of the τ -th quantile qτ = F−1X (τ)
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Recall that an inverse function must satisfy the following property:

FX(F
−1
X (τ)) = τ. (1)

Hence, the τ -th quantile must satisfy

P (X ≤ qτ ) = FX(qτ )

= FX(F
−1
X (τ))

= τ,

where the equality in the first line holds by the definition of the CDF, the equality in the
second line holds by the definition of the quantile qτ , and the last equality holds by the result
in (1) for monotone continuous functions. This result gives an important interpretation of
quantiles: the probability of drawing a value below (to the left of) the τ -th quantile is equal
to τ . We will state this result as a theorem:

Theorem 2. Suppose that X is distributed with FX , where FX is a continuous and monotone
increasing CDF. Let qτ = F−1X (τ) be the τ -th quantile of FX . Then,

FX(qτ ) = P (X ≤ qτ ) = τ.

Several commonly used quantiles/percentiles are given their own names:

Median τ = 0.5. According to Theorem 2, the probability to be below the median is 50%.

Deciles τ = 0.1, 0.2, . . . , 0.9. The value τ = 0.1 corresponds to the first decile, τ = 0.2

corresponds to the second decile, and etc. The probability to be below the first decile is
10%. The fifth decile coincides with the median.

Quartiles τ = 0.25, 0.50, 0.75. The value τ = 0.25 corresponds to the first quartile, τ = 0.50

corresponds to the second quartile (or the median), and τ = 0.75 corresponds to the
third quartile. The interquartile range (IQR) is defined as the difference between the
third and first quartiles:

IQR = q0.75 − q0.25.

Along with variances (or standard deviations), IQR is often used as measures of disper-
sion or spread of a distribution. Note that the interval [q0.25, q0.75] contains 50% of the
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probability mass:

P (q0.25 < X < q0.75) = P (X < q0.75)− P (X < q0.25)

= 0.75− 0.25

= 0.5.

Thus, a longer IQR corresponds to a more disperse distribution.

Example. (Value-at-Risk) In Finance, Value-at-Risk (VaR) is a commonly used measure
of risk. VaR is typically defined on the distribution of losses. Let L denote a random loss on
some investment portfolio. Given τ ∈ (0, 1) (typically τ is a very small number such as 0.05
or 0.01), V aRτ is a number such that the probability that the loss exceeds V aRτ is τ :

P (L > V aRτ ) = τ.

For example, suppose that for τ = 0.05 the VaR equals $100,000. This means that the
probability of losing over $100,000 is 5%, i.e. with probability 95% the loss is not going exceed
$100,000. Thus, the definition can be alternatively stated as

P (L ≤ V aRτ ) = 1− τ,

from which it follows that V aRτ is the (1− τ)-th quantile of the distribution of losses.

Example. Consider X ∼ Uniform(0, 1). In this case, for x ∈ (0, 1), the CDF of X is given
by FX(x) = x. Hence, given τ ∈ (0, 1),

qτ = τ.

More generally, suppose that X ∼ Uniform(a, b). In this case, for x ∈ (a, b),

FX(x) =
x− a
b− a

.

Using Theorem 2 to find the τ -th quantile, we can set an equation

τ =
qτ − a
b− a

.

Solving the equation for qτ , we find

qτ = τ(b− a) + a.
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For example, the median of the uniform distribution is given by

q0.5 = 0.5(b− a) + a

=
a+ b

2
.

In this example, the median coincides with the mean (the center of the interval (a, b)), and
therefore, 50% of the probability mass is below the mean. Such a situation occurs, for example,
when the PDF is symmetric around the mean.

2 Symmetric distributions

Many important distributions in probability and statistics have PDFs that are symmetric
around some point in their support, say µ. A graph of such a PDF is shown in Figure 2.

Figure 2: Symmetric around µ PDF fX
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Definition 3. A distribution with PDF fX is symmetric around µ if

fX(µ+ u) = fX(µ− u)

for any u ∈ R.

Example. (Logistic distribution) We say that X has a logistic distribution if its CDF is
given by

FX(x) =
1

1 + e−x
. (2)

(Check that this function is indeed a CDF!) The logistic CDF corresponds to the following
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PDF:

fX(x) =
d

dx
(1 + e−x)−1

=
e−x

(1 + e−x)2

=
e−x

1 + 2e−x + e−2x

=
e−x

1 + 2e−x + e−2x
× e2x

e2x

=
ex

e2x + 2ex + 1

=
ex

(1 + ex)2
.

Hence,

fX(x) =
e−x

(1 + e−x)2
=

ex

(1 + ex)2
= fX(−x)

for any x ∈ R, and therefore this distribution is symmetric around µ = 0. To find the τ -th
quantile of this distribution, we will use again Theorem 2 and the definition of the CDF in
(2):

τ = FX(qτ )

=
1

1 + e−qτ
.

Solving the last equation for τ , we find:

qτ = − log

(
1

τ
− 1

)
.

To find the median of this distribution, substitute τ = 0.5 to obtain

q0.5 = − log

(
1

0.5
− 1

)
= − log(1)

= 0.
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Also, we have

q0.25 = − log

(
1

0.25
− 1

)
= − log(3)

≈ −1.099,

q0.75 = − log

(
1

0.75
− 1

)
= − log

(
1

3

)
= log(3)

= −q0.25.

Not surprisingly, the quartiles are symmetric around zero. This property is not unique to
quartiles. More generally, the quantiles of this distribution satisfy

q1−τ = −qτ for any τ ∈ (0, 1). (3)

To show that (3) (in the case of the logistic distribution), write

q1−τ = − log

(
1

1− τ
− 1

)
= − log

(
τ

1− τ

)
= log

(
1− τ
τ

)
= log

(
1

τ
− 1

)
= −qτ .

Note that for τ = 0.5, equation (3) implies that q0.5 must be zero:

q0.5 = −q0.5,

and therefore q0.5 = 0.

We will show below that, if a distribution is symmetric around µ, then its mean and median
coincide with µ, and its quantiles are symmetric around µ.

Theorem 4. Let X be distributed with a PDF fX , which is symmetric around µ:

fX(µ+ u) = fX(µ− u)
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for any u ∈ R. Then the mean (EX), median (q0.5) and quantiles (qτ ) of this distribution
satisfy the following properties.

(a) EX = µ.
(b) q0.5 = µ.
(c) q1−τ − µ = µ− qτ .

Proof. To show part (a), write

EX =

ˆ ∞
−∞

xfX(x)dx

=

ˆ ∞
−∞

(x− µ+ µ)fX(x)dx

=

ˆ ∞
−∞

(x− µ)fX(x)dx+ µ

ˆ ∞
−∞

fX(x)dx

=

ˆ ∞
−∞

(x− µ)fX(x)dx+ µ, (4)

where the last equality follows from the fact that PDF integrates to one. Thus, it suffices to
show that ˆ ∞

−∞
(x− µ)fX(x)dx = 0. (5)

For that purpose, write
ˆ ∞
−∞

(x− µ)fX(x)dx =

ˆ µ

−∞
(x− µ)fX(x)dx+

ˆ ∞
µ

(x− µ)fX(x)dx,

and consider the following change of variable:

u = x− µ, or

x = µ+ u.
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We have:
ˆ µ

−∞
(x− µ)fX(x)du+

ˆ ∞
µ

(x− µ)fX(x)du

=

ˆ 0

−∞
ufX(µ+ u)du+

ˆ ∞
0

ufX(µ+ u)du

=

ˆ ∞
0

(−u)fX(µ− u)dx+

ˆ ∞
0

ufX(µ+ u)du

=

ˆ ∞
0

u (fX(µ+ u)− fX(µ− u)) du

=

ˆ ∞
0

(u · 0)du

= 0,

where the equality in the fourth line is due to the symmetry of the PDF: fX(µ+u)−fX(µ−u) =
0. Hence, equation (5) holds and the result follows from (4).

Let FX denote the CDF of X. To prove part (b), we need to show that

FX(µ) = 0.5. (6)

Since the median satisfies
FX(q0.5) = 0.5,

the two equations will imply that
q0.5 = µ.

To show (6), note that

FX(µ) =

ˆ µ

−∞
fX(x)dx

= 1−
ˆ ∞
µ

fX(x)dx, (7)

where the second line follows from the fact that the PDF integrates to one:
´
fX(x)dx = 1.

Suppose that ˆ µ

−∞
fX(x)dx =

ˆ ∞
µ

fX(x)dx. (8)

Denoting

M =

ˆ µ

−∞
fX(x)dx,

from (7) and (8) we will have the following equation:

M = 1−M,
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which has a unique solution
M = 0.5.

This in turn implies

M =

ˆ µ

−∞
fX(x)dx = FX(µ) = 0.5.

Lastly, to show (8), we will use the same argument as in the prove of part (a). Consider again
the same change of variable u = x− µ or x = µ+ u:

ˆ µ

−∞
fX(x)dx−

ˆ ∞
µ

fX(x)dx

=

ˆ 0

−∞
fX(µ+ u)du−

ˆ ∞
0

fX(µ+ u)du

=

ˆ ∞
0

fX(µ− u)du−
ˆ ∞
0

fX(µ+ u)du

=

ˆ ∞
0

(fX(µ− u)− fX(µ+ u)) du

=

ˆ ∞
0

0 · du

= 0,

where the equality in the line before the last follows by the symmetry of the PDF.
To establish part (c), first note that by the definition of the τ -th quantile,

τ = FX(qτ )

=

ˆ qτ

−∞
fX(x)dx

=

ˆ qτ

−∞
fX(x− µ+ µ)dx

=

ˆ qτ−µ

−∞
fX(µ+ u)du,

where the last equality follows by the same change of variable that we used before in parts (a)
and (b). Next, for the (1− τ)-th quantile, we have

1− τ = FX(q1−τ )

= P (X ≤ q1−τ ),
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or

τ = P (X > q1−τ )

=

ˆ ∞
q1−τ

fX(x)dx

=

ˆ ∞
q1−τ

fX(x− µ+ µ)dx

=

ˆ ∞
q1−τ−µ

fX(µ+ u)du. (9)

Next, due to the symmetry fX(µ+ u) = fX(µ− u), we can write

τ =

ˆ ∞
q1−τ−µ

fX(µ+ u)du

=

ˆ ∞
q1−τ−µ

fX(µ− u)du

=

ˆ −(q1−τ−µ)

−∞
fX(µ+ u)du

=

ˆ µ−q1−τ

−∞
fX(µ+ u)du. (10)

Combining (9) and (10), we obtain:

ˆ qτ−µ

−∞
fX(µ+ u)du = τ =

ˆ µ−q1−τ

−∞
fX(µ+ u)du,

from which the desired result follows:

qτ − µ = µ− q1−τ .

3 Asymmetric distributions

While symmetric distributions are adequate for some variables, other important in economics
and other disciplines variables have asymmetric distribution. Figure 3 shows the PDF of a
distribution skewed to the right (with positive skewness).

10



Figure 3: PDF of a right-skewed distribution
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In economics, for example, right-skewness characterizes the distributions of wages and
incomes, house values, profits. Right-skewness means that the distribution has a very long
right tail: while most of the probability mass is concentrated in the left and middle portion
of the support, with a very small probability one can still draw very large values in the right
tail. In the case of income distributions, right-skewness implies that a very small proportion
of the population has very large incomes.

With a few exceptions, in a positive skewed distribution the mean is typically is further
out in the right tail than the median. The reason for that is that very large values in the
mean expression

´
xfx(x)dx pull it further to the right. Since such large values occur only

with a small probability, their impact on the median can be negligible. In the case of income
distributions, this would imply that the majority of population have a below average income.

4 Quantiles and the uniform distribution

There is an interesting connection between quantiles and the uniform (0,1) distribution. Let
X be a continuously distributed random variable with a strictly increasing CDF FX . Consider
a new random variable

Y = FX(X).

Note that here we are applying the function FX to a random variable. For example, if X has
the logistic distribution, then Y = (1 + e−X)−1. Note further that, since a CDF is bounded
between zero and one, the support of Y is (0, 1). To find the distribution of Y , we will use the
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distribution function technique from Lecture 9. For y ∈ (0, 1),

P (Y ≤ y) = P (FX(X) ≤ y)

= P (F−1X (FX(X)) ≤ F−1X (y))

= P (X ≤ F−1X (y)).

Since y ∈ (0, 1), F−1X (y) is the y-th quantile of the distribution of X:

F−1X (y) = qy.

Therefore,
P (Y ≤ y) = P (X ≤ qy) = y.

Thus, the CDF of Y is
FY (y) = P (Y ≤ y) = y.

However, this is the CDF of the uniform (0, 1) distribution. We conclude that

FX(X) ∼ Uniform(0, 1).

The process also works in the reverse direction. Let FX be a CDF, and let U ∼ Uniform(0, 1).
Then, X = F−1X (U) is distributed according to the CDF FX :

P (X ≤ x) = P (F−1X (U) ≤ x)

= P (FX(F
−1
X (U)) ≤ FX(x))

= P (U ≤ FX(x))

= FX(x),

where the last equality follows since P (U ≤ u) = u for any u ∈ (0, 1). The result can be used
for simulating random variables with a CDF F :

1. Draw a uniformly distributed on zero-one interval random variable U .

2. Compute X = F−1(U). The new random variable X will be distributed according to
the CDF F .
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