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LECTURE 9
EXPECTATION OF A CONTINUOUSLY DISTRIBUTED RANDOM

VARIABLE, DISTRIBUTION FUNCTION AND CHANGE-OF-VARIABLE
TECHNIQUES

1 Expectation of a continuously distributed random variable

Recall that in the case of a discrete random variable X distributed over the support SX =

{x1, x2, . . .} with a PMF pX , we defined the expectation of X as a weighted average of the
values in the support of the distribution with the weights given by the PMF

EX =
∑
x∈SX

xpX(x).

Recall also that, in the case of continuous distributions, the role of the PMF is played by the
PDF. Hence, for continuous random variables we can define the expectation similarly to that
in the discrete case, however, summation must be replaced by integration (because we have
continuum of values) and the PMF must be replaced by the PDF.

Definition 1. Let X be a continuously distributed random variable with the PDF fX(x). Its
expected value is defined as

EX =

ˆ ∞
−∞

xfX(x)dx.

Remark. As in the case of discrete distributions, expectation is a number representing one of
the properties of the distribution: its center (or location).

Example. Let X ∼ Uniform(a, b), a < b. In this case,

fX(x) =
1

b− a
× 1(a < x < b).

Therefore,

EX =

ˆ ∞
−∞

xfX(x)dx

=

ˆ b

a
x · 1

b− a
dx

=
1

b− a
· x

2

2

∣∣∣∣b
a

=
1

b− a

b2 − a2

2

=
b+ a

2
.
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The result is very intuitive: since the probability mass is uniformly distributed over the interval
(a, b), the center of the distribution is simply the center of the interval: (b+a)/2 = a+(b−a)/2.

2 Expectation of a function of a continuous random variable

2.1 The distribution function or change-of-variable technique

We often need to to evaluate expressions of the form Eu(X), where X is continuously dis-
tributed and u(x) is some function. Recall that, in the discrete case,

Eu(X) =
∑
x∈SX

u(x)pX(x).

In the continuous case, the result is similar with necessary adjustments for continuous support:

Eu(X) =

ˆ ∞
−∞

u(x)fX(x)dx. (1)

The result is easy to prove in the case of monotone one-to-one functions. Recall that when
a function u(x) is one-to-one, it has a unique inverse function: if y = u(x) then there is
v(y) = u−1(y) such that y = u(x) is and only if x = v(y) = u−1(y) or

v(u(x)) = u−1(u(x)) = x.

Note that the inverse function v(y) = u−1(y) reverses the relationship between x and y. For
example, if y = u(x) = x3, then v(y) = u−1(y) = y1/3.

We will prove the following result using the definition of the CDF and by change of variable.

Theorem 2. Let X be a continuously distributed random variable with the CDF FX(x) and
the PDF fX(x). Let Y = u(X), where u(x) is a monotone increasing function. Then,

(a) Y is continuously distributed with the CDF FX(u−1(y)) and the PDF

fY (y) = fX(u−1(y))
1

u′(u−1(y))
.

(b) EY =
´∞
−∞ u(x)fX(x)dx.

Proof. We will show part (a) first. By the definition of the CDF,

FY (y) = P (Y ≤ y)

= P (u(X) ≤ y)

= P (X ≤ u−1(y))

= FX(u−1(y)).
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Also, by the definition of the PDF,

fY (y) =
dFY (y)

dy

=
dFX(u−1(y))

dy

= fX(u−1(y))
1

u′(u−1(y))
,

where u′(x) = du(x)/dx. For the equality in the last line we used the chain rule and the fact
that1

du−1(y)

dy
=

1

u′(u−1(y))
.

To show part (b), consider

EY =

ˆ
yfY (y)dy. (2)

We have

y = u(x), (3)

u−1(y) = x,

fY (y) = fX(u−1(y))
1

u′(u−1(y))

= fX(x)
1

u′(x)
. (4)

Lastly,

dy = d(u(x))

= u′(x)dx. (5)

Substituting (3), (4), and (5) into (2), we obtain

EY =

ˆ
u(x)

(
fX(x)

1

u′(x)

)(
u′(x)dx

)
=

ˆ
u(x)fX(x)dx.

Remark. 1. The result in part (b) remains true even if u(x) is not one-to-one.
1The result is quite intuitive: if the slope of u is u′, then the slope of the inverse function at the same point

is 1/u′.

3



2. In part (a), if u(x) is monotone decreasing, then

FY (y) = 1− FX(u−1(y)),

fY (y) = fX(u−1(y))

∣∣∣∣ 1

u′(u−1(y))

∣∣∣∣ .
Example. Suppose that X ∼ Uniform(a, b), and let Y = 3X. We have u(x) = 3x and
u−1(y) = y/3. Hence, by part (a) of Theorem 2,

fY (y) =
1

b− a
× 1(a < y/3 < b)× 1

3

=
1

3(b− a)
× 1(3a < y < 3b).

We conclude that Y ∼ Uniform(3a, 3b), and EY = 3(b+ a)/2.

Example. Suppose that X ∼ Uniform(a, b). Let

Y = u(X), where

u(x) = x3.

In this example, u(x) is monotone increasing, and

u−1(y) = y1/3

u′(x) = 3x2,

u′(u−1(y)) = 3y2/3,

fY (y) =
1

b− a
× 1(a < y1/3 < b)× 1

3y2/3

=
1

(b− a)3y2/3
× 1(a3 < y < b3).

The distribution of Y is non-uniform: fY (y) decreases with y over the support of the distri-
bution (the interval (a3, b3)). The expected value of y is

EY =

ˆ b3

a3

y

(b− a)3y2/3
dy

=
1

3(b− a)

ˆ b3

a3
y1/3dy

=
1

3(b− a)

3y4/3

4

∣∣∣∣∣
b3

a3

=
b4 − a4

4(b− a)
.
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However, we can find the same expression using the result in part (b) of Theorem 2:

EY = EX3

=

ˆ b

a

x3

(b− a)
dx

=
1

b− a

x4

4

∣∣∣∣b
a

=
b4 − a4

4(b− a)
.

2.2 Moments

Let X be a continuous random variable with the PDF fX . Using (1), the moments of X can
be defined as

EXr =

ˆ
xrfX(x)dx.

Similarly,

V ar(X) = E(X − EX)2

=

ˆ
(x− EX)2fX(x)dx.

Lastly, the MGF of X is given by

MX(t) = EetX

=

ˆ
etxfX(x)dx.

The MGF has the same properties as in the case of discrete random variables:

drMX(t)

dtr
= E

(
XretX

)
,

and
EXr =

drMX(t)

dtr
.

3 Properties

In the case of continuous random variables, the same properties of expectation hold as in the
case of discrete random variables. This follows from the fact that expectation remains linear
whether the underlying distribution is discrete or continuous.

Theorem 3. (Linearity of expectation) Let X be continuously distributed with the PDF

5



fX(x). Let a, b1, and b2 be some constants. Then,

E(a+ b1u1(X) + b2u2(X)) = a+ b1Eu1(X) + b2Eu2(X).

Proof. By the result in (1),

E (a+ b1u1(X) + b2u2(X)) =

ˆ
(a+ b1u1(x) + b2u2(x)) fX(x)dx

=

ˆ
afX(x)dx+

ˆ
b1u1(x)fX(x)dx+

ˆ
b2u2(x)fX(x)dx

= a

ˆ
fX(x)dx+ b1

ˆ
u1(x)fX(x)dx+ b2

ˆ
u2(x)fX(x)dx

= a+ b1Eu1(X) + b2Eu2(X),

where the equalities in lines 1-3 hold by the properties of integrals, and the equality in the
last line holds since

´
fX(x)dx = 1.

Once we have verified the linearity of expectation, all other properties based on it imme-
diately follow. For example, consider Theorem 4 in Lecture 5 that argues that EX minimizes
the function Q(c) = E(X − c)2. While the result was introduced in the discussion of discrete
random variables, nothing in its proof is specific to the discrete case. To prove the theorem,
we only used the linearity of expectation. Thus, the theorem remains true if X is a continuous
random variable:

EX = argmin
c∈R

E(X − c)2.

The same applies to the properties of the variance in Theorem 2 in Lecture 6. We have
not used the discreteness of a distribution in the proof and relied only on the linearity of
expectation. Thus, all the properties of the variance continue to hold:

V ar(c) = 0,

V ar(a+ bX) = b2V ar(X),

V ar(X) = EX2 − (EX)2.
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