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LECTURE 8
CONTINUOUS RANDOM VARIABLES AND PROBABILITY DENSITY

FUNCTIONS (PDFs), UNIFORM DISTRIBUTION

The theory of discrete distributions and random variables described in previous lectures is
very useful in many situations. However, there are also many situations where it cannot be
applied, because it is more appropriate to model variables of interest as continuous, i.e. taking
values in R, R+, or some intervals in R. For example, in economics we typically view prices,
quantities, wages, and incomes as continuous.

We previously defined continuous random variables as those with continuous CDFs. Here,
we will strengthen this requirement further and assume that the CDF is also differentiable.1

Assumption 1. We say that a random variable X is continuously distributed if its CDF FX

is continuous and differentiable.

Let fX(x) denote the derivative of FX at x:

fX(x) =
dFX(x)

dx
.

According to the Fundamental Theorem of Calculus, for a ≤ b

FX(b)− FX(a) =

ˆ b

a
fX(x)dx.

On the other hand,

FX(b)− FX(a) = P (X ≤ b)− P (X ≤ a)

= P (a < X ≤ b)

= P (a ≤ X ≤ b)

= P (a < X < b), (1)

where the last two equalities follow from the fact that for a continuously distributed random
variable,

P (X = x) = 0 for all x ∈ R.

Thus, we can write

P (a < X < b) =

ˆ b

a
fX(x)dx. (2)

We can compare the expression for P (a < X < b) in (2) with P (a < Y < b) for a discrete
1In mathematics, such functions are called absolutely continuous.
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random variable Y . Let SY and pY be its support and PMF respectively. Then,

P (a < Y < b) =
∑

y∈SY :a<y<b

pY (y). (3)

The comparison of (2) and (3) shows that in the case of continuous random variables, we have
to use integration over [a, b] instead of summation as in the discrete case. This is because
there is a continuum of values that X can take. However, the comparison also shows that in
the continuous case, fX plays a role similar to that of PMF pY in the discrete case. At the
same time, it is important to remember that fX(x) is not the probability of X = x as the
latter is zero everywhere. The function fX is called the probability density function (PDF).

Definition 2. (PDF) The probability density function of a continuous random variable with
differentiable CDF FX is defined as the derivative of FX :

fX(x) =
dFX(u)

du

∣∣∣∣
u=x

.

The PDF gives as an alternative way to describe continuous distributions. Note that one
can always recover a CDF from its PDF. Using (1) and (2), sending a to −∞, and using the
fact that lima→−∞ FX(a) = 0, we obtain that

FX(b) = P (X < b)

=

ˆ b

−∞
fX(x)dx.

Example. (Uniform distribution) Let a < b, and define a function

FX(x) =


0, x ≤ a,

x−a
b−a , a < x < b,

1, x ≥ b.

The function FX is obviously a CDF as it has all the required properties: bounded between
zero and one, non-decreasing, and etc. It is also continuous everywhere, see Figure 1.
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Figure 1: The CDF of the Uniform(a, b) distribution: FX(x) = x−a
b−a · 1(a < x < b)+1(x ≥ b)
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Figure 2: The PDF of the Uniform(a, b) distribution: fX(x) = 1
b−a · 1(a < x < b)
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This CDF function is differentiable everywhere except for x = a, b. For x < a or x > b,
the derivative is zero, and it is given by

fX(x) =
1

b− a
for x ∈ (a, b).

However, since the integral over a point (integral with the lower bound equal to the upper
bound) is zero, it does not matter how we define the derivative of FX at a and b. Hence, we
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can define the PDF as

fX(x) =


0, x ≤ a,

1
b−a , a < x < b,

0, x ≥ b.

The graph of the PDF can be seen in Figure 2. Since the PDF is zero for x ≤ a and x ≥ b,
the probability of drawing X in those regions is zero. For example,

P (X ≤ a) =

ˆ a

−∞
fX(x)dx =

ˆ a

−∞
0 · dx = 0.

Thus, the support of the distribution of X is the interval (a, b). Note that the PDF is constant
over the support, i.e. the probability mass is uniformly distributed over the support, which
explains the name of the distribution. Let a ≤ x1 < x2 ≤ b. Then,

P (x1 < X < x2) =

ˆ x2

x1

dx

b− a
=

x2 − x1
b− a

.

We can see that the probability of X ∈ (x1, x2) depends only on the length of the interval.

Next, we will discuss the properties of PDFs.

Theorem 3. A PDF function f must satisfy the following properties.
(a) f(x) ≥ 0 for all x ∈ R.
(b)
´∞
−∞ f(x)dx = 1.

Proof. Let F be the CDF corresponding to the PDF f . Part (a) of the theorem follows from
the fact that F is non-decreasing:

f(x) =
dF (x)

dx
≥ 0.

Part (b) also follows from the properties of the CDF. Recall that

lim
b→∞

F (b) = 1,

lim
a→−∞

F (a) = 0.
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Next,

ˆ ∞
−∞

f(x)dx = lim
a→−∞,b→∞

ˆ b

a
f(x)dx

= lim
a→−∞,b→∞

(F (b)− F (a))

= lim
b→∞

F (b)− lim
a→−∞

F (a)

= 1− 0

= 1.

Since the PDF is always non-negative, and because a random variable cannot take values
from the regions where the PDF is exactly zero, we can define the support of the distribution
of a continuous random variable as the set of points where the PDF is strictly positive.

Definition 4. Let X be a continuously distributed random variable with a PDF fX(x). The
support of the distribution of X is SX = {x ∈ R : fX(x) > 0}.

The PDF gives us a convenient way to generate continuous distributions. Let h be a
non-negative function with a finite integral over R:

c =

ˆ ∞
−∞

h(x)dx > 0.

Define
f(x) = h(x)/c.

The function f(x) is non-negative and integrates to one. Hence, it is a PDF. The corresponding
CDF is

F (x) =

ˆ x

−∞
f(u)du

=
1

c

ˆ x

−∞
h(u)du.

Example. Consider the following function:

h(x) =


0, x ≤ 0,

x, 0 < x < 1,

0, x ≥ 1.
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We have
ˆ ∞
−∞

h(x)dx =

ˆ 0

−∞
h(x)dx+

ˆ 1

0
h(x)dx+

ˆ ∞
1

h(x)dx

=

ˆ 0

−∞
0 · dx+

ˆ 1

0
xdx+

ˆ ∞
1

0 · dx

=

ˆ 1

0
xdx

=
x2

2

∣∣∣∣1
0

=
1

2
.

Hence, c = 1/2 and
f(x) = 2x · 1(0 < x < 1)

is a PDF. For 0 < x < 1, the CDF F is given by

F (x) =

ˆ x

−∞
2u · 1(0 < u < 1)

= 2

ˆ x

0
udu

= x2.

Also,

F (x) = 0 for x ≤ 0,

F (x) = 1 for x ≥ 1.

The functions f(x) and F (x) are plotted in Figures 3 and 4 respectively.
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Figure 3: The plot of PDF f(x) = 2x · 1(0 < x < 1)
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Figure 4: The plot of CDF F (x) = x2 · 1(0 < x < 1) + 1(x ≥ 1)
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