
DECEMBER 14, 2015

LECTURE 6
VARIANCE, MOMENTS, AND MOMENT GENERATING FUNCTION

(MGF) OF DISCRETE RANDOM VARIABLES

1 Variance

Consider the following two distributions:

SX = {−1, 1}, pX(−1) = pX(1) = 1/2, (1)

SY = {−2, 2}, pY (−2) = pY (2) = 1/2. (2)

Recall from Lecture 5 that the expected value of a random variable captures the center (loca-
tion) of its distribution. If X is distributed according to the PMF pX described above, and Y
is distributed according to the PMF pY , then

EX = EY = 0.

Thus, the two distributions have the same center, but they are obviously different: the distri-
bution of Y is more spread out. One of the measures of spread of a distribution is variance.

Definition 1. (Variance and standard deviation) (a) Let X be a random variable with
the support SX = {x1, x2, . . .} and PMF pX . The variance of X is defined as

V ar(X) = E(X − EX)2

=
∑
x∈SX

(x− EX)2pX(x)

= (x1 − EX)2pX(x1) + (x2 − EX)2pX(x2) + . . . .

(b) The standard deviation of X is defined as

σX =
√
V ar(X). (3)

Remark.

1. Similarly to the expectation, the variance is a number capturing one of the properties of
the distribution of a random variable.

2. From its definition, one can see that the variance is a weighted sum of squared distances
from the center of a distribution. Since realizations xi’s are on the right and on the left
of the expectation EX, some of the differences (xi − EX) are positive and some are
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negative. Squaring makes all deviations positive. It does not matter for the variance if
xi is on the right or left of the mean, only squared distances from the mean matter.

3. Because it is defined in terms of squared distances, the variance is not measured in
the same units as X. For example, if X is measured in dollars, then the variance is
measured in squared dollars. To obtain a measure of spread of the distribution of X
that is measured in the same units as X, we compute the standard deviation of X (the
square-root of the variance).

4. From equation (3), σ2X = V ar(X). We, therefore, often denote the variance of X as σ2X .

5. A unit-free measure of the spread of a distribution is given by the coefficient of variation.
Let µX = EX. When µX 6= 0, the coefficient of variation is defined as

σX/µX .

Example. Suppose that X and Y are distributed as in (1) and (2).

V ar(X) = (−1− 0)2pX(−1) + (1− 0)2pX(1)

= 1× 1

2
+ 1× 1

2
= 1.

Thus, σX = 1.

V ar(Y ) = (−2− 0)2 × pY (−2) + (2− 0)2pY (2)

= 4× 1

2
+ 4× 1

2
= 4,

and σY = 2. Here, V ar(X) < V ar(Y ) is a simple expression of the fact that the distribution
of Y is more disperse than that of X.

In finance, the variance (or the standard deviation) is often used as a measure of risk, and
investment strategies are evaluated in terms of their variances and expected returns. A higher
expected return makes the investment strategy more attractive. Since individuals are typically
risk-averse, a higher variance makes the strategy less attractive.

Some basic properties of the variance are given below.

Theorem 2. Let c be a constant.
(a) V ar(c) = 0.
(b) V ar(c+X) = V ar(X).
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(c) V ar(cX) = c2V ar(X).

(d) V ar(X) = EX2 − (EX)2.

Proof. (a) By Definition (1),

V ar(c) = E(c− Ec)2

= E(c− c)2

= E0

= 0,

where the second and last equalities hold because the expectation of a constant is the constant
itself.

(b) Again, we start from the definition of the variance:

V ar(c+X) = E((c+X)− E(c+X))2

= E(c+X − (c+ EX))2

= E(X − EX)2

= V ar(X),

where the equality in the second line holds by the linearity of expectation (Theorem 3, Lecture
5).

(c)

V ar(cX) = E(cX − E(cX))2

= E(cX − cEX)2

= E(c(X − EX))2

= E(c2(X − EX)2)

= c2E(X − EX)2

= c2V ar(X).

(d) First, write
E(X − EX)2 = E(X − EX)(X − EX),

and

(X − EX)(X − EX) = X(X − EX)− (EX)(X − EX)

= X2 − (EX)X − (EX)(X − EX).
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Next,

E(X2 − (EX)X) = EX2 − E ((EX)X)

= EX2 − (EX)EX

= EX2 − (EX)2,

where the equality in the second line holds by the linearity of expectation since (EX) is a
constant. Lastly,

E ((EX)(X − EX)) = (EX)E(X − EX),

however,

E(X − EX) = EX − E(EX) (4)

= EX − EX

= 0.

Remark.

1. All the proofs follow directly from the definition of the variance and linearity of expec-
tation.

2. In the proof of part (d), we showed that X − EX is a random variable that has mean
zero (equation (4)).

3. According to part (a), a constant has zero variance. As a matter of fact, the result holds
if and only if: when the variance of a random variable is zero, we can conclude that the
random variable is a constant. To show that, suppose that V ar(X) = 0, and assume
that X is discrete. Let’s try to find the support of X.

0 = E(X − EX)2

= (x1 − EX)2pX(x1) + (x2 − EX)2pX(x2) + . . . . (5)

Since

(xi − EX)2 ≥ 0,

pX(xi) > 0

for any xi, the sum in (5) can be equal zero if and only if each individual element is zero.
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We conclude that for all xi’s,
(xi − EX)2 = 0

or
xi = EX

for all xi’s. Thus, the support of X can include only one point equal to the mean of X:

SX = {EX}.

We conclude that X is a constant.

4. According to part (b), shifting a distribution does not change its spread (dispersion).

5. Parts (b) and (c) together imply

V ar(a+ bX) = b2V ar(X),

where a and b are constants.

6. Part (c) implies that the standard deviation of cX is equal to

|c|σX ,

where σX is the standard deviation of X.

7. Part (d) implies that when EX = 0, the variance of X is given by

V ar(X) = EX2.

8. For distributions with infinite support, it is possible to have a finite mean (−∞ < EX <

∞) but infinite variance (V ar(X) =∞).

2 Moments and moment generating function (MGF)

While the mean and variance are important characteristics of a distribution, they capture
only its certain properties. Since the mean and variance are determined by EX and EX2,
generalizing the approach we can try to capture the additional characteristics of a distribution
by considering other expressions of the form EXr.

Definition 3. (Moments) (a) The r-th moment of X is defined as EXr.
(b) The r-th central moment of X is defined as E(X − EX)r.
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Note that the first moment is just the mean of the random variable, and the second central
moment is the variance. Also, the first central moment is zero.

It turns out that the information about all (existing) moments can be captured by a certain
function defined below.

Definition 4. (Moment Generating Function (MGF)) Let X be a random variable with
the support SX = {x1, x2, . . .} and PMF pX . Its MGF is defined as

MX(t) = EetX

=
∑
x∈SX

etxpX(x)

= etx1pX(x1) + etx2pX(x2) + . . . ,

where t ∈ R.

Example. If SX = {−1, 1} and pX(−1) = pX(1) = 1/2,

MX(t) = (e−t + et)/2.

If SY = {−2, 2} and pY (−2) = pY (2) = 1/2,

MY (t) = (e−2t + e2t)/2.

Remark. When the support of a distribution is infinite, EetX can be infinite for large values
of t. In this case, we would restrict the range of t to sufficiently small values where the MGF
is finite, when this is possible.

The relationship between moments and the MGF is established in the following result.

Theorem 5. The r-th moment of X (when exists) is equal to the r-th derivative of the MGF
of X evaluated at zero:

drMX(t)

dtr

∣∣∣∣
t=0

= EXr,

where r = 1, 2, . . ..

Proof. We consider here the case of a discrete X with the support and PMF SX = {x1, x2, . . .}
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and pX(x) respectively. Consider the case of r = 1.

dMX(t)

dt
=

d

dt

∑
x∈SX

etxpX(x)


=

d

dt

(
etx1pX(x1) + etx2pX(x2) + . . .

)
=

detx1

dt
pX(x1) +

detx2

dt
pX(x2) + . . .

= x1e
tx1pX(x1) + x2e

tx2pX(x2) + . . .

=
∑
x∈SX

xetxpX(x)

= E
(
XetX

)
.

Next, substituting t = 0, we obtain:

E
(
Xe0×X

)
= EX.

Hence,
dMX(0)

dt
= EX.

For r = 2,

d2MX(t)

dt2
=

d

dt

(
dMX(t)

dt

)

=
d

dt

∑
x∈SX

xetxpX(x)


=

∑
x∈SX

x

(
detx

dt

)
pX(x)

=
∑
x∈SX

x
(
xetx

)
pX(x)

=
∑
x∈SX

x2etxpX(x)

= E
(
X2etX

)
.

Again, substituting t = 0, we obtain:

d2MX(0)

dt2
= E

(
X2e0×X

)
= EX2.
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More generally,
drMX(t)

dtr
= E

(
XretX

)
,

from which the result follows.

Example. Suppose that SX = {−1, 1} and pX(−1) = pX(1) = 1/2, and therefore

MX(t) = (e−t + et)/2.

We have:

dMX(t)

dt
=

d

dt

(
e−t + et

)
/2

= (−e−t + et)/2,

and

EX =
dMX(0)

dt
= (−e0 + e0)/2

= (−1 + 1)/2

= 0.

Next,

d2MX(t)

dt2
=

d

dt
(−e−t + et)/2

= (e−t + et)/2.

Hence,

EX2 =
d2MX(0)

dt2

= (e0 + e0)/2

= 1.

More generally,
drMX(t)

dtr
=

1

2

(
(−1)re−t + et

)
,
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and

EXr =
drMX(0)

dtr

=
1

2
((−1)r + 1).

Thus, in this example, EXr = 0 if r is odd, and EXr = 1 if r is even.
Consider now the example with SY = {−2, 2} and pY (−2) = pY (2) = 1/2, and

MY (t) = (e−2t + e2t)/2.

In this case,

dMY (t)

dt
=

1

2

(
−2e−2t + 2e2t

)
,

d2MY (t)

dt2
=

1

2

(
22e−2t + 22e2t

)
,

. . .
drMY (t)

dtr
=

1

2

(
(−1)r2re−2t + 2re2t

)
.

It follows
EY r =

1

2
((−1)r2r + 2r) ,

or

EY = 0,

EY 2 =
1

2

(
22 + 22

)
= 4,

EY 3 = 0,

EY 4 =
1

2

(
24 + 24

)
= 16,

. . .

Note that all the odd moments of this distribution are exactly zero. This is explained by the
fact that the distribution is symmetric around zero: the probability of drawing a positive value
is equal to the probability of drawing a negative value of the same magnitude. Those values
cancel out when computing EXr with an odd r.

MGFs are not only useful for computing moments. As a matter of fact, the MGF provides
a complete description of a distribution. In other words each distribution has a unique MGF.
Thus, instead of working the PMF, we can work with the MGF without losing any information
about the distribution.
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Theorem 6. Let X and Y be two random variables, and suppose that the MGFs of X and Y
are equal: for all t ∈ R where the MGFs are finite,

MX(t) =MY (t).

Then X and Y have the same distribution. In particular, their PMFs satisfy pX(u) = pY (u)

for all u’s.

We are not going to provide a formal proof for the theorem, and will only illustrate why
it must be true. Let {u1, u2, . . . , un} be the support points. Write the MGFs as

MX(t) = etu1pX(u1) + etu2pX(u2) + . . .+ etunpX(un),

MY (t) = etu1pY (u1) + etu2pY (u2) + . . .+ etunpY (un).

Since MX(t) =MY (t) for any t, subtracting the second equation from the first, we obtain:

0 = etu1(pX(u1)− pY (u1)) + etu2(pX(u2)− pY (u2)) + . . .+ etun(pX(un)− pY (un). (6)

The equality must hold for any value t, i.e. it holds for a continuum of values of t. This can
be true if and only if

pX(u)− pY (u) = 0

for all u. For example, suppose that

u1 = 1,

u2 = 2,

. . .

un = n.

Lets re-define
et = s.

Then,

etu1 = et = s,

etu2 = e2t = (et)2 = s2,

. . .

etun = ent = (et)n = sn.
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Lastly, let’s define

c1 = pX(u1)− pY (u1),

. . .

cn = pX(un)− pY (un).

In this case, equation 6 becomes

0 = sc1 + s2c2 + . . .+ sncn.

This is a polynomial equation in s with coefficients c1, . . . , cn. However, the equation must
hold for any value of s. This can be true if and only if

c1 = c2 = . . . = cn = 0,

which implies that
pX(u) = pY (u)

for all u.
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