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LECTURE 5
EXPECTATION OF DISCRETE RANDOM VARIABLES

1 Expectation of a discrete random variable

In this section, we introduce the concept ofmathematical expectation and discuss its properties.

Example. Consider the following game: you roll a dice once, and if the outcome is an even
number you receive one dollar; however, if the outcome is an odd number, you have to pay
one dollar. Let Y1 denote the (random) payoff.

Table 1: Random payoffs (Y1, Y2)

ω P ({ω}) Y1(ω) Y2(ω)

1 1/6 -1 -1
2 1/6 1 -1
3 1/6 -1 -1
4 1/6 1 -1
5 1/6 -1 -1
6 1/6 1 1

In this game, the support of the discrete random variable Y1 is given by SY1 = {−1, 1},
and the PMF is given by:

pY1(−1) = P (Y1 ∈ {1, 3, 5}) = 0.5,

pY1(1) = P (Y1 ∈ {2, 4, 6}) = 0.5.

The average payoff is
−1× 0.5 + 1× 0.5 = 0.

Now consider a game with slightly changed rules: the payoff, denoted Y2, is -1 if Y2 ≤ 5

and 1 if Y2 = 6. The support is the same as before, SY2 = {−1, 1}, however, the PMF is
different:

pY2(−1) = 5/6,

pY2(1) = 1/6.

Since the positive payoff now occurs with a smaller probability, it seems reasonable to give it
a smaller weight when computing the average payoff. Consider a weighted average payoff with
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weights given by the probabilities:

−1× 5

6
+ 1× 1

6
= −2

3
.

In those examples, the average payoff is a number that represents the corresponding game.
Since the average payoff is smaller in the second game than in the first game, a simple com-
parison of those two numbers demonstrates that the first game is preferable to the second.

The weighted average value of a discrete random variable, where the weights are given by
the PMF, is called the expected value (or mathematical expectation, expectation, mean value,
mean).

Definition 1. (Expectation) Let X be a discrete random variable with the support SX =

{x1, x2, . . .} and PMF pX . Its expected value is defined as

EX =
∑
x∈SX

xP (X = x) =
∑
x∈SX

xpX(x) = x1pX(x1) + x2pX(x2) + . . . .

Remark.

1. Expectation is a number representing the distribution of a random variable. Thus, it is
a property of the distribution.

2. While the notation used to denote expectations is EX or E(X), it is wrong to think
of it as a function of the random variable X. It is rather a function (property) of the
distribution of X or pX .

3. Expectation is just one of the characteristics of the distribution of X and, thus, does
not provide a complete information about the distribution. It is possible to have many
different distributions with the same expectation. For example, suppose that in the
example above the payoff is -2 when the outcome is odd and 2 when the outcome is
even. The expected value of this distribution is also zero, however, it is a different
distribution. When given a choice between this game and the original one, most people
would not be indifferent. A complete description for a discrete random variable is given
by the PMF, and usually we lose some (or a lot of) information by focusing on one
particular property of the distribution.

4. While expectation is just one of the properties of a distribution, it nevertheless plays a
fundamental role in statistics, econometrics and economics. One of the reasons for that
is the so called Law of Large Numbers (LLN). According to the LLN, if we repeat an
experiment many times (independently), and then average the realizations of a random
variable across the experiments, the average will be close to the expected value of the
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random variable. (This concept will be discussed later in the course in details). Thus,
in the above examples, the expected value is approximately equal to the average payoff
if the game is played many times.

More generally, consider the expectation of a function of a random variable. LetX be a random
variable, and suppose that Y = u(X), where u(·) is some function. Since X is random, Y
is random in general. Since Y is related to X through u(·), the expectation of Ymust be
determined by the distribution of X and the function u(·). The relationship is established in
the following theorem.

Theorem 2. Let X be a discrete random variable with the support SX = {x1, x2, . . .} and
PMF pX . Define Y = u(X), where u : R→ R is some function. Then,

EY =
∑
x∈SX

u(x)pX(x) = u(x1)pX(x1) + u(x2)pX(x2) + . . . .

Proof. By definition, EY =
∑

y∈SY
ypY (y), where SY is the support of Y and pY is its PMF.

Given y ∈ SY , let X (y) ⊂ SX be the set of all values x ∈ SX such that u(x) = y:

X (y) = {x ∈ SX : u(x) = y}.

Then,

pY (y) = P (Y = y)

= PX(X (y))

=
∑

x∈X (y)

pX(x). (1)
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We have:

EY =
∑
y∈SY

ypY (y)

=
∑
y∈SY

y

 ∑
x∈X (y)

pX(x)


=

∑
y∈SY

 ∑
x∈X (y)

ypX(x)


=

∑
y∈SY

 ∑
x∈X (y)

u(x)pX(x)


=

∑
y∈SY

∑
x∈X (y)

u(x)pX(x)

=
∑
x∈SX

u(x)pX(x).

The second equality holds by (1). The third equality holds by distributing y with the terms
pX(x) in the inner sum. Note that the inner sum is computed over the the elements of X (y)
while holding y constant. The fourth equality is by the definition of X (y), since X (y) consists
of all points x such that u(x) = y. The last equality holds because summing over all x’s in
X (y) and then summing over all y’s in SY is equivalent to summing over all x ∈ SX .

Example. Suppose that SX = {1, 2, 3, 4, 5, 6}, pX(x) = 1/6 for all x ∈ SX , and let

u(x) =

−1, x ∈ {1, 3, 5},

1, x ∈ {2, 4, 6}.

Suppose that Y = u(X). In this case, SY = {−1, 1}, X (−1) = {1, 3, 5}, and X (1) = {2, 4, 6}.

EY = (−1)× P (Y = −1) + 1× P (Y = 1)

= (−1)× PX(X (−1)) + 1× PX(X (1))

= (−1)× (pX(1) + pX(3) + pX(5)) + 1× (pX(2) + pX(4) + pX(6))

= (−1)× pX(1) + 1× pX(2) + (−1)× pX(3) + 1× pX(4) + (−1)× pX(5) + 1× pX(6)

=
∑

x∈{1,2,3,4,5,6}

u(x)pX(x).

2 Properties of expectation

Here we will discuss the main properties of expectation.
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First, note that a constant c can be viewed as a degenerate random variable: its support
consists of one point Sc = {c}, and the PMF is given by pc(c) = 1. Hence, by the definition
of expectation:

Ec = c× pc(c) = c.

Thus, the expected value of a constant is the constant itself.
The following property is known as the linearity of expectation.

Theorem 3. Let X be a discrete random variable with the support SX = {x1, x2, . . .} and
PMF pX . Let Y = a+ bX, where a and b are some constants. Then,

EY = E(a+ bX) = a+ bEX.

Proof. By Theorem 2,

E(a+ bX) =
∑
x∈SX

(a+ bX)pX(x)

= (a+ bx1)pX(x1) + (a+ bx2)pX(x2) + . . .

= apX(x1) + bx1pX(x1) + apX(x2) + bx2pX(x2) + . . .

= a(pX(x1) + pX(x2) + . . .) + b(x1pX(x1) + x2pX(x2) + . . .)

= a
∑
x∈SX

pX(x) + b
∑
x∈SX

xpX(x)

= a× 1 + bEX.

Note that the result follows because the expectation is defined as a sum, and sums satisfy
linearity: let {ci : i = 1, 2, . . .} be a sequence of numbers, then∑

i

(a+ bci) =
∑
i

a+ b
∑
i

ci.

More generally we have the following result:

E (a+ b1u1(X) + b2u2(X)) = a+ b1Eu1(X) + b2Eu2(X), (2)

where a, b1, b2 are constants, u1(·) and u2(·) are two functions, and X is a random variable.
The proof of the result is analogues to the proof of Theorem 3. The result can also be extended
to more than two functions.

When the support of a random variable is finite, the expectation is always a number (finite).
However, when the support is infinite, the expectation may be infinite since

∑
x∈SX

xpX(x)

is a sum of infinitely many terms. Moreover, when the support of a random variable includes
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both negative and positive values and infinite, we can even have an undefined expectation
as the formula for expectation can produce ∞ −∞. When expectation is infinite (+∞ or
−∞) or undefined (∞−∞), we say that expectation does not exist. The following example
demonstrates the case when EX =∞.

Example. (St. Petersburg Paradox) The problem and its solution were described by
Bernoulli in an article published in Commentaries of the Imperial Academy of Science of
Saint Petersburg in 1738. Consider a game where a coin is tossed repeatedly until “tails” is
drawn. Let X denote the number of tosses, and suppose that the payoff is given by 2X , i.e.
the payoff amount doubles with every toss: the payoff is $2 when X = 1, $4 when X = 2,
and etc. In this game, the support of X (and of the random payoff) is infinite. Note also
that the probability of having a payoff equal to 2n dollars is given by (1/2)n and goes to zero
exponentially fast as n→∞. Thus, the probability of having a very large payoff is minuscule.
Nevertheless, since the amount of payoff increases at the same rate as the probability decreases,
the expected payoff is infinite:

E
(
2X
)

= 2× 1

2
+ 22 × 1

22
+ 23 × 1

23
+ . . .

= 1 + 1 + 1 + . . .

= ∞.

If the decision whether to participate in this game or not was based on the expected value of
the payoff, one would always choose to participate regardless of the participation cost. Suppose
that the price of participation is c. One would choose to participate regardless of how large c

is since c < E2X =∞ for any value of c.
The situation was considered a paradox because it seemed very unreasonable that any

rational person would choose to pay an arbitrary large price to participate in the game: the
probability of winning a very large prize is minuscule. For example, the probability of winning
more than $256 is

P (2X > 256) = P (2X > 28)

= P (X > 8)

= 1−
(

1

21
+

1

22
+ . . .+

1

28

)
≈ 1− 0.9961

= 0.0039.

As a solution to the paradox, it was suggested that rational individuals evaluate random
games not according to expected payoffs, but according to the expected utility of payoffs.
Moreover, the utility function must have the property of diminishing marginal utility of money:
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the utility gained from each additional dollar decreases with the wealth. Under diminishing
marginal utility, u(2X) grows slower than 2X , and therefore the expected value Eu(2X) can be
finite. For example, with a log utility function, one can show that E log(2X) = 2 log(2) ≈ 1.39.1

In this example, suppose that the cost of participation in the game is c. One decides to
participate in the game if the expected utility from participation exceeds the utility he obtains
if he decides not to participate. Let u(·) is a utility function, and suppose that w is the initial
wealth of an individual. The individual will participate in this game if

Eu(w + 2X − c) > u(w).

The following example suggest an important interpretation of expected value. Consider
the following game. Let X be a random variable. You must pick a number c ∈ R. If the
realized value of X is x, you must pay (x− c)2. How should one choose c? It seems logical to
choose c that minimizes the expected loss from participating in this game. Thus, the optimal
value c∗ is the solution to minc∈RE(X − c)2. We will show below that c∗ = EX.

Theorem 4. Let X be a random variable, and suppose that E(X − c)2 is finite.2 Then,

EX = argmin
c∈R

E(X − c)2.

Proof. Note that since (x−c)2 is a nonlinear function, we cannot use the linearity of expectation
directly: E(X − c)2 6= (EX − c)2. However, since the function is quadratic, we can expand it
first and then use the linearity. Write

(X − c)2 = X2 − 2cX + c2.

Hence,

E(X − c)2 = E
(
X2 − 2cX + c2

)
= EX2 − E(2cX) + Ec2

= EX2 − 2c(EX) + c2,

where the result in the second line holds by (2), and the result in the last line holds by Theorem
3 and because c2 is a constant. We can now find the first-order condition for our minimization

1We will discuss later in the course how to compute this.
2Note that E must be the last operation performed. To emphasize that, we could write the expression as

E((X − c)2).
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problem:

d

dc
E(X − c)2 =

d

dc
(EX2 − 2c(EX) + c2)

= −2EX + 2c.

Solving the first-order condition for c, we obtain:

c∗ = EX.

Note that
d2

dc2
E(X − c)2 = 2 > 0,

and therefore c∗ is the minimum.

We can view E(X − c)2 as the average distance between a point c and the distribution
of X, where we use the quadratic function (x − c)2 as a measure of the distance. Since
c∗ = EX minimizes the distance to the distribution, we can interpret EX as the center of the
distribution of X.
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