
SEPTEMBER 29, 2014

LECTURE 4
DISCRETE RANDOM VARIABLES, PROBABILITY MASS FUNCTIONS

(PMFs)

We already defined in Lecture 2 discrete random variables through the CDF: their CDFs
are step functions. In this lecture, we will take a closer look at how discrete distributions arise.

Suppose that a random variable X takes values in a finite or countable subset of R:

X : Ω→ S ⊂ R,

where
S = {x1, x2, . . . , xn}

or
S = {x1, x2, . . . , xn, xn+1, . . .}.

Suppose further that
P (X = x) > 0 for all x ∈ S.

The set S is called the support of the distribution of X. In the first case, the support is finite
and consists only of n elements. In the second case, the support is infinite but countable: its
elements can be put in one-to-one correspondence with positive integers (natural numbers).
In either case, such random variables are called discrete due to the discrete nature of their
support.

Definition 1. A discrete random variable is a random variable that takes a countable number
(finite or infinite) of values with strictly positive probabilities.

Remark. We will see later that this definition is consistent with defining random variables as
those that have a step function for CDFs (Lecture 3, Definition 11).

Example. (a) Suppose that Ω = {H,T}, P ({H}) = P ({T}) = 1/2, and X(ω) = 1(ω = H),
i.e.

X =

1, ω = H,

0, ω = T.

In this case, the support is S = {0, 1}, since for any other number x /∈ S, P (X = x) = 0.
(b) In rolling a dice experiment, S = {1, 2, 3, 4, 5, 6}, and P (X = x) = 1/6 for x ∈ S.
(c) Consider the following experiment. Roll a dice. If the outcome is 6, the experiment

stops. If the outcome is different from six, one has to roll again. Let X denote the number of
rolls needed to obtain 6. The sample space is infinite but countable:

S = {1, 2, 3, . . .}.
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Also,

P (X = 1) =
1

6
,

P (X = 2) =
5

6
× 1

6
,

P (X = 3) =

(
5

6

)2

× 1

6
,

. . .

P (X = n) =

(
5

6

)n−1
× 1

6
.

Note that in Examples (a)-(b) the support of the distribution is finite, while in Example
(c) the support is infinite (but countable)

One can describe the distribution of X using CDFs as discussed in Lecture 3. However,
since the support of the distribution of a discrete random variable is quite simple, a more
convenient description can be obtained with a Probability Mass Function (PMF).

Definition 2. (PMF) A probability mass function of a discrete random variable with a
support S is defined as

pX(x) = P (X = x) for x ∈ S,

and satisfies
pX(x) > 0 for all x ∈ S,

and ∑
x∈S

pX(x) = 1. (1)

Remark. When S is finite, S = {x1, x2, . . . , xn},

∑
x∈S

pX(x) =

n∑
i=1

pX(xi) = pX(x1) + pX(x2) + . . . + pX(xn).

When S is countably infinite, S = {x1, x2, . . .},

∑
x∈S

pX(x) =
∞∑
i=1

pX(xi) = pX(x1) + pX(x2) + . . . .

A PMF can be extended to the entire real line by defining pX(x) = 0 if x /∈ S.

Example. It is straightforward to find the PMFs in the above examples:
(a) pX(x) = 1/2, x ∈ {0, 1}.
(b) pX(x) = 1/6, x ∈ {1, 2, 3, 4, 5, 6}.
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(c) pX(x) =
(
5
6

)x−1 × 1
6 , x ∈ {1, 2, 3, . . .}. To verify that condition (1) holds,

∞∑
i=1

pX(xi) =
1

6
+

(
5

6

)
× 1

6
+

(
5

6

)2

× 1

6
+ . . .

=
1

6
×

(
1 +

5

6
+

(
5

6

)2

+ . . .

)
=

1

6
× 1

1− 5
6

= 1.

A PMF can be used to compute probabilities of the form P (X ∈ B) where B ⊂ R:

P (X ∈ B) =
∑
s∈S

(pX(x)× 1(x ∈ B)) (2)

= pX(x1)× 1(x1 ∈ B) + pX(x2)× 1(x2 ∈ B) + . . . ,

where 1(x ∈ B) is the indicator function for the set B:

1(x ∈ B) =

1, x ∈ B,

0, x /∈ B.

Example. Consider again example (c) above. Suppose that B = {1, 2}, i.e. we consider an
event that it took less than three attempts to roll 6:

P (X ∈ B) = P (X ∈ {1, 2})

= pX(1)× 1(1 ∈ {1, 2}) + pX(2)× 1(2 ∈ {1, 2}) + pX(3)× 1(3 ∈ {1, 2}) + . . .

=
1

6
× 1 +

5

6
× 1

6
× 1 +

(
5

6

)2

× 1

6
× 0 + . . .

=
1

6
+

5

6
× 1

6
+ 0 + . . .

=
11

36
.

Note that we would obtain exactly the same result if we take, for example, B = [1, 2] or [0, 2.4].

Using the definition in (2), we can also see the relationship between CDFs and PMFs.
Recall that in the case of CDFs, we are concerned with P (X ∈ (−∞, u]) = P (X ≤ u) for
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u ∈ R. Hence, for a discrete random variable X,

FX(u) = P (X ≤ u)

=
∑
s∈S

(pX(x)× 1(x ≤ u))

= pX(x1)× 1(x1 ≤ u) + pX(x2)× 1(x2 ≤ u) + . . . ,

where

1(x ≤ u) =

1, x ≤ u

0, x > u

Thus, to compute FX(u) we add all the values pX(x) for x ∈ S such that x ≤ u. For example,
suppose that the elements in S are ordered in increasing order:

x1 < x2 < x3 < . . . .

Then,

FX(u) =



0, u < x1,

pX(x1), x1 ≤ u < x2,

pX(x1) + pX(x2), x2 ≤ u < x3,

. . . . . .

pX(x1) + pX(x2) + . . . + pX(xn), xn ≤ u < xn+1.

As one can see, the CDF is a step function: it changes only in jumps and only u crosses one
of the support points. Furthermore, if xn and xn+1 are two subsequent support points, then

FX(xn+1)− FX(xn) = pX(xn+1).

The last equation simply reflects the cumulative nature of a CDF.
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