
OCTOBER 19, 2014

LECTURE 3
RANDOM VARIABLES, CUMULATIVE DISTRIBUTION FUNCTIONS

(CDFs)

1 Random Variables

Random experiments typically require verbal descriptions, and arguments involving events are
often cumbersome. It is much more convenient to work with numbers than sets, which means
that we need numeric representations of random experiments and events. Another reason for
developing such a representation is that data on the real world often comes in the form of
numbers or variables. Hence, we need to develop a formal connection between variables and
the probability model.

Definition 1. A random variable X is a function from the sample space Ω to the real line R :

X : Ω→ R.

Thus, the random variable X assigns to each ω ∈ Ω a real number x = X(ω). While
X(ω) is a function, often to simplify the notation we will write X omitting the dependence on
ω. Nevertheless, one should remember that a random variable is a mapping from the sample
space to the real line. To distinguish between random variables (which are functions) and
potential values they can take (realizations), we will use capital letters (X) to denote random
variables and small letters (x) to denote realizations.

Table 1: States of the economy, probabilities, and stock prices of different companies

state of the economy hi-tech potatoes foie gras
ω P ({ω}) X(ω) Y (ω) Z(ω)

weak 0.2 90 20 20
somewhat weak 0.3 90 30 60
somewhat strong 0.3 100 30 95

strong 0.2 150 20 95

Examples of random variables defined on the same Ω are given in Table 1. Note that
different random variables may carry different amount of information about the underlying
random experiment, and there might be information loss. For example, someone who observes
only X from 1 cannot tell whether state of the economy is “weak” or “somewhat weak” when
X = 90.
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Using the definition of random variables and a probability function P defined on events
on Ω, we can can define the distribution of random variables.

Definition 2. The distribution of a random variable X : Ω → R, is a probability function
PX(·) defined as follows. Let B ⊂ R,

PX(B) = P ({ω ∈ Ω : X(ω) ∈ B}) .

Since the distribution PX of a random variable X is directly related to the probability
function P , PX is also a probability function, and therefore satisfies all the properties of
probability functions derived earlier.

For example, consider B = [60, 95], and the random variables in Table 1:

{ω ∈ Ω : X(ω) ∈ [60, 95]} = {weak, somewhat weak}.

Hence,
PX([60, 95]) = P ({weak, somewhat weak}) = 0.5.

Similarly, for the random variable Y and the same B,

PY ([60, 95]) = P ({ω ∈ Ω : 60 ≤ Y (ω) ≤ 95})

= P (∅)

= 0.

Lastly, for Z and the same B,

PZ([60, 95]) = P ({ω ∈ Ω : 60 ≤ Z(ω) ≤ 95})

= P ({somewhat weak, somewhat strong,strong})

= 0.8.

We can continue this exercise with different subsets B’s of the real line, thus constructing
for each random variable a mapping from a collection of subsets of R to [0,1]. While this
collection cannot contain all possible subsets of the real line, it is extremely rich and includes
all intervals and their unions, i.e. all the subsets of practical interest. The exact technical
details are beyond the scope of this course.

In the above example, we have that in general PX 6= PY , i.e. there are B ⊂ R such
that PX(B) 6= PY (B). However, it is possible for two random variables to have the same
distribution function.

Definition 3. Two random variables X and Y are equal in distribution (denoted X =d Y ) if
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for all B ⊂ R,
PX(B) = PY (B).

Note that X =d Y does not imply that X = Y . It is possible that X and Y have the same
distribution, however, if we consider the event that they are equal

E = {ω ∈ Ω : X(ω) = Y (ω)},

it may occur only with probability zero, i.e. we can have X =d Y and P (E) = 0.

2 Cumulative distribution function (CDF)

2.1 Definition and examples

The distribution PX(B) can be computed for a variety of B ⊂ R. If we restrict our attention to
the collection of half-lines {(−∞, u] : u ∈ R}, the resulting distribution is called the cumulative
distribution function or CDF.

Definition 4. The CDF of a random variable X is a map FX : R→ [0, 1] defined as

FX(u) = PX((−∞, u]) = P ({ω ∈ Ω : X(ω) ≤ u})

for all u ∈ R.

Using a simplified notation,

FX(u) = P (X ≤ u) for all u ∈ R.

Note that FX(u) must be defined for all real numbers u.

Figure 1: The CDF of X with PX(90) = 0.5, PX(100) = 0.3, and PX(150) = 0.2.
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For example, the CDF of X from Table 1 is shown in Figure 1; it is given by

FX(u) =


0, u < 90

0.5, 90 ≤ u < 100

0.8, 100 ≤ u < 150

1, u ≥ 150

Note from the graph is that the CDF is a non-decreasing function, which reflects the fact that
it shows cumulative probabilities. As a probability function, it is also bounded between zero
and one. Note also that in this particular example, the CDF has discontinuity points - jumps.
We will now discuss those properties in general.

2.2 Properties of CDFs

Since CDFs are defined through probability functions, the properties of CDFs follow directly
from the properties of probabilities. In what follows below, let FX(u) denote the CDF of a
generic random variable X that has a distribution function PX .

Theorem 5. (Monotonicity) FX(u) is a non-decreasing function: suppose that a ≤ b, then
FX(a) ≤ FX(b).

Proof. By definition,
FX(u) = PX((−∞, u]),

which is the probability of an event thatX ≤ u. Since a ≤ b, we have the following relationship:

(−∞, a] ⊂ (−∞, b].

Hence, by Theorem 7(f) in Lecture 1,

PX((−∞, a]) ≤ PX((−∞, b]),

and the result follows.

To derive other properties of CDFs, we need to discuss one more property of general prob-
ability functions: continuity. Recall that a function g : R→ R is continuous if limu→x g(u) =

g(x). A similar result can be established for probability functions: for certain (monotone)
sequences of sets {Ai : i = 1, 2, . . .} converging (in the sense described below) to a set A,
we will have that limi→∞ P (Ai) = P (A), the result known as the continuity of probability
functions. This is discussed in detail below.

To establish the continuity of probability functions, we will use the difference operation
(between two sets):
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Definition 6. Consider two sets G and H such that G ⊂ H. The difference between H and
G is defined as

H −G = H ∩Gc.

Note that since

G ∩ (H −G) = G ∩ (H ∩Gc)

= 0,

and because
G ∪ (H −G) = H,

we have P (G) + P (H −G) = P (H), or

P (H −G) = P (H)− P (G).

We will also need a notion of the limit of a sequence of sets. This can be naturally defined
for monotone sequences of sets.

Definition 7. (Limits of monotone sequences sets) (a) Let {Ai : i = 1, 2, . . .} be a
monotone increasing sequence of sets:

A1 ⊂ A2 ⊂ . . . .

Its limit is defined as
lim
i→∞

Ai = A1 ∪A2 ∪ . . . = ∪∞i=1Ai.

(b) Let {Ai : i = 1, 2, . . .} be a monotone decreasing sequence of sets:

A1 ⊃ A2 ⊃ . . . .

Its limit is defined as
lim
i→∞

Ai = A1 ∩A2 ∩ . . . = ∩∞i=1Ai.

The following theorem established the continuity of probabilities.

Theorem 8. (Continuity of probability) (a) Let {Ai : i = 1, 2, . . .} be a monotone in-
creasing sequence of events with A = limi→∞Ai = ∪∞i=1Ai. Then limn→∞ P (An) = P (A).

(b) Let {Ai : i = 1, 2, . . .} be a monotone decreasing sequence of events with A = limi→∞Ai =

∩∞i=1Ai. Then limn→∞ P (An) = P (A).
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Proof. To prove part (a), let’s define

B1 = A1,

B2 = A2 −A1,

B3 = A3 −A2,

and etc. Note that the events B’s are mutually exclusive, and

A1 = B1

A2 = B1 ∪B2,

A3 = B1 ∪B2 ∪B3,

. . .

An = B1 ∪B2 ∪B3 ∪ . . . ∪Bn,

A = B1 ∪B2 ∪B3 ∪ . . . ∪Bn ∪ . . . .

Thus, by the third axiom of probability,

P (A) = P (B1) + P (B2) + . . .

= lim
n→∞

n∑
i=1

P (Bi)

= lim
n→∞

P (∪ni=1Bi)

= lim
n→∞

P (An),

where the equality in the third line is also by the third axiom of probability.
To prove part (b), define

Cn = A1 −An,

C = A1 −A.

Since {Ai} is monotone decreasing to A, the sequence {Ci} is monotone increasing to C. By
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the result in part (a)

P (C) = lim
n→∞

P (Cn)

= lim
n→∞

P (A1 −An)

= lim
n→∞

(P (A1)− P (An))

= P (A1)− lim
n→∞

P (An).

On the other hand,
P (C) = P (A1 −A) = P (A1)− P (A).

Hence,
P (A1)− lim

n→∞
P (An) = P (A1)− P (A),

or
lim
n→∞

P (An) = P (A).

We can now turn to remaining properties of CDFs.

Theorem 9. (a) limu→∞ FX(u) = 1.
(b) limu→−∞ FX(u) = 0.
(c) FX is a right-continuous function: limu↓x FX(u) = F (x), where u ↓ x denotes that u

approaches x from above (from the right).
(d) FX may not be left continuous: limu↑x FX(u) ≤ F (x), where u ↑ x denotes that u

approaches x from below (from the left).

Proof. Since FX(u) = PX(A) for the set A = (−∞, u], we can prove the results by using the
continuity of PX and appropriate choices of sequences of sets of the form (−∞, u].

For part (a), consider
An = (−∞, n], n = 1, 2, . . . .

In this case we have a monotone increasing sequence of sets, and

A = lim
n→∞

An = R.

Hence,

lim
n→∞

FX(n) = lim
n→∞

PX(An)

= PX(R)

= 1.
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Here, the first equality holds by the definition of FX , the second equality is by the continuity of
PX and because the sequence An = (−∞, n] expands to the entire real line. The last equality
holds because

PX(R) = P (−∞ < X <∞),

and the event −∞ < X < ∞ is always true because X is only allowed to take on real values
(numbers), and ∞ is not a number.

The proof of part (b) is identical, however instead of an increasing sequence of events, we
will use a decreasing sequence. Let

An = (−∞,−n],

so that
A = lim

n→∞
An = ∅.

Then,

lim
n→∞

FX(n) = lim
n→∞

PX(An)

= PX(∅)

= 0.

For part (c), since FX(x) = PX((−∞, x]) we need to construct a monotone sequence of
sets approaching the set (−∞, x] “from the right”. Let

An = (−∞, x + 1/n].

Note that {An : n = 1, 2, . . .} is a monotone shrinking sequence of sets. Thus,

A = lim
n→∞

An = ∩∞n=1An.

Since x ∈ An for all n = 1, 2, . . ., the limit of the sequence is

A = (−∞, x].

Hence,

lim
u↓x

FX(u) = lim
n→∞

PX((−∞, x + 1/n])

= PX( lim
n→∞

(−∞, x + 1/n])

= PX((−∞, x])

= FX(x).
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For part (d), we need to construct a monotone sequence of sets approaching (−∞, x] “from
the left”. Let

An = (−∞, x− 1/n].

Note that {An : n = 1, 2, . . .} is a monotone expanding sequence of sets. Thus,

A = lim
n→∞

An = ∪∞n=1An.

Since x /∈ An for any n = 1, 2, . . ., we have that

x /∈ ∪∞n=1An.

Hence, the limit of the sequence is
A = (−∞, x).

Therefore,

lim
u↑x

FX(u) = lim
n→∞

PX((−∞, x− 1/n])

= PX( lim
n→∞

(−∞, x− 1/n])

= PX((−∞, x))

= FX(x)− P (X = x)

≤ FX(x).

Note that
lim
u↑x

FX(u) = PX((−∞, x))

is different from the CDF of X at x unless the probability that X = x is exactly zero.

Remark. Any function that satisfies the properties described in Theorems 5 and 9 is a CDF
function: Given a function F (x) that satisfies the aforementioned properties, one can always
construct a random variable X such that its CDF is equal to F (x). We will demonstrate that
later in the course.

Let’s define the left limit of the CDF as

F−X (x) = lim
u↑x

FX(u) = PX((−∞, x)).

The CDF is continuous if for every x ∈ R

F−X (x) = FX(x).
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Definition 10. A random variable is continuous or continuously distributed if its CDF is
continuous everywhere.

Note that since
P (X = x) = FX(x)− F−X (x), (1)

the probability that a continuously distributed random variable takes on value x is exactly
zero for all x ∈ R.

Definition 11. A random variable is discrete if its CDF is a step function.

A discrete random variable takes a finite or countable number of values with strictly positive
probabilities. In view of (1), those probabilities are captured by the jumps of the CDF.

The CDF provides a complete description for the behavior of a random variable: from the
knowledge of the CDF, we can calculate all probabilities of practical importance concerning
the behavior of a random variable. For example, for a ≤ b,

P (a < X ≤ b) = PX((−∞, b])− PX((−∞, a])

= FX(b)− FX(a),

P (a ≤ X ≤ b) = PX((−∞, b])− PX((−∞, a))

= FX(b)− F−X (a).

Example. Suppose X is distributed with a CDF

FX(x) =


0, x ≤ 0

x, 0 < x ≤ 1

1, x > 1

This function satisfies the properties described in Theorems 5 and 9, so we have a CDF. (This
distribution is known as Uniform(0,1) distribution.) Note also that the function is continuous
everywhere:

FX(x)− F−X (x) = 0

for all x ∈ R. Hence, it does not matter whether intervals closed or open when computing
probabilities. Now,

P (0 < X < 0.5) = 0.5− 0 = 0.5,

P (0.5 < X < 1) = 1− 0.5 = 0.5,

P (0.5 < X < 1.5) = 1− 0.5 = 0.5.
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