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LECTURE 2
CONDITIONAL PROBABILITY, INDEPENDENCE, BAYES’ RULE

1 Conditional probability

The probability model is concerned with evaluating the likeliness of events. However often
when evaluating the likeliness of events, researchers need to incorporate some prior information.
Suppose one is interested in the measure of likeliness of an event A when it is known that
another event B has occurred. In this situation it seems unwise to use P (A) since that
measure ignores the information on the event B. The revised measure that takes into account
the additional information (the B has occurred) is called the conditional probability of A given
B.

Definition 1. Suppose that events A and B are defined on the same probability space, and
the event B is such that P (B) > 0. The conditional probability of A given that B has occurred
is given by P (A|B) = P (A ∩B)/P (B).

To understand the intuition behind the concept of conditional probability, note that if B
has occurred then we know that the selected ω belongs to B. Therefore, when evaluating A,
one should ignore all ω’s that are not in B. Thus, a revised measure of the likeliness of A
should depend on P (A ∩ B). Intuitively this is equivalent to reducing the effective sample
space from Ω to B ⊂ Ω. However, according to the second axiom of probability, the total
probability measure must be equal to one. Hence, we re-scale P (A ∩ B) by P (B) to obtain
P (Ω|B) = P (B|B) = 1.

Example. Consider rolling a dice example: Ω = {1, 2, . . . , 6}. Let A = {6} and B = {2, 4, 6}.
In this example, the unconditional probability of rolling a six is P (A) = 1/6. Now suppose you
know that a player rolled an even number, however, you do not know what number exactly.
In that case, you can update the probability of rolling a six to P (A|B) = P (A ∩ B)/P (B) =

P ({6})/P ({2, 4, 6}) = 1/3.

Theorem. The conditional probability function is a probability function, i.e. it satisfies the
axioms of probability.

Proof. Let B be such that P (B) > 0. Since P (·) is a probability function and satisfies the
axioms of probability, P (A ∩ B) ≥ 0. It follows that P (A|B) = P (A ∩B)/P (B) ≥ 0. Hence,
the first axiom holds.

The second axiom has be already shown to hold above. To verify the third axiom, suppose
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that A1, A2, . . . are mutually exclusive. Then, for i 6= j

(Ai ∩B) ∩ (Aj ∩B) = Ai ∩Aj ∩B

= ∅ ∩B

= ∅,

where the first equality holds by the associative property of the union. Thus, the events
(Ai ∩B) are mutually exclusive for i = 1, 2, . . .. Next,

P (A1 ∪A2 ∪ . . . |B) = P ((A1 ∪A2 ∪ . . .) ∩B)/P (B)

= P ((A1 ∩B) ∪ (A2 ∩B) ∪ . . .)/P (B)

= (P (A1 ∩B) + P (A2 ∩B) + . . .)/P (B)

= P (A1 ∩B)/P (B) + P (A2 ∩B)/P (B) + . . .

= P (A1|B) + P (A2|B) + . . . ,

where the second equality holds do to the distributive property, the third equality holds since
the events (Ai ∩ B) are mutually exclusive, and the last equality holds by the definition of
conditional probability.

Note that once it has been established that conditional probability satisfies the axioms
of probability, other properties such as those discussed in Theorem 7 in Lecture 1 follow
immediately.

The definition of conditional probability implies that

P (A ∩B) = P (A|B)P (B).

In many cases, the computation of conditional probability is very natural and straightforward,
which makes it much easier to calculate the probability of an intersection using the conditional
probability approach rather than the counting technique.

Example. (Based on Wonnacott & Wonnacott) Suppose that there are 10 domestic and
10 international students in a class. Two students are selected randomly one after another.
What is the probability that they are both international? Let I1 be the event that the first
selected student is international. Let I2 denote the event that the second selected student is
international. We are interested in P (I1∩I2). Assuming that the selection procedure is purely
random, P (I1) = 1/2. Next, consider P (I2|I1). Since we condition on I1, we assume that
the first student was international. Thus, after the first round, there are 10 domestic and 9
international students left. Hence, P (I2|I1) = 9/19, and therefore, P (I1 ∩ I2) = 9/38.

The same answer can be obtained by the counting technique. We can use the permutations
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formula or ignore the order of selection and use the combinations formula. Both approaches
will give the same answer. The number of possible permutations of choosing 2 students out of
20 is

P (20, 2) =
20!

18!
= 20× 19.

The number of possible permutations with 2 international students (out of 10 international
students) is

P (10, 2) =
10!

8!
= 10× 9.

Hence, the probability that the two selected students are international is

10× 9

20× 19
=

9

38
.

2 Independence

Independence is one of the central concepts in probability and statistics. It will be used
repeatedly in this course and its continuations. Intuitively, the independence of events A and
B means that the information about B is useless for predicting the occurrence of A:

Definition 2. Suppose that P (B) > 0. Two events A and B are independent if

P (A|B) = P (A).

This definition of independence together with the formula for conditional probability in
Definition 1, imply:

P (A) = P (A|B)

= P (A ∩B)/P (B)

or
P (A ∩B) = P (A)P (B). (1)

Suppose that P (A) > 0 and P (B) > 0. Then (1) implies that P (A|B) = P (A) and P (B|A) =

P (B). Thus, equation (1) can be used that as the definition of independence between A and
B.

Definition 3. Two events A and B are independent if P (A ∩B) = P (A)P (B).

The advantage of Definition (2) is that it clearly shows the intuition behind the concept of
independence: conditioning on B does not change the probability of occurrence of A. However,
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it can only be applied with events B that satisfy P (B) > 0. On the other hand, Definition
(3) applies to all events including events including events that occur with probability zero.
For events that occur with non-zero probabilities, the two definitions are equivalent as they
connected by the definition of conditional probability (Definition 1).

Example. Consider two events: {to be a hockey player} and {to live in Canada}. Are they
independent?

Example. Can disjoint events be independent? The intuition suggests not: if A and B are
disjoint, they have no common outcomes, and therefore if B occurred we can immediately
deduce that A did not occur. Hence, the information contained in B can be used to revise
the probability of occurrence of A. Nevertheless, disjoint events can be independent if one
also considers events that occur with probability zero. We have P (A ∩ B) = P (∅) = 0. If
P (A) = 0 or P (B) = 0, then P (A)P (B) = 0 and, therefore, A and B satisfy the criterion for
independence (according to Definition 3). Thus, mutually exclusive events can be independent.

Example. Can an event be independent from itself?

Next, we will discuss certain properties and implications of independence. First, note that
independence is a property of the probability function P (·) rather than events themselves. For
the same sample space and a collection of events one can define many probability functions.
Thus, it is possible that A and B are independent according to P (·), but not independent
according to some other probability function Q: i.e P (A ∩ B) = P (A)P (B) but Q(A ∩ B) 6=
Q(A)Q(B).

Theorem. Suppose that A and B are independent (with respect to some probability function
P ). Then the following statements are true (with respect to the same probability function P ):

(a) Ac and B are independent.
(b) Ac and Bc are independent.
(c) A and Bc are independent.

Proof. To show (a), we need to evaluate P (Ac ∩ B). Recall from Lecture 1 that B = (A ∩
B) ∪ (Ac ∩B) or P (B) = P (A ∩B) + P (Ac ∩B). After re-arranging the terms, we obtain:

P (Ac ∩B) = P (B)− P (A ∩B)

= P (B)− P (A)P (B)

= P (B)P (1− P (A))

= P (Ac)P (B),

where the equality in the second line holds by independence of A and B, and the last equality
holds because P (Ac) = 1− P (A).

Parts (b) and (c) follow immediately from (a).
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The concept can be extended to more than two events. The following definition applies in
the case of three events.

Definition 4. Events A1, A2, and A3 are mutually independent if:
(a) P (A1 ∩ A2) = P (A1)P (A2), P (A1 ∩ A3) = P (A1)P (A3), P (A2 ∩ A3) = P (A2)P (A3),

and
(b) P (A1 ∩A2 ∩A3) = P (A1)P (A2)P (A3).

Thus, in the case of three events, they all must be pairwise independent (condition (a)),
but also the probability of the intersection of the three events should be equal to the product
of the individual probabilities.

The concept can be generalized to an arbitrary number of events:

Definition 5. Events A1, A2, A3, . . . are mutually independent if P (Ai1 ∩ Ai2 ∩ . . . Aij ) =

P (Ai1)P (Ai2) . . . P (Aij ) for any finite collection of indices {i1, i2, . . . , ij}, j = 2, 3, . . ..

Sometimes experiments consist of multiple stages or trials. We say that the trials are
independent if events from different trials are mutually independent. This occurs when the
outcome of one trial does not help with predicting the outcomes in other trials

Definition 6. Suppose that an experiment consists of n trials. Let Ai denote the collection of
events associated with trial i = 1, 2, . . . , n. The trials are said to be independent if P (A1∩A2∩
. . . ∩An) = P (A1)P (A2) . . . P (An) for any combination of A1 ∈ A1, A2 ∈ A2, . . . ,An ∈ An.

Example. (Hockey example revisited) Consider the hockey example from Lecture 1.
Recall that for a complete lineup one has to select 3 forwards out of 12, 2 defencemen out
of 6, and 1 goalie out of 2. Suppose that selection of forwards does not affect selection of
defencemen or the goalie, and etc. In other words, suppose that the three stages, selection of
forwards, of defencemen, and of the goalie are independent. Then the probability that Higgins
(forward) and Bieksa (defencemen) will be in the same lineup is given by

3

12
× 2

6
=

1

12
≈ 0.083333.

The probability that Higgins and Bieksa will both play L on the same shift is

1

12
× 1

6
≈ 0.013889.

3 Bayes’ rule

Baye’s rule allows one to deduce P (B|A) given P (A|B) and the probabilities of A and B. The
next theorem presents the simplest version of the rule.
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Theorem 7. Let A and B be two events such that P (A) > 0 and P (B) > 0. Then

P (B|A) = P (A|B)
P (B)

P (A)
.

Proof. P (A|B)P (B)/P (A) = P (A ∩ B)/P (A) = P (B|A), where the first equality is by the
definition of conditional probability.

Next, we will present a more general version of the result.

Definition 8. A collection of events {B1, B2, . . . , Bn} is called a partition of the sample space
Ω if:

(a) The events B’s are mutually exclusive, i.e. P (Bi ∩Bj) = ∅ for all i 6= j.
(b) ∪ni=1Bi = Ω.

The following result is know as the law of total probability.

Theorem 9. Let A be an event on Ω, and let {B1, B2, . . . , Bn} be a partition of Ω such that
P (Bi) > 0 for all i = 1, 2, . . . , n. Then

P (A) =
n∑

i=1

P (A ∩Bi) =
n∑

i=1

P (A|Bi)P (Bi).

Proof. Since B’s partition Ω,

A = (A ∩B1) ∪ (A ∩B2) ∪ . . . ∪ (A ∩Bn) = ∪ni=1(A ∩Bi).

Since B’s are mutually exclusive, the events (A∩Bi) and (A∩Bj) are also mutually exclusive
for i 6= j. Hence,

P (A) = P (∪ni=1(A ∩Bi))

=
n∑

i=1

P (A ∩Bi).

Lastly, by the definition of conditional probability,

P (A ∩Bi) = P (A|Bi)P (Bi).

Now we can state a more general version of Bayes’ theorem.

Theorem 10. (Bayes’ Theorem) Let A be an event on Ω, and let {B1, B2, . . . , Bn} be a
partition of Ω such that P (Bi) > 0 for all i = 1, 2, . . . , n. Suppose further that P (A) > 0.
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Then
P (Bi|A) =

P (A|Bi)P (Bi)∑n
j=1 P (A|Bj)P (Bj)

for all i = 1, 2, . . . , n.

Proof. By Theorem 9, the denominator is equal to P (A). By the definition of conditional
probability, the numerator is equal to P (Bi ∩ A). The result follows from the definition of
conditional probability.

Example. Suppose that 30% of Canadians play hockey. Suppose further that 10% of people
in the USA and 1% of people in Mexico play hockey, and that for the rest of North American
countries and territories the probability of playing hockey is zero. If a randomly selected North
American person plays hockey, what is the probability that he is from Canada? What is the
probability that he is from the US? Note that Canada has 6% of the population in North
America, the USA has 57%, and Mexico has 21%.

Answer: Let A denote hockey, and B1, B2, and B3 denote Canada, USA, and Mexico
respectively. Let B4, . . . , B41 denote the rest of North American countries and territories. We
have

P (A|B1) = 0.30,

P (A|B2) = 0.10,

P (A|B3) = 0.01,

and P (A|Bj) = 0 for j = 3, . . . , 41. Applying Bayes’ Theorem, the probability that a randomly
selected North American hockey player is from Canada is

P (B1|A) =
0.30× 0.06

0.30× 0.06 + 0.10× 0.57 + 0.01× 0.21
=

0.018

0.0771
≈ 0.23.

The probability that he is from the US is

P (B2|A) =
0.10× 0.57

0.30× 0.06 + 0.10× 0.57 + 0.01× 0.21
=

0.057

0.0771
≈ 0.74.
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